Optimal Online Discrepancy Minimization

Victor Reis

Joint with Janardhan Kulkarni and Thomas Rothvoss Princeton Theory Lunch March 1, 2024

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

 $\|x_1\nu_1+\dots+x_T\nu_T\|_\infty<2d$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}$.

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

 $\|x_1\nu_1+\dots+x_T\nu_T\|_\infty<2d$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $O(\sqrt{d})$?

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

 $\|x_1\nu_1+\dots+x_T\nu_T\|_\infty<2d$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $O(\sqrt{d})$?

The Komlós Conjecture

For $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leqslant 1$, do there exist $x_1, \ldots, x_T \in \{\pm 1\}$ with

 $\|\mathbf{x}_1\mathbf{v}_1+\cdots+\mathbf{x}_T\mathbf{v}_T\|_{\infty} \leqslant \mathbf{O}(1)?$

For any vectors $v_1, \ldots, v_T \in [-1, 1]^n$ with at most d nonzeros each,

 $\|x_1\nu_1+\dots+x_T\nu_T\|_\infty<2d$

for some choice of signs $x_1, \ldots, x_T \in \{\pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $O(\sqrt{d})$?

The Komlós Conjecture

For $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_i\|_2 \leqslant 1$, do there exist $x_1, \ldots, x_T \in \{\pm 1\}$ with

 $\|\mathbf{x}_1\mathbf{v}_1+\cdots+\mathbf{x}_T\mathbf{v}_T\|_{\infty} \leqslant \mathbf{O}(1)?$

• Best known bound $O(\sqrt{\log \min(n, T)})$ (Banaszczyk '98, BDG '16)

Player given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ one at a time

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

• Adaptive adversary can always pick v_t so that $\|\sum_{i=1}^t x_i v_i\|_2 \ge \sqrt{T}$

- ▶ Player given vectors $v_1, ..., v_T \in \mathbb{R}^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $x_1v_1 + \cdots + x_tv_t$ is balanced for all $t \in [T]$
- Example: unit vectors, ℓ_2 discrepancy

Adaptive adversary can always pick v_t so that || ∑^t_{i=1} x_iv_i ||₂ ≥ √T
Player can also ensure ≤ √T

- ▶ Player given vectors $v_1, ..., v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $||x_1v_1 + \cdots + x_tv_t||_{\infty}$ small for all $t \in [T]$

- ▶ Player given vectors $v_1, ..., v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $||x_1v_1 + \cdots + x_tv_t||_{\infty}$ small for all $t \in [T]$
- ▶ Move to the position $p_t := p_{t-1} + x_t v_t$ that minimizes the potential

$$\sum_{i=1}^{n}(e^{\alpha p_t(i)}+e^{-\alpha p_t(i)})$$

- ▶ Player given vectors $v_1, ..., v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $||x_1v_1 + \cdots + x_tv_t||_{\infty}$ small for all $t \in [T]$
- Move to the position $p_t := p_{t-1} + x_t v_t$ that minimizes the potential

$$\sum_{i=1}^{n}(e^{\alpha p_{t}(i)}+e^{-\alpha p_{t}(i)})$$

 $\blacktriangleright \ \alpha := \sqrt{\frac{2\log(2n)}{T}} \text{ ensures } \|x_1\nu_1 + \dots + x_t\nu_t\|_{\infty} \leqslant \sqrt{2T\log(2n)}$

- ▶ Player given vectors $v_1, ..., v_T \in [-1, 1]^n$ one at a time
- Find $x_1, \ldots, x_T \in \{\pm 1\}$ so that $||x_1v_1 + \cdots + x_tv_t||_{\infty}$ small for all $t \in [T]$
- Move to the position $p_t := p_{t-1} + x_t v_t$ that minimizes the potential

$$\sum_{i=1}^{n}(e^{\alpha p_{t}(i)}+e^{-\alpha p_{t}(i)})$$

 $\blacktriangleright \ \alpha := \sqrt{\frac{2\log(2\pi)}{T}} \text{ ensures } \|x_1\nu_1 + \dots + x_t\nu_t\|_{\infty} \leqslant \sqrt{2T\log(2\pi)}$

• Matching lower bound $\Omega(\sqrt{n \log(2n)})$ for T = n

Suppose adversary picks unit vectors v_1, \ldots, v_T in advance

- Suppose adversary picks unit vectors v_1, \ldots, v_T in advance
- Player still receives one at a time and must pick signs online

- Suppose adversary picks unit vectors v_1, \ldots, v_T in advance
- Player still receives one at a time and must pick signs online
- If player deterministic, same as adaptive

- Suppose adversary picks unit vectors v_1, \ldots, v_T in advance
- Player still receives one at a time and must pick signs online
- If player deterministic, same as adaptive
- What if player can use randomization?

▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)

- ▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)
- ▶ For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^{\mathbb{N}}$

- ▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)
- ▶ For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^{\mathbb{N}}$
- Upon receiving an edge {i, j}:

- ▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)
- For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^{\mathbb{N}}$
- Upon receiving an edge {i, j}:

Let k:= first position where $s_i(k)\neq s_j(k),$ i.e. $\{s_i(k),s_j(k)\}=\{0,1\}$

- ▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)
- For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^{\mathbb{N}}$
- Upon receiving an edge {i, j}:

Let k:= first position where $s_i(k)\neq s_j(k),$ i.e. $\{s_i(k),s_j(k)\}=\{0,1\}$ Orient edge from 0 to 1

- ▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)
- For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^{\mathbb{N}}$
- Upon receiving an edge {i, j}:

Let k:= first position where $s_i(k)\neq s_j(k),$ i.e. $\{s_i(k),s_j(k)\}=\{0,1\}$ Orient edge from 0 to 1

Swap values of $s_i(k)$ and $s_j(k)$.

- ▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)
- For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^{\mathbb{N}}$
- Upon receiving an edge {i, j}:

Let k:= first position where $s_i(k)\neq s_j(k),$ i.e. $\{s_i(k),s_j(k)\}=\{0,1\}$ Orient edge from 0 to 1

Swap values of $s_i(k)$ and $s_j(k)$.

Theorem [Kalai '01]

The above algorithm achieves $\|\sum_{i=1}^{t} x_i v_i\|_{\infty} \leq O(\log T)$ after T rounds.

- ▶ Suppose *edge vectors* of the form (0, 0, ..., 0, 1, 0, ..., 0, −1, 0, ..., 0)
- For each coordinate $i \in [n]$, draw an infinite random $s_i \in \{0, 1\}^{\mathbb{N}}$
- Upon receiving an edge {i, j}:

Let k:= first position where $s_i(k)\neq s_j(k),$ i.e. $\{s_i(k),s_j(k)\}=\{0,1\}$ Orient edge from 0 to 1

Swap values of $s_i(k)$ and $s_j(k)$.

Theorem [Kalai '01]

The above algorithm achieves $\|\sum_{i=1}^{t} x_i v_i\|_{\infty} \leq O(\log T)$ after T rounds.

Imbalance at a vertex upper bounded by the longest prefix ever used
• Consider now $\|v_t\|_2 \leq 1$ and let $p_t :=$ position when v_t arrives

- \blacktriangleright Consider now $\|\nu_t\|_2\leqslant 1$ and let $p_t:=$ position when ν_t arrives
- Set $x_t := 1$ with probability $\frac{1}{2} \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; c = O(log(nT))

- \blacktriangleright Consider now $\|\nu_t\|_2\leqslant 1$ and let $p_t:=$ position when ν_t arrives
- Set $x_t := 1$ with probability $\frac{1}{2} \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; c = O(log(nT))

Theorem [ALS '20]

All prefix sums $p_t = \sum_{i=1}^t x_i v_i$ are $O(\sqrt{c})$ -subgaussian.

- \blacktriangleright Consider now $\|\nu_t\|_2 \leqslant 1$ and let $p_t := position$ when ν_t arrives
- Set $x_t := 1$ with probability $\frac{1}{2} \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; c = O(log(nT))

Theorem [ALS '20]

All prefix sums $p_t = \sum_{i=1}^t x_i v_i$ are $O(\sqrt{c})$ -subgaussian.

► X is C-subgaussian:

$$\iff \mathbb{E}[\exp(\langle X, u\rangle^2/C^2)] \leqslant 2 \text{ for all } u \in S^{n-1}$$

- \blacktriangleright Consider now $\|\nu_t\|_2 \leqslant 1$ and let $p_t := position$ when ν_t arrives
- Set $x_t := 1$ with probability $\frac{1}{2} \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; c = O(log(nT))

Theorem [ALS '20]

All prefix sums $p_t = \sum_{i=1}^t x_i v_i$ are $O(\sqrt{c})$ -subgaussian.

