
Optimal Online Discrepancy Minimization

Victor Reis
Joint with Janardhan Kulkarni and Thomas Rothvoss

Princeton Theory Lunch
March 1, 2024

Warmup: edge orientation

Warmup: edge orientation

Warmup: edge orientation

Warmup: edge orientation

Beck-Fiala Theorem (1981)
For any vectors v1, . . . , vT ∈ [−1, 1]n with at most d nonzeros each,

∥x1v1 + · · ·+ xTvT∥∞ < 2d

for some choice of signs x1, . . . , xT ∈ {±1}.

The Beck-Fiala Conjecture
Can we improve the above bound to O(

√
d)?

The Komlós Conjecture
For v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1, do there exist x1, . . . , xT ∈ {±1} with

∥x1v1 + · · ·+ xTvT∥∞ ⩽ O(1)?

▶ Best known bound O(
√

logmin(n, T)) (Banaszczyk ’98, BDG ’16)

Beck-Fiala Theorem (1981)
For any vectors v1, . . . , vT ∈ [−1, 1]n with at most d nonzeros each,

∥x1v1 + · · ·+ xTvT∥∞ < 2d

for some choice of signs x1, . . . , xT ∈ {±1}.

The Beck-Fiala Conjecture
Can we improve the above bound to O(

√
d)?

The Komlós Conjecture
For v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1, do there exist x1, . . . , xT ∈ {±1} with

∥x1v1 + · · ·+ xTvT∥∞ ⩽ O(1)?

▶ Best known bound O(
√

logmin(n, T)) (Banaszczyk ’98, BDG ’16)

Beck-Fiala Theorem (1981)
For any vectors v1, . . . , vT ∈ [−1, 1]n with at most d nonzeros each,

∥x1v1 + · · ·+ xTvT∥∞ < 2d

for some choice of signs x1, . . . , xT ∈ {±1}.

The Beck-Fiala Conjecture
Can we improve the above bound to O(

√
d)?

The Komlós Conjecture
For v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1, do there exist x1, . . . , xT ∈ {±1} with

∥x1v1 + · · ·+ xTvT∥∞ ⩽ O(1)?

▶ Best known bound O(
√

logmin(n, T)) (Banaszczyk ’98, BDG ’16)

Beck-Fiala Theorem (1981)
For any vectors v1, . . . , vT ∈ [−1, 1]n with at most d nonzeros each,

∥x1v1 + · · ·+ xTvT∥∞ < 2d

for some choice of signs x1, . . . , xT ∈ {±1}.

The Beck-Fiala Conjecture
Can we improve the above bound to O(

√
d)?

The Komlós Conjecture
For v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1, do there exist x1, . . . , xT ∈ {±1} with

∥x1v1 + · · ·+ xTvT∥∞ ⩽ O(1)?

▶ Best known bound O(
√
logmin(n, T)) (Banaszczyk ’98, BDG ’16)

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time

▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy
▶ Adaptive adversary can always pick vt so that ∥

∑t
i=1 xivi∥2 ⩾

√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy
▶ Adaptive adversary can always pick vt so that ∥

∑t
i=1 xivi∥2 ⩾

√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Introduction to online discrepancy

▶ Player given vectors v1, . . . , vT ∈ Rn one at a time
▶ Find x1, . . . , xT ∈ {±1} so that x1v1 + · · ·+ xtvt is balanced for all t ∈ [T]

▶ Example: unit vectors, ℓ2 discrepancy

▶ Adaptive adversary can always pick vt so that ∥
∑t

i=1 xivi∥2 ⩾
√
T

▶ Player can also ensure ⩽
√
T

Example II: Spencer’s hyperbolic cosine algorithm

▶ Player given vectors v1, . . . , vT ∈ [−1, 1]n one at a time
▶ Find x1, . . . , xT ∈ {±1} so that ∥x1v1 + · · ·+ xtvt∥∞ small for all t ∈ [T]

▶ Move to the position pt := pt−1 + xtvt that minimizes the potential

n∑
i=1

(eαpt(i) + e−αpt(i))

▶ α :=

√
2 log(2n)

T
ensures ∥x1v1 + · · ·+ xtvt∥∞ ⩽

√
2T log(2n)

▶ Matching lower bound Ω(
√
n log(2n)) for T = n

Example II: Spencer’s hyperbolic cosine algorithm

▶ Player given vectors v1, . . . , vT ∈ [−1, 1]n one at a time
▶ Find x1, . . . , xT ∈ {±1} so that ∥x1v1 + · · ·+ xtvt∥∞ small for all t ∈ [T]

▶ Move to the position pt := pt−1 + xtvt that minimizes the potential

n∑
i=1

(eαpt(i) + e−αpt(i))

▶ α :=

√
2 log(2n)

T
ensures ∥x1v1 + · · ·+ xtvt∥∞ ⩽

√
2T log(2n)

▶ Matching lower bound Ω(
√
n log(2n)) for T = n

Example II: Spencer’s hyperbolic cosine algorithm

▶ Player given vectors v1, . . . , vT ∈ [−1, 1]n one at a time
▶ Find x1, . . . , xT ∈ {±1} so that ∥x1v1 + · · ·+ xtvt∥∞ small for all t ∈ [T]

▶ Move to the position pt := pt−1 + xtvt that minimizes the potential

n∑
i=1

(eαpt(i) + e−αpt(i))

▶ α :=

√
2 log(2n)

T
ensures ∥x1v1 + · · ·+ xtvt∥∞ ⩽

√
2T log(2n)

