A New Framework for Matrix Discrepancy: Partial Coloring Bounds via Mirror Descent

Daniel Dadush (CWI), Haotian Jiang (UW) and Victor Reis (UW)

Introduction to vector balancing

- Given \(A, B \subseteq \mathbb{R}^d \), \(v_B(A, B) := \text{smallest } C > 0 \) so that for any \(v_1, \ldots, v_n \in A \) there are signs \(x \in \{ \pm 1 \}^n \) with
 \[
 \sum_{i=1}^n x_i v_i \in C : B.
 \]
- Applications to scheduling [BRSZ22] and RCTs [HSSZ19]
- Random signs give \(v_B(B^*_{n^2}, B^*_n) \leq \sqrt{n} \log(2n) \) by Chernoff + union bound

Matrix Spencer Conjecture

- Generalization for matrices: \(S^p_n := \{ \text{symmetric } A \in \mathbb{R}^{n \times n} : \| A \|_p \leq 1 \} \)
- For diagonal matrices \(\| A \|_\infty = \| \text{diag}(A) \|_\infty \)

Matrix Spencer Conjecture (Zoulias' 12, Meka' 14)

\(v_B(S^p_n, S^p_2) \leq \sqrt{n} \) in general, \(v_B(S^p_n, S^p_2) \leq \sqrt{n} \log^{O(n^{1/3}/\sqrt{n})} \)

Theorem (Dadush, Jiang, Reis'22; Hopkins, Raghavendra, Shetty'22)

\(v_B(S^p_n, S^p_2) \leq \sqrt{n} \log^{O(n^{1/3}/\sqrt{n})} \) for all \(1 \leq n \leq m^2 \).

Partial coloring bound

- Given \(A, B \subseteq \mathbb{R}^d \) and \(v_1, \ldots, v_n \in A \), define the discrepancy body
 \(K := \{ x \in \mathbb{R}^d : \sum_{i=1}^n x_i v_i \in B \} \)
- Upper bound \(v_B(A, B) \) by iteratively constructing partial colorings
 \(x \in (C \setminus K) \cap [-1, 1]^n : \{ |x_i| = 1 \} \geq n \)
- Can find partial colorings if \(\gamma_C(C \setminus K) = \text{Pr}_{x \sim \mathcal{N}(0, 1)}(y \in C \setminus K)^2 > 2^{-O(n)} \)
- Sufficient to cover polar body \((C \setminus K)^* \) with \(2^{O(n)} \) balls \(B^*_{n^2} \) or cubes \(B^*_{n^2} \)
- Can construct such covering via optimization

Mirror descent setting

- \(X = \{ x \in \mathbb{R}^{n \times n} : X \geq 0, \text{tr}(X) = 1 \} \) and \(\Phi(X) = \text{tr}(X \log X) \)
- \(f_\rho(x) := \max_{y \in \mathbb{R}^n} \{ (x, y) \} \) \(||y||_{\Phi} \)-Lipschitz for \(A_i \in S^p_n \)
- \(D_\Phi(X, Y) = S(X||Y) = \text{tr}(X \log X - Y \log Y) \)

Mirror descent: Matrix Spencer setting

- Closed formula:
 \(U_{i+1} = \exp \left(\log(U_i) - \eta \sum_{t=0}^i G_t \right) \tr(\exp(\log(U_i) - \eta \sum_{t=0}^i G_t)) \)
 with \(G_t \in \partial(U(t) \subseteq \{ \pm A_1, \ldots, \pm A_n \}) \)
- Key observation: \(U_i \) does not depend on the order of the gradients!
- After \(T := n \) iterations, we have at most
 \[\sum_{t=0}^T \left(n + 1 \right) \leq (n+1) \cdot \left(\frac{3n}{n} \right) \leq 2^{O(n)} \text{ centers } U_i, \]
- Each cube is scaled by
 \[\frac{\sqrt{S(U_i) n}}{n} \leq \frac{\log n}{n} \]
 giving a \(\sqrt{n \log n} \) partial coloring bound.
- Pick \(2^{3^{O(n)}} \) starting points \(U_0 \), total of \(2^{3^{O(n)}} \) \(2^{O(n)} \) \(S^p_n \) centers!

Mirror descent: Quantum relative entropy net

Key observation (Dadush, Jiang, Reis’22)

Let \(X, Y \in X \) satisfy \(\|X - Y\|_{\log} \leq \epsilon \) for some \(\epsilon > 1/m \).
That \(S(X || Y) \leq \log(2me) \), where \(Y^* := Y + \frac{1}{2} \frac{X - Y}{m} \)

Covering \(S^p_n \) with \(S^p_{n^2} \) [HPY17]

- Combining the two results gives a net with quantum relative entropy
 \(\log(2m \cdot m/n) = \log(2m/n) \)

Further applications

Theorem (Dadush, Jiang, Reis’22)

\(v_B(S^{m n^2} B^*_{n^2}, S^{m^2} B^*_{n^2}) \leq \sqrt{n} \log^{O(n^{1/3}/\sqrt{n})}/n \) for h-block diagonal matrices.

Sketch: interpolate between two nets

\[
\text{N}_{\left(S^p_n, \frac{m n^2}{n} S^p_n \right)} \leq 2^{O(n)} \quad \text{and} \quad \text{N}_{\left(B_{n^2}, \frac{\log(2m/n)}{n} B^*_{n^2} \right)} \leq 2^{O(n)}.
\]

Theorem (Dadush, Jiang, Reis’22)

\(v_B(S^n S^n B^*_{n^2}, S^n B^*_{m^2}) \leq \sqrt{n} \min\{\log(2m/n), 1 \} \min(1, n/m) \log^{O(n^{1/3}/\sqrt{n})}/n \}

Sketch: use a different mirror map \(\Phi(X) := \frac{1}{m} \sqrt{X} 1_{\leq m/2}X 1_{> m/2} \)