► X is C-subgaussian:

$$\iff \mathbb{E}[\exp(\langle X, u \rangle^2 / C^2)] \leqslant 2 \text{ for all } u \in S^{n-1}$$
$$\iff \Pr[|\langle X, u \rangle| \ge \lambda] \leqslant 2e^{-\lambda^2/C^2} \text{ for all } u \in S^{n-1}, \lambda \ge 0$$

- Consider now $\|v_t\|_2 \leq 1$ and let $p_t :=$ position when v_t arrives
- Set $x_t := 1$ with probability $\frac{1}{2} \frac{\langle p_t, v_t \rangle}{c}$, else $x_t := -1$; c = O(log(nT))

Theorem [ALS '20]

All prefix sums $p_t = \sum_{i=1}^t x_i v_i$ are $O(\sqrt{c})$ -subgaussian.

X is C-subgaussian:

$$\iff \mathbb{E}[\exp(\langle X, u \rangle^2 / C^2)] \leq 2 \text{ for all } u \in S^{n-1}$$
$$\iff \Pr[|\langle X, u \rangle| \ge \lambda] \le 2e^{-\lambda^2/C^2} \text{ for all } u \in S^{n-1}, \lambda \ge 0$$

Corollary [ALS '20]

All prefix sums $\|\sum_{i=1}^t x_i \nu_i\|_\infty \leqslant O(log(nT))$ with high probability.

Fix a parameter $\sigma \ge 1$

- Fix a parameter $\sigma \ge 1$
- Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $N(0, \sigma^2)$

- Fix a parameter $\sigma \ge 1$
- Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $N(0, \sigma^2)$
- $M_{\sigma}(x) \sim \{0, \pm 1\}$ and $g + M_{\sigma}(g) \sim g$ for $g \sim N(0, \sigma^2)$

- Fix a parameter $\sigma \ge 1$
- ► Construct Markov chain on \mathbb{R} with 0, ±1 steps and stationary $N(0, \sigma^2)$
- $M_{\sigma}(x) \sim \{0, \pm 1\}$ and $g + M_{\sigma}(g) \sim g$ for $g \sim N(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$

- Fix a parameter $\sigma \ge 1$
- Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $N(0, \sigma^2)$
- $\blacktriangleright \ M_{\sigma}(x) \sim \{0, \pm 1\} \text{ and } g + M_{\sigma}(g) \sim g \text{ for } g \sim N(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$
- Upon receiving vector v_t : set $p_t := p_{t-1} + M_{\sigma}(\langle p_{t-1}, v_t \rangle) \cdot v_t$

- Fix a parameter $\sigma \ge 1$
- Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $N(0, \sigma^2)$
- $\blacktriangleright \ M_{\sigma}(x) \sim \{0, \pm 1\} \text{ and } g + M_{\sigma}(g) \sim g \text{ for } g \sim N(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$
- Upon receiving vector v_t : set $p_t := p_{t-1} + M_{\sigma}(\langle p_{t-1}, v_t \rangle) \cdot v_t$
- Invariant: $p_t \sim N(0, \sigma^2 I_n)$ at all times

- Fix a parameter $\sigma \ge 1$
- Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $N(0, \sigma^2)$
- $M_{\sigma}(x) \sim \{0, \pm 1\}$ and $g + M_{\sigma}(g) \sim g$ for $g \sim N(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$
- Upon receiving vector v_t : set $p_t := p_{t-1} + M_{\sigma}(\langle p_{t-1}, v_t \rangle) \cdot v_t$
- Invariant: $p_t \sim N(0, \sigma^2 I_n)$ at all times
- Output $p_T p_0$.

• Fix a parameter $\sigma \ge 1$

• Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $N(0, \sigma^2)$

• $M_{\sigma}(x) \sim \{0, \pm 1\}$ and $g + M_{\sigma}(g) \sim g$ for $g \sim N(0, \sigma^2)$

- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$
- Upon receiving vector v_t : set $p_t := p_{t-1} + M_{\sigma}(\langle p_{t-1}, v_t \rangle) \cdot v_t$
- Invariant: $p_t \sim N(0, \sigma^2 I_n)$ at all times
- Output $p_T p_0$.

