
VeRSA
Verifiable Registries with Efficient Client

Audits from RSA Authenticated Dictionaries

Nirvan Tyagi Ben Fisch

Joseph Bonneau Stefano Tessaro

ACM CCS 2022 1

Andrew Zitek

eprint.iacr.org/2021/627

Setting: Verifiable registries
Applications: certificate transparency, key transparency, binary transparency, etc.

2

Setting: Verifiable registries

Server

Key-value
Mapping
Alice ae7b
Bob 422a
Cindy 87bd

e.g. public key identities
software binary checksums
domain name routing info 3

Key-value
Mapping
Alice ae7b
Bob 422a
Cindy 87bd

e.g. public key identities
software binary checksums
domain name routing info

Digest

d

Server

Setting: Verifiable registries

4

Key-value
Mapping
Alice ae7b
Bob 422a
Cindy 87bd

e.g. public key identities
software binary checksums
domain name routing info

Digest

Users can lookup values and verify they are
consistent with what other users receive.

Goal 1

Lookup Alice

ae7b, d, πAlice

Bob

CarolLookup Alice

ae7b, d, πAlice

d

Server

Setting: Verifiable registries

5

Users can monitor key-value mappings to
detect unexpected modifications.

Key-value
Mapping
Alice ae7b
Bob 422a
Cindy 87bd

e.g. public key identities
software binary checksums
domain name routing info

Digest

Goal 2

d0 d1 d2

New digests published over time

d3

Alice ae7b
Bob 422a
Cindy 87bd

Alice 31cc
Bob 422a
Cindy 87bd

Alice ae7b
Bob 422a
Cindy 87bd Alice

Server

Setting: Verifiable registries

6

ae7b

ae7b

31
cc

ae
7b

Users can monitor key-value mappings to
detect unexpected modifications.

Key-value
Mapping
Alice ae7b
Bob 422a
Cindy 87bd

e.g. public key identities
software binary checksums
domain name routing info

Digest

Goal 2

d0 d1 d2

New digests published over time

d3

Alice ae7b
Bob 422a
Cindy 87bd

Alice 31cc
Bob 422a
Cindy 87bd

Alice ae7b
Bob 422a
Cindy 87bd Alice

User must monitor
every published digest.

Problem
Server

Setting: Verifiable registries

7

ae7b

ae7b

31
cc

ae
7b

Previous approaches: Trusted third-party auditors

Key-value
Mapping

Alice ae7b
Bob 422a
Cindy 87bd

Digest

d0 d1 d2

New digests published over time

d3

Trusted third-party auditors verify version-only invariant is preserved between
digests. Invariant allows efficient detection of unexpected changes by user.

v1

Alice ae7b
Bob
Cindy

v1

Alice 31cc
Bob
CindyAlice ae7b

Bob
Cindy

422a
87bd

v1
v1

Auditors
(any-trust)

π1 π2 π3

v3

v2
Server

8

[CONIKS’15, SEEMless’19, Mog’20]

Key-value
Mapping

Alice ae7b
Bob 422a
Cindy 87bd

Digest

d0 d1 d2

New digests published over time

d3

Alice

v1

Alice ae7b
Bob
Cindy

v1

Alice 31cc
Bob
Cindy

v2

Alice ae7b
Bob
Cindy

v3
422a
87bd

v1
v1

ae7b, v1, π
Alice,0

ae7b, v3, π
Alice,3

Alice can detect
misbehavior without
verifying all digests!Server

Previous approaches: Trusted third-party auditors

Trusted third-party auditors verify version-only invariant is preserved between
digests. Invariant allows efficient detection of unexpected changes by user.