▶ Matching lower bound Ω(
√
n log(2n)) for T = n

Example II: Spencer’s hyperbolic cosine algorithm

▶ Player given vectors v1, . . . , vT ∈ [−1, 1]n one at a time
▶ Find x1, . . . , xT ∈ {±1} so that ∥x1v1 + · · ·+ xtvt∥∞ small for all t ∈ [T]

▶ Move to the position pt := pt−1 + xtvt that minimizes the potential

n∑
i=1

(eαpt(i) + e−αpt(i))

▶ α :=

√
2 log(2n)

T
ensures ∥x1v1 + · · ·+ xtvt∥∞ ⩽

√
2T log(2n)

▶ Matching lower bound Ω(
√
n log(2n)) for T = n

Oblivious adversary

▶ Suppose adversary picks unit vectors v1, . . . , vT in advance

▶ Player still receives one at a time and must pick signs online

▶ If player deterministic, same as adaptive

▶ What if player can use randomization?

Oblivious adversary

▶ Suppose adversary picks unit vectors v1, . . . , vT in advance

▶ Player still receives one at a time and must pick signs online

▶ If player deterministic, same as adaptive

▶ What if player can use randomization?

Oblivious adversary

▶ Suppose adversary picks unit vectors v1, . . . , vT in advance

▶ Player still receives one at a time and must pick signs online

▶ If player deterministic, same as adaptive

▶ What if player can use randomization?

Oblivious adversary

▶ Suppose adversary picks unit vectors v1, . . . , vT in advance

▶ Player still receives one at a time and must pick signs online

▶ If player deterministic, same as adaptive

▶ What if player can use randomization?

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)

▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N
▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}
Orient edge from 0 to 1
Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)
▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N

▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}
Orient edge from 0 to 1
Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)
▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N
▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}
Orient edge from 0 to 1
Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)
▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N
▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}

Orient edge from 0 to 1
Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)
▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N
▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}
Orient edge from 0 to 1

Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)
▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N
▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}
Orient edge from 0 to 1
Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)
▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N
▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}
Orient edge from 0 to 1
Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Special case: edge orientation [Kalai ’01]

▶ Suppose edge vectors of the form (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)
▶ For each coordinate i ∈ [n], draw an infinite random si ∈ {0, 1}N
▶ Upon receiving an edge {i, j}:

Let k := first position where si(k) ̸= sj(k), i.e. {si(k), sj(k)} = {0, 1}
Orient edge from 0 to 1
Swap values of si(k) and sj(k).

Theorem [Kalai ’01]
The above algorithm achieves ∥

∑t
i=1 xivi∥∞ ⩽ O(log T) after T rounds.

▶ Imbalance at a vertex upper bounded by the longest prefix ever used

Self-balancing random walk [ALS ’20]

▶ Consider now ∥vt∥2 ⩽ 1 and let pt := position when vt arrives

▶ Set xt := 1 with probability 1
2 −

⟨pt,vt⟩
c

, else xt := −1; c = O(log(nT))

Theorem [ALS ’20]
All prefix sums pt =

∑t
i=1 xivi are O(

√
c)-subgaussian.

▶ X is C-subgaussian:

⇐⇒ E[exp(⟨X,u⟩2/C2)] ⩽ 2 for all u ∈ Sn−1

⇐⇒ Pr[|⟨X,u⟩| ⩾ λ] ⩽ 2e−λ2/C2 for all u ∈ Sn−1, λ ⩾ 0

Corollary [ALS ’20]
All prefix sums ∥

∑t
i=1 xivi∥∞ ⩽ O(log(nT))with high probability.

Self-balancing random walk [ALS ’20]

▶ Consider now ∥vt∥2 ⩽ 1 and let pt := position when vt arrives
▶ Set xt := 1 with probability 1

2 −
⟨pt,vt⟩

c
, else xt := −1; c = O(log(nT))

Theorem [ALS ’20]
All prefix sums pt =

∑t
i=1 xivi are O(

√
c)-subgaussian.

▶ X is C-subgaussian:

⇐⇒ E[exp(⟨X,u⟩2/C2)] ⩽ 2 for all u ∈ Sn−1

⇐⇒ Pr[|⟨X,u⟩| ⩾ λ] ⩽ 2e−λ2/C2 for all u ∈ Sn−1, λ ⩾ 0

Corollary [ALS ’20]
All prefix sums ∥

∑t
i=1 xivi∥∞ ⩽ O(log(nT))with high probability.

Self-balancing random walk [ALS ’20]

▶ Consider now ∥vt∥2 ⩽ 1 and let pt := position when vt arrives
▶ Set xt := 1 with probability 1

2 −
⟨pt,vt⟩

c
, else xt := −1; c = O(log(nT))

Theorem [ALS ’20]
All prefix sums pt =

∑t
i=1 xivi are O(

√
c)-subgaussian.

▶ X is C-subgaussian:

⇐⇒ E[exp(⟨X,u⟩2/C2)] ⩽ 2 for all u ∈ Sn−1

⇐⇒ Pr[|⟨X,u⟩| ⩾ λ] ⩽ 2e−λ2/C2 for all u ∈ Sn−1, λ ⩾ 0

Corollary [ALS ’20]
All prefix sums ∥

∑t
i=1 xivi∥∞ ⩽ O(log(nT))with high probability.