Theorem [LSS '21]

For $\sigma := \sqrt{\log T}$, all prefix sums are 2σ -subgaussian and all steps are ± 1 .

• Fix a parameter $\sigma \ge 1$

- Construct Markov chain on \mathbb{R} with 0, ± 1 steps and stationary $N(0, \sigma^2)$
- $M_{\sigma}(x) \sim \{0, \pm 1\}$ and $g + M_{\sigma}(g) \sim g$ for $g \sim N(0, \sigma^2)$
- At the start of the algorithm, sample $p_0 \sim N(0, \sigma^2 I_n)$
- Upon receiving vector v_t : set $p_t := p_{t-1} + M_{\sigma}(\langle p_{t-1}, v_t \rangle) \cdot v_t$
- Invariant: $p_t \sim N(0, \sigma^2 I_n)$ at all times
- Output $p_T p_0$.

Theorem [LSS '21]

For $\sigma := \sqrt{\log T}$, all prefix sums are 2σ -subgaussian and all steps are ± 1 .

Technical: construct M_{σ} so that $Pr[M_{\sigma}(x) = 0] \leqslant e^{-\sigma^2}$ for all $x \in \mathbb{R}$.

Our contribution

Theorem [Kulkarni, R., Rothvoss '23]

For $\|v_t\|_2 \leq 1$, there is an online algorithm against an oblivious adversary which keeps all prefix sums 10-subgaussian. In particular,

 $\|\sum_{i=1}^t x_i \nu_i\|_{\infty} \leqslant O(\sqrt{\log T})$ for all $t \in [T]$ with high probability.

Our contribution

Theorem [Kulkarni, R., Rothvoss '23]

For $\|v_t\|_2 \leq 1$, there is an online algorithm against an oblivious adversary which keeps all prefix sums 10-subgaussian. In particular,

 $\|\sum_{i=1}^t x_i \nu_i\|_{\infty} \leqslant O(\sqrt{\log T})$ for all $t \in [T]$ with high probability.

Theorem [Kulkarni, R., Rothvoss '23]

$$\max_{t \in [T]} \Big\| \sum_{i=1}^{t} x_i \nu_i \Big\|_{\infty} \gtrsim \sqrt{\log T}.$$

Theorem [Kulkarni, R., Rothvoss '23]

$$\max_{t\in[\mathsf{T}]} \Big\| \sum_{\mathfrak{i}=1}^{\mathfrak{r}} x_{\mathfrak{i}} \nu_{\mathfrak{i}} \Big\|_{\infty} \gtrsim \sqrt{\log \mathsf{T}}.$$

Theorem [Kulkarni, R., Rothvoss '23]

For any $n \ge 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_1, ..., v_T \in \mathbb{R}^n$ so that for any online algorithm, with probability at least $1 - 2^{-\text{poly}(T)}$,

$$\max_{t \in [T]} \left\| \sum_{i=1}^{t} x_i \nu_i \right\|_{\infty} \gtrsim \sqrt{\log T}.$$

• Proof sketch: split time horizon into blocks of size $k := \Theta(\log T)$

Theorem [Kulkarni, R., Rothvoss '23]

$$\max_{t \in [T]} \Big\| \sum_{i=1}^t x_i \nu_i \Big\|_{\infty} \gtrsim \sqrt{\log T}.$$

- Proof sketch: split time horizon into blocks of size k := Θ(log T)
- ▶ Within each block, guess all k signs chosen by the player

Theorem [Kulkarni, R., Rothvoss '23]

$$\max_{t\in[\mathsf{T}]} \Big\| \sum_{i=1}^t x_i \nu_i \Big\|_\infty \gtrsim \sqrt{\log \mathsf{T}}.$$

- Proof sketch: split time horizon into blocks of size k := Θ(log T)
- Within each block, guess all k signs chosen by the player
- Simulate the strategy of adaptive adversary to get $\Omega(\sqrt{k})$ w.p. 2^{-k}

Theorem [Kulkarni, R., Rothvoss '23]

$$\max_{t\in[\mathsf{T}]} \Big\| \sum_{i=1}^t x_i \nu_i \Big\|_\infty \gtrsim \sqrt{\log \mathsf{T}}.$$

- ▶ Proof sketch: split time horizon into blocks of size k := Θ(log T)
- Within each block, guess all k signs chosen by the player
- Simulate the strategy of adaptive adversary to get $\Omega(\sqrt{k})$ w.p. 2^{-k}
- One of the blocks will succeed with probability $1 (1 2^{-k})^{T/k}$.

