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Setting: Verifiable registries
Applications: certificate transparency, key transparency, binary transparency, etc.
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Key-value 
Mapping
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Users can lookup values and verify they are 
consistent with what other users receive.
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Users can monitor key-value mappings to 
detect unexpected modifications.
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Users can monitor key-value mappings to 
detect unexpected modifications.
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User must monitor 
every published digest.
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Previous approaches: Trusted third-party auditors

Key-value 
Mapping

Alice ae7b
Bob 422a
Cindy 87bd

Digest

d0 d1 d2

New digests published over time

d3

Trusted third-party auditors verify version-only invariant is preserved between 
digests. Invariant allows efficient detection of unexpected changes by user.  
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Alice can detect 
misbehavior without 
verifying all digests!Server

Previous approaches: Trusted third-party auditors

Trusted third-party auditors verify version-only invariant is preserved between 
digests. Invariant allows efficient detection of unexpected changes by user.  
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This work: Enabling efficient client auditability
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This work: Enabling efficient client auditability

New RSA key-value commitment with succinct proofs that 
invariant is preserved over ranges of digests

Contribution 1
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This work: Enabling efficient client auditability

Checkpointing technique to ensure user views remain eventually 
consistent even when auditing distinct ranges of digests

Contribution 2
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[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]
Prior work: Invariant proofs for Merkle trees
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To obtain succinct invariant proofs over a 
range of digests, we compress the Merkle 
paths proof into a generic-circuit SNARK, 
which enables SNARK recursion/aggregation.
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To obtain succinct invariant proofs over a 
range of digests, we compress the Merkle 
paths proof into a generic-circuit SNARK, 
which enables SNARK recursion/aggregation.

SNARK circuit prover

πSNARK

SNARK provers are concretely 
expensive, and every Merkle path 
must be included.

Problem

n’H(k3)n’H(k1) n’H(k2)
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Prior work: Invariant proofs for Merkle trees
[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]



Our work: Invariant proofs for RSA KV commitments
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Our work: Invariant proofs for RSA KV commitments
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Constant-size and constant-verif invariant proof!
Using variant of proof of knowledge of integer 
exponentiation [Wesolowski ‘19][BBF ‘19]

Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]
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Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]
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Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]
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of number of key updates.

24

✓

!

Small circuit translates to high 
update throughput for invariant 
proofs.

Lookup proofs for RSA key-value 
commitment are expensive to 
compute on demand.

Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]



- When auditing a range, users additionally audit logarithmic checkpoints 
within range

- Two users are guaranteed to eventually share checkpoints and will be able to 
detect inconsistencies if they exist 25

This work: Enabling efficient client auditability

New RSA key-value commitment with succinct proofs that 
invariant is preserved over ranges of digests

Contribution 1

Checkpointing technique to ensure user views remain eventually 
consistent even when auditing distinct ranges of digests

Contribution 2



Inconsistent user views: Oscillation attacks
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Since users are not guaranteed to see the same digests, a malicious 
platform may “oscillate”, publishing digests for two different valid 
data structures at different time steps.

Problem
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[Mog’20]
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Eventual inconsistency detection via checkpointing
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- An invariant proof is verified for a sequence of “checkpoints”. The number 
of checkpoints between two digests is logarithmic in the size of the range.

1411 28 37
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- An invariant proof is verified for a sequence of “checkpoints”. The number 
of checkpoints between two digests is logarithmic in the size of the range.
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- An invariant proof is verified for a sequence of “checkpoints”. The number 
of checkpoints between two digests is logarithmic in the size of the range.
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Eventual inconsistency detection via checkpointing
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- An invariant proof is verified for a sequence of “checkpoints”. The number 
of checkpoints between two digests is logarithmic in the size of the range.

- Overlapping ranges are guaranteed to share at least one checkpoint.



Eventual inconsistency detection via checkpointing
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Checkpoints determined by compact subtree representation of range. The number 
of checkpoints will be logarithmic in the size of the range.
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Eventual inconsistency detection via checkpointing
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Checkpoints determined by compact subtree representation of range. The number 
of checkpoints will be logarithmic in the size of the range.
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Shared checkpoints between overlapping ranges guaranteed to exist – see paper!
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This work: Enabling efficient client auditability

New RSA key-value commitment with succinct proofs that 
invariant is preserved over ranges of digests

Contribution 1

Checkpointing technique to ensure user views remain eventually 
consistent even when auditing distinct ranges of digests

Contribution 2



Implementation and performance evaluation

38

- RSA key-value commitment and invariant proofs
- R1CS constraints for RSA algorithms in arkworks ecosystem for zkSNARKs
- Open source: github.com/nirvantyagi/versa



Implementation and performance evaluation

Comparison to Merkle Tree baseline: Server with 32 CPU cores + 512 GB memory 

39

- Client verification costs: similar
- Proofs < 20kB, verify in < 100ms

- Update proof throughput: 10x-400x higher
- Prototype achieves 60-90 updates/second on a single server

- Lookup proof costs: substantially worse
- VeRSA limited to registries of ~millions of entries due to O(n2) costs
- Millions of entries can be handled with O(nlogn) batch computation costs

- RSA key-value commitment and invariant proofs
- R1CS constraints for RSA algorithms in arkworks ecosystem for zkSNARKs
- Open source: github.com/nirvantyagi/versa



Potential application: binary transparency

40

Characteristics:
- Medium overall registry size
- Relatively high update frequency
- Moderate latency is acceptable (~30 minutes)

Examples:
- Ubuntu package repo: 106k packages, mean 3.4 versions/year
- Apple iOS app store: 2.1M apps, mean 52.5 versions/year



Conclusion

41

● VeRSA: New design for verifiable registry enabling efficient client-auditing

○ New RSA key-value commitments and constant-size invariant proofs

○ New client auditing approach that maintains eventual consistency

● Suitable for binary transparency applications with medium-size registries

○ Bottleneck: RSA lookup proof computation

● Open source: github.com/nirvantyagi/versa

eprint.iacr.org/2021/627



Backup slides
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Trusted third-party auditors verify append-only invariant is preserved between 
digests. Invariant allows efficient detection of unexpected changes by user.  

Previous approaches: Trusted third-party auditors
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Invariant proofs: RSA key-value commitments

Digest di = ( di,1 , di,2 ) = 
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Invariant proofs: RSA key-value commitments

Digest di = ( di,1 , di,2 ) = 

di
upd k2

di+1
di+1 = ( di+1,1 , di+1,2 ) = 

where δ = val’2 - val2

di
upd k2

di+1
upd k1 upd k3

di+1 = ( di+1,1 , di+1,2 ) = 

where 
for j ∈ { 1, 2, 3 } 

Algebraic invariant proof (constant-size!)

Statement πRSA
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Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

Checkpointing allows users to implicitly create an ordered 
consistent view that trails the current time step. 57



Eventual inconsistency detection via checkpointing

Alice
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Bob

Checkpoints are determined by the minimum number of subtrees that span the 
range in the superimposed binary tree -- guaranteed to be logarithmic in range size!58