Self-balancing random walk [ALS ’20]

▶ Consider now ∥vt∥2 ⩽ 1 and let pt := position when vt arrives
▶ Set xt := 1 with probability 1

2 −
⟨pt,vt⟩

c
, else xt := −1; c = O(log(nT))

Theorem [ALS ’20]
All prefix sums pt =

∑t
i=1 xivi are O(

√
c)-subgaussian.

▶ X is C-subgaussian:

⇐⇒ E[exp(⟨X,u⟩2/C2)] ⩽ 2 for all u ∈ Sn−1

⇐⇒ Pr[|⟨X,u⟩| ⩾ λ] ⩽ 2e−λ2/C2 for all u ∈ Sn−1, λ ⩾ 0

Corollary [ALS ’20]
All prefix sums ∥

∑t
i=1 xivi∥∞ ⩽ O(log(nT)) with high probability.

Self-balancing random walk [ALS ’20]

▶ Consider now ∥vt∥2 ⩽ 1 and let pt := position when vt arrives
▶ Set xt := 1 with probability 1

2 −
⟨pt,vt⟩

c
, else xt := −1; c = O(log(nT))

Theorem [ALS ’20]
All prefix sums pt =

∑t
i=1 xivi are O(

√
c)-subgaussian.

▶ X is C-subgaussian:

⇐⇒ E[exp(⟨X,u⟩2/C2)] ⩽ 2 for all u ∈ Sn−1

⇐⇒ Pr[|⟨X,u⟩| ⩾ λ] ⩽ 2e−λ2/C2 for all u ∈ Sn−1, λ ⩾ 0

Corollary [ALS ’20]
All prefix sums ∥

∑t
i=1 xivi∥∞ ⩽ O(log(nT)) with high probability.

Self-balancing random walk [ALS ’20]

▶ Consider now ∥vt∥2 ⩽ 1 and let pt := position when vt arrives
▶ Set xt := 1 with probability 1

2 −
⟨pt,vt⟩

c
, else xt := −1; c = O(log(nT))

Theorem [ALS ’20]
All prefix sums pt =

∑t
i=1 xivi are O(

√
c)-subgaussian.

▶ X is C-subgaussian:

⇐⇒ E[exp(⟨X,u⟩2/C2)] ⩽ 2 for all u ∈ Sn−1

⇐⇒ Pr[|⟨X,u⟩| ⩾ λ] ⩽ 2e−λ2/C2 for all u ∈ Sn−1, λ ⩾ 0

Corollary [ALS ’20]
All prefix sums ∥

∑t
i=1 xivi∥∞ ⩽ O(log(nT)) with high probability.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1

▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt

▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times

▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Gaussian fixed point random walk [LSS ’21]

▶ Fix a parameter σ ⩾ 1
▶ Construct Markov chain on Rwith 0,±1 steps and stationaryN(0,σ2)

▶ Mσ(x) ∼ {0,±1} and g+Mσ(g) ∼ g for g ∼ N(0,σ2)

▶ At the start of the algorithm, sample p0 ∼ N(0,σ2In)

▶ Upon receiving vector vt: set pt := pt−1 +Mσ(⟨pt−1, vt⟩) · vt
▶ Invariant: pt ∼ N(0,σ2In) at all times
▶ Output pT − p0.

Theorem [LSS ’21]
For σ :=

√
log T , all prefix sums are 2σ-subgaussian and all steps are ±1.

Technical: construct Mσ so that Pr[Mσ(x) = 0] ⩽ e−σ2 for all x ∈ R.

Our contribution

Theorem [Kulkarni, R., Rothvoss ’23]
For ∥vt∥2 ⩽ 1, there is an online algorithm against an oblivious adversary
which keeps all prefix sums 10-subgaussian. In particular,

∥
∑t

i=1 xivi∥∞ ⩽ O(
√
log T) for all t ∈ [T]with high probability.

Theorem [Kulkarni, R., Rothvoss ’23]
For any n ⩾ 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors v1, ..., vT ∈ Rn so that for any online algorithm,
with probability at least 1− 2−poly(T),

max
t∈[T]

∥∥∥ t∑
i=1

xivi

∥∥∥∞ ≳
√
log T .

Our contribution

Theorem [Kulkarni, R., Rothvoss ’23]
For ∥vt∥2 ⩽ 1, there is an online algorithm against an oblivious adversary
which keeps all prefix sums 10-subgaussian. In particular,

∥
∑t

i=1 xivi∥∞ ⩽ O(
√
log T) for all t ∈ [T]with high probability.

Theorem [Kulkarni, R., Rothvoss ’23]
For any n ⩾ 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors v1, ..., vT ∈ Rn so that for any online algorithm,
with probability at least 1− 2−poly(T),

max
t∈[T]

∥∥∥ t∑
i=1

xivi

∥∥∥∞ ≳
√
log T .

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]
For any n ⩾ 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors v1, ..., vT ∈ Rn so that for any online algorithm,
with probability at least 1− 2−poly(T),

max
t∈[T]

∥∥∥ t∑
i=1

xivi

∥∥∥∞ ≳
√
log T .

▶ Proof sketch: split time horizon into blocks of size k := Θ(log T)
▶ Within each block, guess all k signs chosen by the player
▶ Simulate the strategy of adaptive adversary to get Ω(

√
k)w.p. 2−k

▶ One of the blocks will succeed with probability 1− (1− 2−k)T/k.

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]
For any n ⩾ 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors v1, ..., vT ∈ Rn so that for any online algorithm,
with probability at least 1− 2−poly(T),

max
t∈[T]

∥∥∥ t∑
i=1

xivi

∥∥∥∞ ≳
√
log T .