ε-nets

▶ $P \subseteq \mathbb{R}^n$ so that, for all $\|v\|_2 \leq 1$, there is $p \in P$ with $\|p - v\|_2 \leq \epsilon$.

ε-nets

- ▶ $P \subseteq \mathbb{R}^n$ so that, for all $\|v\|_2 \leq 1$, there is $p \in P$ with $\|p v\|_2 \leq \epsilon$.
- There exists an ε -net with $|\mathsf{P}| \leq (3/\varepsilon)^n$.

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathfrak{T} = (V, E)$ be a rooted tree with vectors $\|\nu_e\|_2 \leq 1$ on edges. Then there is a distribution \mathfrak{D} over $\{-1, 1\}^E$ so that for $x \sim \mathfrak{D}$,

 $\sum_{e \in P_i} x_e v_e$ is 10-subgaussian for every $i \in V$.

Theorem [Banaszczyk '12]

For any $\nu_1, \ldots, \nu_T \in \mathbb{R}^n$ with $\|\nu_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i \nu_i \in 5K \quad \forall t = 1, \dots, T.$$

Theorem [Banaszczyk '12]

For any $\nu_1, \ldots, \nu_T \in \mathbb{R}^n$ with $\|\nu_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i \nu_i \in 5K \quad \forall t = 1, \dots, T.$$

Theorem [Banaszczyk '98]

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and $u \in \mathbb{R}^n$ with $||u||_2 \le \frac{1}{5}$, there is a convex body $(K * u) \subseteq (K + u) \cup (K - u)$ with $\gamma_n(K * u) \ge \gamma_n(K)$.

Theorem [Banaszczyk '12]

For any $\nu_1, \ldots, \nu_T \in \mathbb{R}^n$ with $\|\nu_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i \nu_i \in 5K \quad \forall t = 1, \dots, T.$$

Theorem [Banaszczyk '98]

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and $u \in \mathbb{R}^n$ with $||u||_2 \le \frac{1}{5}$, there is a convex body $(K * u) \subseteq (K + u) \cup (K - u)$ with $\gamma_n(K * u) \ge \gamma_n(K)$.

• Define
$$K_T := K$$
 and $K_{t-1} := (K_t * v_t) \cap K$.

Theorem [Banaszczyk '12]

For any $\nu_1, \ldots, \nu_T \in \mathbb{R}^n$ with $\|\nu_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^{t} x_i \nu_i \in 5K \quad \forall t = 1, \dots, T.$$

Theorem [Banaszczyk '98]

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and $u \in \mathbb{R}^n$ with $||u||_2 \le \frac{1}{5}$, there is a convex body $(K * u) \subseteq (K + u) \cup (K - u)$ with $\gamma_n(K * u) \ge \gamma_n(K)$.

- Define $K_T := K$ and $K_{t-1} := (K_t * v_t) \cap K$.
- Show by induction $\gamma(K_t) \ge 1 \frac{T-t+1}{2T}$, then iteratively find x_1, \dots, x_T

Banaszczyk prefix balancing for trees

Theorem [Banaszczyk '12]

For any $\nu_1, \ldots, \nu_T \in \mathbb{R}^n$ with $\|\nu_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^t x_i \nu_i \in 5 K \quad \forall t = 1, \dots, \mathsf{T}.$$

Banaszczyk prefix balancing for trees

Theorem [Banaszczyk '12]

For any $\nu_1, \ldots, \nu_T \in \mathbb{R}^n$ with $\|\nu_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^t x_i \nu_i \in 5K \quad \forall t=1,\ldots,T.$$

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T} = (V, E)$ be a rooted tree with vectors $\|\nu_e\|_2 \leq 1$ on edges. Let $K \subseteq \mathbb{R}^n$ be a convex body with $\gamma_n(K) \ge 1 - \frac{1}{2|E|}$. Then there are signs $x \in \{-1, 1\}^E$ so that for every root-vertex path P_i ,

$$\sum_{e \in \mathsf{P}_{\mathfrak{i}}} x_e \nu_e \in 5\mathsf{K} \quad \forall \mathfrak{i} \in \mathsf{V}.$$

Banaszczyk prefix balancing for trees

Theorem [Banaszczyk '12]