9

[CONIKS’15, SEEMless’19, Mog’20]

This work: Enabling efficient client auditability

10

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Alice
π0,3 π3,5 π5,10

11

This work: Enabling efficient client auditability

New RSA key-value commitment with succinct proofs that
invariant is preserved over ranges of digests

Contribution 1

New RSA key-value commitment with succinct proofs that
invariant is preserved over ranges of digests

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Alice
π0,3 π3,5 π5,10

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Alice Bob

Contribution 1

12

This work: Enabling efficient client auditability

Checkpointing technique to ensure user views remain eventually
consistent even when auditing distinct ranges of digests

Contribution 2

n0

n00

n000 n001

n01

n010 n011

n1

n10

n100 n101

n11

n110 n111

nØ

ns = H(ns||0 || ns||1)

nH(k1) nH(k3)nH(k2)

Digest di

k2 || ver2 || val2

13

[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]
Prior work: Invariant proofs for Merkle trees

di

upd k2

di+1

upd k1 upd k3n0

n00

n000 n001

n01

n010 n011

n11

n110 n111

ns = H(ns||0 || ns||1)

nH(k1) nH(k3)

Digest di+1

n’100

n’10

n’1

n’Ø

n101

k2 || ver2 + 1 || val’2

n’H(k2)

k2 || ver2 || val2

14

[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]
Prior work: Invariant proofs for Merkle trees

di+1

n000 n010 n011 n110 n111

ns = H(ns||0 || ns||1)

nH(k3)

Digest

n’100

n’10

n’1

n’’Ø

di

upd k2

di+1

upd k1 upd k3

n101

n11

n’0

n01n’00

n’001

n’H(k1) n’H(k2)

15

[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]
Prior work: Invariant proofs for Merkle trees

di+1

n000 n010 n011

ns = H(ns||0 || ns||1)Digest

n’100

n’10

n’’’Ø

di

upd k2

di+1

upd k1 upd k3

n101

n01

n’0

n’00

n’001

n’’1

n’11

n111n’110

n’H(k3)n’H(k1) n’H(k2)

16

[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]
Prior work: Invariant proofs for Merkle trees

di+1

n000 n010 n011

ns = H(ns||0 || ns||1)Digest

n’100

n’10

n’’’Ø

di

upd k2

di+1

upd k1 upd k3

n101

n01

n’0

n’00

n’001

n’’1

n’11

n111n’110

To obtain succinct invariant proofs over a
range of digests, we compress the Merkle
paths proof into a generic-circuit SNARK,
which enables SNARK recursion/aggregation.

SNARK circuit prover
n’H(k3)n’H(k1) n’H(k2)

πSNARK

17

[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]
Prior work: Invariant proofs for Merkle trees

di+1

n000 n010 n011

ns = H(ns||0 || ns||1)Digest

n’100

n’10

n’’’Ø

di

upd k2

di+1

upd k1 upd k3

n101

n01

n’0

n’00

n’001

n’’1

n’11

n111n’110

To obtain succinct invariant proofs over a
range of digests, we compress the Merkle
paths proof into a generic-circuit SNARK,
which enables SNARK recursion/aggregation.

SNARK circuit prover

πSNARK

SNARK provers are concretely
expensive, and every Merkle path
must be included.

Problem

n’H(k3)n’H(k1) n’H(k2)

18

Prior work: Invariant proofs for Merkle trees
[CONIKS ‘15, SEEMless ‘19, Mog ‘20, Verdict ‘21]

Our work: Invariant proofs for RSA KV commitments

19

[AR Asiacrypt ‘20]

20

di
upd k2

di+1
upd k1 upd k3

πRSA

Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]

21

di
upd k2

di+1
upd k1 upd k3

πRSA

Constant-size and constant-verif invariant proof!
Using variant of proof of knowledge of integer
exponentiation [Wesolowski ‘19][BBF ‘19]

Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]

di
upd k2

di+1
upd k1 upd k3

πRSA

πSNARK

22

Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]

πSNARK

di
upd k2

di+1
upd k1 upd k3

πRSA

πSNARK

Circuit size linearly dependent
on number of key updates.

Constant circuit size independent
of number of key updates.

di
upd k2

di+1
upd k1 upd k3

23

Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]

di
upd k2

di+1
upd k1 upd k3

πRSA

πSNARK

Constant circuit size independent
of number of key updates.