▶ Proof sketch: split time horizon into blocks of size k := Θ(log T)

▶ Within each block, guess all k signs chosen by the player
▶ Simulate the strategy of adaptive adversary to get Ω(

√
k)w.p. 2−k

▶ One of the blocks will succeed with probability 1− (1− 2−k)T/k.

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]
For any n ⩾ 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors v1, ..., vT ∈ Rn so that for any online algorithm,
with probability at least 1− 2−poly(T),

max
t∈[T]

∥∥∥ t∑
i=1

xivi

∥∥∥∞ ≳
√
log T .

▶ Proof sketch: split time horizon into blocks of size k := Θ(log T)
▶ Within each block, guess all k signs chosen by the player

▶ Simulate the strategy of adaptive adversary to get Ω(
√
k)w.p. 2−k

▶ One of the blocks will succeed with probability 1− (1− 2−k)T/k.

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]
For any n ⩾ 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors v1, ..., vT ∈ Rn so that for any online algorithm,
with probability at least 1− 2−poly(T),

max
t∈[T]

∥∥∥ t∑
i=1

xivi

∥∥∥∞ ≳
√
log T .

▶ Proof sketch: split time horizon into blocks of size k := Θ(log T)
▶ Within each block, guess all k signs chosen by the player
▶ Simulate the strategy of adaptive adversary to get Ω(

√
k)w.p. 2−k

▶ One of the blocks will succeed with probability 1− (1− 2−k)T/k.

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss ’23]
For any n ⩾ 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors v1, ..., vT ∈ Rn so that for any online algorithm,
with probability at least 1− 2−poly(T),

max
t∈[T]

∥∥∥ t∑
i=1

xivi

∥∥∥∞ ≳
√
log T .

▶ Proof sketch: split time horizon into blocks of size k := Θ(log T)
▶ Within each block, guess all k signs chosen by the player
▶ Simulate the strategy of adaptive adversary to get Ω(

√
k)w.p. 2−k

▶ One of the blocks will succeed with probability 1− (1− 2−k)T/k.

ε-nets
▶ P ⊆ Rn so that, for all ∥v∥2 ⩽ 1, there is p ∈ P with ∥p− v∥2 ⩽ ε.

▶ There exists an ε-net with |P| ⩽ (3/ε)n.

ε-nets
▶ P ⊆ Rn so that, for all ∥v∥2 ⩽ 1, there is p ∈ P with ∥p− v∥2 ⩽ ε.
▶ There exists an ε-net with |P| ⩽ (3/ε)n.

Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]
For any v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1 and any convex body K ⊆ Rn with
γn(K) ⩾ 1− 1

2T , there are signs x1, . . . , xT ∈ {±1} so that

t∑
i=1

xivi ∈ 5K ∀t = 1, . . . , T .

Theorem [Banaszczyk ’98]
For any convex body K ⊆ Rn with γn(K) ⩾ 1

2 and u ∈ Rn with ∥u∥2 ⩽ 1
5 ,

there is a convex body (K ∗u) ⊆ (K+u)∪ (K−u)with γn(K ∗u) ⩾ γn(K).

▶ Define KT := K and Kt−1 := (Kt ∗ vt) ∩ K.
▶ Show by induction γ(Kt) ⩾ 1− T−t+1

2T , then iteratively find x1, . . . , xT

Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]
For any v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1 and any convex body K ⊆ Rn with
γn(K) ⩾ 1− 1

2T , there are signs x1, . . . , xT ∈ {±1} so that

t∑
i=1

xivi ∈ 5K ∀t = 1, . . . , T .

Theorem [Banaszczyk ’98]
For any convex body K ⊆ Rn with γn(K) ⩾ 1

2 and u ∈ Rn with ∥u∥2 ⩽ 1
5 ,

there is a convex body (K ∗u) ⊆ (K+u)∪ (K−u)with γn(K ∗u) ⩾ γn(K).

▶ Define KT := K and Kt−1 := (Kt ∗ vt) ∩ K.
▶ Show by induction γ(Kt) ⩾ 1− T−t+1

2T , then iteratively find x1, . . . , xT

Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]
For any v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1 and any convex body K ⊆ Rn with
γn(K) ⩾ 1− 1

2T , there are signs x1, . . . , xT ∈ {±1} so that

t∑
i=1

xivi ∈ 5K ∀t = 1, . . . , T .

Theorem [Banaszczyk ’98]
For any convex body K ⊆ Rn with γn(K) ⩾ 1

2 and u ∈ Rn with ∥u∥2 ⩽ 1
5 ,

there is a convex body (K ∗u) ⊆ (K+u)∪ (K−u)with γn(K ∗u) ⩾ γn(K).

▶ Define KT := K and Kt−1 := (Kt ∗ vt) ∩ K.

▶ Show by induction γ(Kt) ⩾ 1− T−t+1
2T , then iteratively find x1, . . . , xT

Banaszczyk prefix balancing

Theorem [Banaszczyk ’12]
For any v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1 and any convex body K ⊆ Rn with
γn(K) ⩾ 1− 1

2T , there are signs x1, . . . , xT ∈ {±1} so that

t∑
i=1

xivi ∈ 5K ∀t = 1, . . . , T .