For any $\nu_1, \ldots, \nu_T \in \mathbb{R}^n$ with $\|\nu_i\|_2 \leq 1$ and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that

$$\sum_{i=1}^t x_i \nu_i \in 5K \quad \forall t=1,\ldots,T.$$

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T} = (V, E)$ be a rooted tree with vectors $\|\nu_e\|_2 \leq 1$ on edges. Let $K \subseteq \mathbb{R}^n$ be a convex body with $\gamma_n(K) \ge 1 - \frac{1}{2|E|}$. Then there are signs $x \in \{-1, 1\}^E$ so that for every root-vertex path P_i ,

$$\sum_{e \in \mathsf{P}_{\mathfrak{i}}} x_e \nu_e \in 5\mathsf{K} \quad \forall \mathfrak{i} \in \mathsf{V}.$$

• Analogous proof with $K_i := \left(\bigcap_{j \in children_i} (K_j * v_{\{i,j\}})\right) \cap K$.

Cloning: coloring \implies distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathfrak{T}=(V,E)$ be a rooted tree with vectors $\|\nu_e\|_2\leqslant 1$ on edges.

Then there is a distribution \mathcal{D} over $\{-1, 1\}^E$ so that for $x \sim \mathcal{D}$,

 $\sum_{e \in P_i} x_e v_e$ is 10-subgaussian for every $i \in V$.
Cloning: coloring \implies distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathfrak{T}=(V,E)$ be a rooted tree with vectors $\|\nu_e\|_2\leqslant 1$ on edges.

Then there is a distribution \mathcal{D} over $\{-1, 1\}^{E}$ so that for $x \sim \mathcal{D}$,

 $\sum_{e \in P_i} x_e v_e$ is 10-subgaussian for every $i \in V$.

Cloning: coloring \implies distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathfrak{T}=(V,E)$ be a rooted tree with vectors $\|\nu_e\|_2\leqslant 1$ on edges.

Then there is a distribution \mathcal{D} over $\{-1, 1\}^{E}$ so that for $x \sim \mathcal{D}$,

 $\sum_{e \in P_i} x_e v_e$ is 10-subgaussian for every $i \in V$.

Idea: clone each edge N times, find a coloring, sample random clone

Cloning: coloring \implies distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathfrak{T}=(V,E)$ be a rooted tree with vectors $\|\nu_e\|_2\leqslant 1$ on edges.

Then there is a distribution \mathcal{D} over $\{-1, 1\}^{E}$ so that for $x \sim \mathcal{D}$,

 $\sum_{e \in P_i} x_e v_e$ is 10-subgaussian for every $i \in V$.

Idea: clone each edge N times, find a coloring, sample random clone
Define a convex body K and show γ_{Nn}(K) ≥ 1 − 1/(N^{1+δ}) ≥ 1 − 1/(2N|F|)

► Take any C > 2 and define

$$\mathsf{K} := \left\{ (y^{(1)}, \dots, y^{(N)}) \in \mathbb{R}^{N\mathfrak{n}} \mid \mathsf{Y} \sim \{y^{(1)}, \dots, y^{(N)}\} \text{ is C-subgaussian} \right\}$$

► Take any C > 2 and define

$$\mathsf{K} := \left\{ (y^{(1)}, \dots, y^{(N)}) \in \mathbb{R}^{N\mathfrak{n}} \mid \mathsf{Y} \sim \{y^{(1)}, \dots, y^{(N)}\} \text{ is C-subgaussian} \right\}$$

► Need to show $\gamma_{Nn}(K) \ge 1 - 1/N^{1+\delta}$

► Take any C > 2 and define

$$\mathsf{K} := \Big\{ (\mathsf{y}^{(1)}, \dots, \mathsf{y}^{(N)}) \in \mathbb{R}^{\mathsf{Nn}} \mid \mathsf{Y} \sim \{\mathsf{y}^{(1)}, \dots, \mathsf{y}^{(N)}\} \text{ is C-subgaussian} \Big\}.$$

- Need to show $\gamma_{Nn}(K) \ge 1 1/N^{1+\delta}$
- ▶ By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$\mathsf{K}_{\mathsf{w}} := \left\{ (\mathfrak{y}^{(1)}, \dots, \mathfrak{y}^{(\mathsf{N})}) \in \mathbb{R}^{\mathsf{Nn}} \mid \mathop{\mathbb{E}}_{\ell \sim [\mathsf{N}]} \left[\exp\left(\frac{1}{C^2} \left\langle \mathsf{w}, \mathfrak{y}^{(\ell)} \right\rangle^2 \right) \right] \leqslant 2 \right\}$$