24

✓

!

Small circuit translates to high
update throughput for invariant
proofs.

Lookup proofs for RSA key-value
commitment are expensive to
compute on demand.

Our work: Invariant proofs for RSA KV commitments
[AR Asiacrypt ‘20]

- When auditing a range, users additionally audit logarithmic checkpoints
within range

- Two users are guaranteed to eventually share checkpoints and will be able to
detect inconsistencies if they exist 25

This work: Enabling efficient client auditability

New RSA key-value commitment with succinct proofs that
invariant is preserved over ranges of digests

Contribution 1

Checkpointing technique to ensure user views remain eventually
consistent even when auditing distinct ranges of digests

Contribution 2

Inconsistent user views: Oscillation attacks

Alice

Bob

0 11 23 28 37 44

Since users are not guaranteed to see the same digests, a malicious
platform may “oscillate”, publishing digests for two different valid
data structures at different time steps.

Problem

6 14

[Mog’20]

26

Eventual inconsistency detection via checkpointing

Alice

Bob

0 6 23 44

- An invariant proof is verified for a sequence of “checkpoints”. The number
of checkpoints between two digests is logarithmic in the size of the range.

1411 28 37

27

Eventual inconsistency detection via checkpointing

Alice

Bob

0 6 23 441411 28 37

28

- An invariant proof is verified for a sequence of “checkpoints”. The number
of checkpoints between two digests is logarithmic in the size of the range.

Eventual inconsistency detection via checkpointing

Alice

Bob

0 6 23 441411 28 37

29

- An invariant proof is verified for a sequence of “checkpoints”. The number
of checkpoints between two digests is logarithmic in the size of the range.

- An invariant proof is verified for a sequence of “checkpoints”. The number
of checkpoints between two digests is logarithmic in the size of the range.

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 44

- Overlapping ranges are guaranteed to share at least one checkpoint.

6 1411 28 37

30

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446 1411 28 37

31

- An invariant proof is verified for a sequence of “checkpoints”. The number
of checkpoints between two digests is logarithmic in the size of the range.

- Overlapping ranges are guaranteed to share at least one checkpoint.

Eventual inconsistency detection via checkpointing

0 23 446 1411 28 37

Alice

32

Eventual inconsistency detection via checkpointing

Alice

0 23 446 1411 28 37

33

Eventual inconsistency detection via checkpointing

Alice

0 23 446 1411 28 37

34

Checkpoints determined by compact subtree representation of range. The number
of checkpoints will be logarithmic in the size of the range.

Eventual inconsistency detection via checkpointing

Alice

0 23 446 1411 28 37

35

Checkpoints determined by compact subtree representation of range. The number
of checkpoints will be logarithmic in the size of the range.

Eventual inconsistency detection via checkpointing

Alice

0 23 446 1411 28 37

Checkpoints determined by compact subtree representation of range. The number
of checkpoints will be logarithmic in the size of the range.

36

Shared checkpoints between overlapping ranges guaranteed to exist – see paper!

- When auditing a range, users additionally audit logarithmic checkpoints
within range

- Two users are guaranteed to eventually share checkpoints and will be able to
detect inconsistencies if they exist 37

This work: Enabling efficient client auditability

New RSA key-value commitment with succinct proofs that
invariant is preserved over ranges of digests

Contribution 1

Checkpointing technique to ensure user views remain eventually
consistent even when auditing distinct ranges of digests

Contribution 2

Implementation and performance evaluation

38

- RSA key-value commitment and invariant proofs
- R1CS constraints for RSA algorithms in arkworks ecosystem for zkSNARKs
- Open source: github.com/nirvantyagi/versa

Implementation and performance evaluation

Comparison to Merkle Tree baseline: Server with 32 CPU cores + 512 GB memory

39

- Client verification costs: similar
- Proofs < 20kB, verify in < 100ms

- Update proof throughput: 10x-400x higher
- Prototype achieves 60-90 updates/second on a single server