Theorem [Banaszczyk ’98]
For any convex body K ⊆ Rn with γn(K) ⩾ 1

2 and u ∈ Rn with ∥u∥2 ⩽ 1
5 ,

there is a convex body (K ∗u) ⊆ (K+u)∪ (K−u)with γn(K ∗u) ⩾ γn(K).

▶ Define KT := K and Kt−1 := (Kt ∗ vt) ∩ K.
▶ Show by induction γ(Kt) ⩾ 1− T−t+1

2T , then iteratively find x1, . . . , xT

Banaszczyk prefix balancing for trees
Theorem [Banaszczyk ’12]
For any v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1 and any convex body K ⊆ Rn with
γn(K) ⩾ 1− 1

2T , there are signs x1, . . . , xT ∈ {±1} so that

t∑
i=1

xivi ∈ 5K ∀t = 1, . . . , T .

Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Let K ⊆ Rn be a convex body with γn(K) ⩾ 1− 1

2|E| .
Then there are signs x ∈ {−1, 1}E so that for every root-vertex path Pi,∑

e∈Pi

xeve ∈ 5K ∀i ∈ V .

▶ Analogous proof with Ki :=
(⋂

j∈childreni
(Kj ∗ v{i,j})

)
∩ K.

Banaszczyk prefix balancing for trees
Theorem [Banaszczyk ’12]
For any v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1 and any convex body K ⊆ Rn with
γn(K) ⩾ 1− 1

2T , there are signs x1, . . . , xT ∈ {±1} so that

t∑
i=1

xivi ∈ 5K ∀t = 1, . . . , T .

Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Let K ⊆ Rn be a convex body with γn(K) ⩾ 1− 1

2|E| .
Then there are signs x ∈ {−1, 1}E so that for every root-vertex path Pi,∑

e∈Pi

xeve ∈ 5K ∀i ∈ V .

▶ Analogous proof with Ki :=
(⋂

j∈childreni
(Kj ∗ v{i,j})

)
∩ K.

Banaszczyk prefix balancing for trees
Theorem [Banaszczyk ’12]
For any v1, . . . , vT ∈ Rn with ∥vi∥2 ⩽ 1 and any convex body K ⊆ Rn with
γn(K) ⩾ 1− 1

2T , there are signs x1, . . . , xT ∈ {±1} so that

t∑
i=1

xivi ∈ 5K ∀t = 1, . . . , T .

Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Let K ⊆ Rn be a convex body with γn(K) ⩾ 1− 1

2|E| .
Then there are signs x ∈ {−1, 1}E so that for every root-vertex path Pi,∑

e∈Pi

xeve ∈ 5K ∀i ∈ V .

▶ Analogous proof with Ki :=
(⋂

j∈childreni
(Kj ∗ v{i,j})

)
∩ K.

Cloning: coloring =⇒ distribution
Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

▶ Idea: clone each edge N times, find a coloring, sample random clone
▶ Define a convex body K and show γNn(K) ⩾ 1− 1

N1+δ ⩾ 1− 1
2N|E|

Cloning: coloring =⇒ distribution
Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

▶ Idea: clone each edge N times, find a coloring, sample random clone
▶ Define a convex body K and show γNn(K) ⩾ 1− 1

N1+δ ⩾ 1− 1
2N|E|

Cloning: coloring =⇒ distribution
Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

▶ Idea: clone each edge N times, find a coloring, sample random clone

▶ Define a convex body K and show γNn(K) ⩾ 1− 1
N1+δ ⩾ 1− 1

2N|E|

Cloning: coloring =⇒ distribution
Theorem [Kulkarni, R., Rothvoss ’23]
Let T = (V ,E) be a rooted tree with vectors ∥ve∥2 ⩽ 1 on edges.
Then there is a distribution D over {−1, 1}E so that for x ∼ D,∑

e∈Pi
xeve is 10-subgaussian for every i ∈ V .

▶ Idea: clone each edge N times, find a coloring, sample random clone
▶ Define a convex body K and show γNn(K) ⩾ 1− 1

N1+δ ⩾ 1− 1
2N|E|

Body of subgaussian distributions

▶ Take any C > 2 and define

K :=
{
(y(1), . . . ,y(N)) ∈ RNn | Y ∼ {y(1), . . . ,y(N)} is C-subgaussian

}
.

▶ Need to show γNn(K) ⩾ 1− 1/N1+δ

▶ By a net argument, suffices to consider a single unit vector w ∈ Sn−1:

Kw :=
{
(y(1), . . . ,y(N)) ∈ RNn | E

ℓ∼[N]

[
exp

(1
C2

〈
w,y(ℓ)

〉2)]
⩽ 2

}
▶ Concentration inequality: heavy-tailed random variables exp(1

C2g
2
ℓ)

▶ Xℓ := exp(1
C2g

2
ℓ) satisfy E[Xp

ℓ] < ∞ for p < C2/2 (want p > 2)

Body of subgaussian distributions

▶ Take any C > 2 and define

K :=
{
(y(1), . . . ,y(N)) ∈ RNn | Y ∼ {y(1), . . . ,y(N)} is C-subgaussian

}
.

▶ Need to show γNn(K) ⩾ 1− 1/N1+δ

▶ By a net argument, suffices to consider a single unit vector w ∈ Sn−1:

Kw :=
{
(y(1), . . . ,y(N)) ∈ RNn | E

ℓ∼[N]

[
exp

(1
C2

〈
w,y(ℓ)

〉2)]
⩽ 2

}
▶ Concentration inequality: heavy-tailed random variables exp(1

C2g
2
ℓ)

▶ Xℓ := exp(1
C2g

2
ℓ) satisfy E[Xp

ℓ] < ∞ for p < C2/2 (want p > 2)

Body of subgaussian distributions

▶ Take any C > 2 and define

K :=
{
(y(1), . . . ,y(N)) ∈ RNn | Y ∼ {y(1), . . . ,y(N)} is C-subgaussian

}
.

▶ Need to show γNn(K) ⩾ 1− 1/N1+δ

▶ By a net argument, suffices to consider a single unit vector w ∈ Sn−1:

Kw :=
{
(y(1), . . . ,y(N)) ∈ RNn | E

ℓ∼[N]

[
exp

(1
C2

〈
w,y(ℓ)

〉2)]
⩽ 2

}

▶ Concentration inequality: heavy-tailed random variables exp(1
C2g

2
ℓ)

▶ Xℓ := exp(1
C2g

2
ℓ) satisfy E[Xp

ℓ] < ∞ for p < C2/2 (want p > 2)

Body of subgaussian distributions

▶ Take any C > 2 and define

K :=
{
(y(1), . . . ,y(N)) ∈ RNn | Y ∼ {y(1), . . . ,y(N)} is C-subgaussian

}
.

▶ Need to show γNn(K) ⩾ 1− 1/N1+δ

▶ By a net argument, suffices to consider a single unit vector w ∈ Sn−1:

Kw :=
{
(y(1), . . . ,y(N)) ∈ RNn | E

ℓ∼[N]

[
exp

(1
C2

〈
w,y(ℓ)

〉2)]
⩽ 2

}
▶ Concentration inequality: heavy-tailed random variables exp(1

C2g
2
ℓ)

▶ Xℓ := exp(1
C2g

2
ℓ) satisfy E[Xp

ℓ] < ∞ for p < C2/2 (want p > 2)

Body of subgaussian distributions

▶ Take any C > 2 and define

K :=
{
(y(1), . . . ,y(N)) ∈ RNn | Y ∼ {y(1), . . . ,y(N)} is C-subgaussian

}
.

▶ Need to show γNn(K) ⩾ 1− 1/N1+δ

▶ By a net argument, suffices to consider a single unit vector w ∈ Sn−1:

Kw :=
{
(y(1), . . . ,y(N)) ∈ RNn | E

ℓ∼[N]

[
exp

(1
C2

〈
w,y(ℓ)

〉2)]
⩽ 2

}
▶ Concentration inequality: heavy-tailed random variables exp(1

C2g
2
ℓ)

▶ Xℓ := exp(1
C2g

2
ℓ) satisfy E[Xp

ℓ] < ∞ for p < C2/2 (want p > 2)

Concentration for heavy-tailed random variables

Lemma
Let p ⩾ 2 and X1, . . . ,XN be centered, indep. r.v.’s with E[|Xi|

p] = Op(1).
Then

Pr[X1 + · · ·+ XN > N] ⩽ Op(1)
Np/2 .

▶ In general, follows by Markov + Rosenthal’s inequality:

Rosenthal ’70
Let p ⩾ 2 and X1, . . . ,XN centered, indep. r.v.’s with E[|Xℓ|

p] < ∞. Then

E[|X1 + · · ·+ XN|p]1/p ⩽ 2p ·max
{(N∑

i=1
E[|Xi|

p]
)1/p

,
(N∑

i=1
E[X2

i]
)1/2}

.

Concentration for heavy-tailed random variables
Lemma
Let p ⩾ 2 and X1, . . . ,XN be centered, indep. r.v.’s with E[|Xi|

p] = Op(1).
Then

Pr[X1 + · · ·+ XN > N] ⩽ Op(1)
Np/2 .

▶ Proof for p = 2:

Pr[X1 + · · ·+ XN > N] ⩽ Pr[(X1 + · · ·+ XN)2 > N2]

▶ In general, follows by Markov + Rosenthal’s inequality:

Rosenthal ’70
Let p ⩾ 2 and X1, . . . ,XN centered, indep. r.v.’s with E[|Xℓ|

p] < ∞. Then

E[|X1 + · · ·+ XN|p]1/p ⩽ 2p ·max
{(N∑

i=1
E[|Xi|

p]
)1/p

,
(N∑

i=1
E[X2

i]
)1/2}

.

Concentration for heavy-tailed random variables
Lemma
Let p ⩾ 2 and X1, . . . ,XN be centered, indep. r.v.’s with E[|Xi|

p] = Op(1).
Then

Pr[X1 + · · ·+ XN > N] ⩽ Op(1)
Np/2 .

▶ Proof for p = 2:

Pr[X1 + · · ·+ XN > N] ⩽ Pr[(X1 + · · ·+ XN)2 > N2]

⩽ E[(X1 + · · ·+ XN)2]/N2

▶ In general, follows by Markov + Rosenthal’s inequality:

Rosenthal ’70
Let p ⩾ 2 and X1, . . . ,XN centered, indep. r.v.’s with E[|Xℓ|

p] < ∞. Then

E[|X1 + · · ·+ XN|p]1/p ⩽ 2p ·max
{(N∑

i=1
E[|Xi|

p]
)1/p

,
(N∑

i=1
E[X2

i]
)1/2}

.

Concentration for heavy-tailed random variables
Lemma
Let p ⩾ 2 and X1, . . . ,XN be centered, indep. r.v.’s with E[|Xi|

p] = Op(1).
Then

Pr[X1 + · · ·+ XN > N] ⩽ Op(1)
Np/2 .