- Lookup proof costs: substantially worse
- VeRSA limited to registries of ~millions of entries due to O(n2) costs
- Millions of entries can be handled with O(nlogn) batch computation costs

- RSA key-value commitment and invariant proofs
- R1CS constraints for RSA algorithms in arkworks ecosystem for zkSNARKs
- Open source: github.com/nirvantyagi/versa

Potential application: binary transparency

40

Characteristics:
- Medium overall registry size
- Relatively high update frequency
- Moderate latency is acceptable (~30 minutes)

Examples:
- Ubuntu package repo: 106k packages, mean 3.4 versions/year
- Apple iOS app store: 2.1M apps, mean 52.5 versions/year

Conclusion

41

● VeRSA: New design for verifiable registry enabling efficient client-auditing

○ New RSA key-value commitments and constant-size invariant proofs

○ New client auditing approach that maintains eventual consistency

● Suitable for binary transparency applications with medium-size registries

○ Bottleneck: RSA lookup proof computation

● Open source: github.com/nirvantyagi/versa

eprint.iacr.org/2021/627

Backup slides

42

Trusted third-party auditors verify append-only invariant is preserved between
digests. Invariant allows efficient detection of unexpected changes by user.

Previous approaches: Trusted third-party auditors

Key-value
Mapping

Alice ae7b
Bob 422a
Cindy 87bd

Digest

d0 d1 d2

New digests published over time

d3

Auditors
(any-trust)

π1 π2 π3Server Alice ae7b
Bob 422a
Cindy 87bd

Alice ae7b
Bob 422a
Cindy 87bd

31cc

Alice ae7b
Bob 422a
Cindy 87bd

31cc ae7b

43

[CONIKS’15, SEEMless’19, Mog’20]

Invariant proofs: RSA key-value commitments

Digest di = (di,1 , di,2) =

44

[AR’20]

Invariant proofs: RSA key-value commitments

Digest di = (di,1 , di,2) =

di
upd k2

di+1
di+1 = (di+1,1 , di+1,2) =

where δ = val’2 - val2

45

[AR’20]

Invariant proofs: RSA key-value commitments

Digest di = (di,1 , di,2) =

di
upd k2

di+1
di+1 = (di+1,1 , di+1,2) =

where δ = val’2 - val2

di
upd k2

di+1
upd k1 upd k3

di+1 = (di+1,1 , di+1,2) =

where
for j ∈ { 1, 2, 3 }

46

[AR’20]

Invariant proofs: RSA key-value commitments

Digest di = (di,1 , di,2) =

di
upd k2

di+1
di+1 = (di+1,1 , di+1,2) =

where δ = val’2 - val2

di
upd k2

di+1
upd k1 upd k3

di+1 = (di+1,1 , di+1,2) =

where
for j ∈ { 1, 2, 3 }

47

[AR’20]

Invariant proofs: RSA key-value commitments

Digest di = (di,1 , di,2) =

di
upd k2

di+1
di+1 = (di+1,1 , di+1,2) =

where δ = val’2 - val2

di
upd k2

di+1
upd k1 upd k3

di+1 = (di+1,1 , di+1,2) =

where
for j ∈ { 1, 2, 3 }

Algebraic invariant proof (constant-size!)

Statement πRSA
48

[AR’20]

[Wes’19, BBF’19]

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

49

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

50

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

51

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

52

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

53

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

54

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

55

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

56

Eventual inconsistency detection via checkpointing

Alice

Bob

0 23 446

Committed joint view

1411 28 37

Checkpointing allows users to implicitly create an ordered
consistent view that trails the current time step. 57

Eventual inconsistency detection via checkpointing

Alice

0 23 446 1411 28 37

Bob

Checkpoints are determined by the minimum number of subtrees that span the
range in the superimposed binary tree -- guaranteed to be logarithmic in range size!58