▶ Proof for p = 2:
Pr[X1 + · · ·+ XN > N] ⩽ Pr[(X1 + · · ·+ XN)2 > N2]

⩽ E[(X1 + · · ·+ XN)2]/N2

=

∑N
i=1

O(1)︷ ︸︸ ︷
E[X2

i] +
∑
i ̸=j

=0︷ ︸︸ ︷
E[Xi]E[Xj]

N2 = O(1/N).

▶ In general, follows by Markov + Rosenthal’s inequality:

Rosenthal ’70
Let p ⩾ 2 and X1, . . . ,XN centered, indep. r.v.’s with E[|Xℓ|

p] < ∞. Then

E[|X1 + · · ·+ XN|p]1/p ⩽ 2p ·max
{(N∑

i=1
E[|Xi|

p]
)1/p

,
(N∑

i=1
E[X2

i]
)1/2}

.

Concentration for heavy-tailed random variables

Lemma
Let p ⩾ 2 and X1, . . . ,XN be centered, indep. r.v.’s with E[|Xi|

p] = Op(1).
Then

Pr[X1 + · · ·+ XN > N] ⩽ Op(1)
Np/2 .

▶ In general, follows by Markov + Rosenthal’s inequality:

Rosenthal ’70
Let p ⩾ 2 and X1, . . . ,XN centered, indep. r.v.’s with E[|Xℓ|

p] < ∞. Then

E[|X1 + · · ·+ XN|p]1/p ⩽ 2p ·max
{(N∑

i=1
E[|Xi|

p]
)1/p

,
(N∑

i=1
E[X2

i]
)1/2}

.

Concentration for heavy-tailed random variables

Lemma
Let p ⩾ 2 and X1, . . . ,XN be centered, indep. r.v.’s with E[|Xi|

p] = Op(1).
Then

Pr[X1 + · · ·+ XN > N] ⩽ Op(1)
Np/2 .

▶ In general, follows by Markov + Rosenthal’s inequality:

Rosenthal ’70
Let p ⩾ 2 and X1, . . . ,XN centered, indep. r.v.’s with E[|Xℓ|

p] < ∞. Then

E[|X1 + · · ·+ XN|p]1/p ⩽ 2p ·max
{(N∑

i=1
E[|Xi|

p]
)1/p

,
(N∑

i=1
E[X2

i]
)1/2}

.

Online algorithm

▶ Given T , build depth T tree where children are labeled with ε-net

▶ Find a 10-subgaussian distribution D on its edges and sample x ∼ D

▶ Keep track of position in the tree (starting at root)
▶ When receiving a vector, find closest child and move there
▶ Output sign corresponding to edges visited
▶ If T unknown: compactness yields sequence of distributions D∗

t :

D∗
t = Π{±1}Et (D

∗
t+1).

▶ Subgaussian norm is 4.999 · (2+ δ) < 10.

Online algorithm

▶ Given T , build depth T tree where children are labeled with ε-net
▶ Find a 10-subgaussian distribution D on its edges and sample x ∼ D

▶ Keep track of position in the tree (starting at root)
▶ When receiving a vector, find closest child and move there
▶ Output sign corresponding to edges visited
▶ If T unknown: compactness yields sequence of distributions D∗

t :

D∗
t = Π{±1}Et (D

∗
t+1).

▶ Subgaussian norm is 4.999 · (2+ δ) < 10.

Online algorithm

▶ Given T , build depth T tree where children are labeled with ε-net
▶ Find a 10-subgaussian distribution D on its edges and sample x ∼ D

▶ Keep track of position in the tree (starting at root)

▶ When receiving a vector, find closest child and move there
▶ Output sign corresponding to edges visited
▶ If T unknown: compactness yields sequence of distributions D∗

t :

D∗
t = Π{±1}Et (D

∗
t+1).

▶ Subgaussian norm is 4.999 · (2+ δ) < 10.

Online algorithm

▶ Given T , build depth T tree where children are labeled with ε-net
▶ Find a 10-subgaussian distribution D on its edges and sample x ∼ D

▶ Keep track of position in the tree (starting at root)
▶ When receiving a vector, find closest child and move there

▶ Output sign corresponding to edges visited
▶ If T unknown: compactness yields sequence of distributions D∗

t :

D∗
t = Π{±1}Et (D

∗
t+1).

▶ Subgaussian norm is 4.999 · (2+ δ) < 10.

Online algorithm

▶ Given T , build depth T tree where children are labeled with ε-net
▶ Find a 10-subgaussian distribution D on its edges and sample x ∼ D

▶ Keep track of position in the tree (starting at root)
▶ When receiving a vector, find closest child and move there
▶ Output sign corresponding to edges visited

▶ If T unknown: compactness yields sequence of distributions D∗
t :

D∗
t = Π{±1}Et (D

∗
t+1).

▶ Subgaussian norm is 4.999 · (2+ δ) < 10.

Online algorithm

▶ Given T , build depth T tree where children are labeled with ε-net
▶ Find a 10-subgaussian distribution D on its edges and sample x ∼ D

▶ Keep track of position in the tree (starting at root)
▶ When receiving a vector, find closest child and move there
▶ Output sign corresponding to edges visited
▶ If T unknown: compactness yields sequence of distributions D∗

t :

D∗
t = Π{±1}Et (D

∗
t+1).

▶ Subgaussian norm is 4.999 · (2+ δ) < 10.

Online algorithm

▶ Given T , build depth T tree where children are labeled with ε-net
▶ Find a 10-subgaussian distribution D on its edges and sample x ∼ D

▶ Keep track of position in the tree (starting at root)
▶ When receiving a vector, find closest child and move there
▶ Output sign corresponding to edges visited
▶ If T unknown: compactness yields sequence of distributions D∗

t :

D∗
t = Π{±1}Et (D

∗
t+1).

▶ Subgaussian norm is 4.999 · (2+ δ) < 10.

Open problems
Polynomial time algorithm
Given oblivious v1, . . . , vT ∈ Rn with ∥vt∥2 ⩽ 1, does there exist a
polynomial time online algorithm against an oblivious adversary which
keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors v1, . . . , vT ∈ Rn, can we find online signs
x1, . . . , xT ∈ {±1} so that ∥

∑T
i=1 xivi∥∞ ⩽ O(3

√
log T) w.h.p.?

▶ Main theorem: O(
√
log T), also Ω(3

√
logmin(n, T)) [AANRSW’98]

Oblivious Spencer
Given oblivious v1, . . . , vn ∈ [−1, 1]n, can we find online signs
x1, . . . , xn ∈ {±1} so that ∥

∑n
i=1 xivi∥∞ ⩽ O(

√
n) w.h.p.?

Thanks for your attention!

Open problems
Polynomial time algorithm
Given oblivious v1, . . . , vT ∈ Rn with ∥vt∥2 ⩽ 1, does there exist a
polynomial time online algorithm against an oblivious adversary which
keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors v1, . . . , vT ∈ Rn, can we find online signs
x1, . . . , xT ∈ {±1} so that ∥

∑T
i=1 xivi∥∞ ⩽ O(3

√
log T) w.h.p.?

▶ Main theorem: O(
√
log T), also Ω(3

√
logmin(n, T)) [AANRSW’98]

Oblivious Spencer
Given oblivious v1, . . . , vn ∈ [−1, 1]n, can we find online signs
x1, . . . , xn ∈ {±1} so that ∥

∑n
i=1 xivi∥∞ ⩽ O(

√
n) w.h.p.?

Thanks for your attention!

Open problems
Polynomial time algorithm
Given oblivious v1, . . . , vT ∈ Rn with ∥vt∥2 ⩽ 1, does there exist a
polynomial time online algorithm against an oblivious adversary which
keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors v1, . . . , vT ∈ Rn, can we find online signs
x1, . . . , xT ∈ {±1} so that ∥

∑T
i=1 xivi∥∞ ⩽ O(3

√
log T) w.h.p.?

▶ Main theorem: O(
√
log T), also Ω(3

√
logmin(n, T)) [AANRSW’98]

Oblivious Spencer
Given oblivious v1, . . . , vn ∈ [−1, 1]n, can we find online signs
x1, . . . , xn ∈ {±1} so that ∥

∑n
i=1 xivi∥∞ ⩽ O(

√
n) w.h.p.?

Thanks for your attention!

Open problems
Polynomial time algorithm
Given oblivious v1, . . . , vT ∈ Rn with ∥vt∥2 ⩽ 1, does there exist a
polynomial time online algorithm against an oblivious adversary which
keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors v1, . . . , vT ∈ Rn, can we find online signs
x1, . . . , xT ∈ {±1} so that ∥

∑T
i=1 xivi∥∞ ⩽ O(3

√
log T) w.h.p.?

▶ Main theorem: O(
√
log T), also Ω(3

√
logmin(n, T)) [AANRSW’98]

Oblivious Spencer
Given oblivious v1, . . . , vn ∈ [−1, 1]n, can we find online signs
x1, . . . , xn ∈ {±1} so that ∥

∑n
i=1 xivi∥∞ ⩽ O(

√
n) w.h.p.?

Thanks for your attention!

Open problems
Polynomial time algorithm
Given oblivious v1, . . . , vT ∈ Rn with ∥vt∥2 ⩽ 1, does there exist a
polynomial time online algorithm against an oblivious adversary which
keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors v1, . . . , vT ∈ Rn, can we find online signs
x1, . . . , xT ∈ {±1} so that ∥

∑T
i=1 xivi∥∞ ⩽ O(3

√
log T) w.h.p.?

▶ Main theorem: O(
√
log T), also Ω(3

√
logmin(n, T)) [AANRSW’98]

Oblivious Spencer
Given oblivious v1, . . . , vn ∈ [−1, 1]n, can we find online signs
x1, . . . , xn ∈ {±1} so that ∥

∑n
i=1 xivi∥∞ ⩽ O(

√
n) w.h.p.?

Thanks for your attention!

Open problems
Polynomial time algorithm
Given oblivious v1, . . . , vT ∈ Rn with ∥vt∥2 ⩽ 1, does there exist a
polynomial time online algorithm against an oblivious adversary which
keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation
Given oblivious edge vectors v1, . . . , vT ∈ Rn, can we find online signs
x1, . . . , xT ∈ {±1} so that ∥

∑T
i=1 xivi∥∞ ⩽ O(3

√
log T) w.h.p.?

▶ Main theorem: O(
√
log T), also Ω(3

√
logmin(n, T)) [AANRSW’98]

Oblivious Spencer
Given oblivious v1, . . . , vn ∈ [−1, 1]n, can we find online signs
x1, . . . , xn ∈ {±1} so that ∥

∑n
i=1 xivi∥∞ ⩽ O(

√
n) w.h.p.?

Thanks for your attention!