► Take any C > 2 and define

$$\mathsf{K} := \Big\{ (\mathfrak{y}^{(1)}, \dots, \mathfrak{y}^{(N)}) \in \mathbb{R}^{\mathsf{Nn}} \mid \mathsf{Y} \sim \{\mathfrak{y}^{(1)}, \dots, \mathfrak{y}^{(N)}\} \text{ is C-subgaussian} \Big\}.$$

- Need to show $\gamma_{Nn}(K) \ge 1 1/N^{1+\delta}$
- ▶ By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$\mathsf{K}_{w} := \left\{ (\mathsf{y}^{(1)}, \dots, \mathsf{y}^{(\mathsf{N})}) \in \mathbb{R}^{\mathsf{Nn}} \mid \mathop{\mathbb{E}}_{\ell \sim [\mathsf{N}]} \left[\exp\left(\frac{1}{\mathsf{C}^{2}} \left\langle w, \mathsf{y}^{(\ell)} \right\rangle^{2} \right) \right] \leqslant 2 \right\}$$

• Concentration inequality: heavy-tailed random variables $\exp(\frac{1}{C^2}g_\ell^2)$

► Take any C > 2 and define

$$\mathsf{K} := \Big\{ (\mathsf{y}^{(1)}, \dots, \mathsf{y}^{(N)}) \in \mathbb{R}^{\mathsf{Nn}} \mid \mathsf{Y} \sim \{\mathsf{y}^{(1)}, \dots, \mathsf{y}^{(N)}\} \text{ is C-subgaussian} \Big\}.$$

- Need to show $\gamma_{Nn}(K) \ge 1 1/N^{1+\delta}$
- ▶ By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$\mathsf{K}_{w} := \left\{ (\mathsf{y}^{(1)}, \dots, \mathsf{y}^{(\mathsf{N})}) \in \mathbb{R}^{\mathsf{Nn}} \mid \mathop{\mathbb{E}}_{\ell \sim [\mathsf{N}]} \left[\exp\left(\frac{1}{\mathsf{C}^{2}} \left\langle w, \mathsf{y}^{(\ell)} \right\rangle^{2} \right) \right] \leqslant 2 \right\}$$

Concentration inequality: heavy-tailed random variables exp(¹/_{C²}g²_ℓ)
X_ℓ := exp(¹/_{C²}g²_ℓ) satisfy E[X^p_ℓ] < ∞ for p < C²/2 (want p > 2)

Lemma

Let $p\geqslant 2$ and X_1,\ldots,X_N be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p]=O_p(1).$ Then $Pr[X_1+\cdots+X_N>N]\leqslant \frac{O_p(1)}{N^{p/2}}.$

Lemma

Let $p \ge 2$ and $X_1, ..., X_N$ be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\Pr[X_1 + \dots + X_N > N] \leqslant \frac{O_p(1)}{N^{p/2}}.$$

Proof for p = 2:

$$Pr[X_1+\dots+X_N>N]\leqslant Pr[(X_1+\dots+X_N)^2>N^2]$$

Lemma

Let $p \ge 2$ and $X_1, ..., X_N$ be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\Pr[X_1 + \dots + X_N > N] \leqslant \frac{O_p(1)}{N^{p/2}}.$$

Proof for p = 2:

$$\begin{split} \Pr[X_1 + \dots + X_N > N] &\leq \Pr[(X_1 + \dots + X_N)^2 > N^2] \\ &\leq \mathbb{E}[(X_1 + \dots + X_N)^2]/N^2 \end{split}$$

Lemma

Let $p \ge 2$ and $X_1, ..., X_N$ be centered, indep. r.v.'s with $\mathbb{E}[|X_i|^p] = O_p(1)$. Then

$$\Pr[X_1 + \dots + X_N > N] \leqslant \frac{O_p(1)}{N^{p/2}}$$

Proof for p = 2:

$$\begin{aligned} \Pr[X_1 + \dots + X_N > N] &\leq \Pr[(X_1 + \dots + X_N)^2 > N^2] \\ &\leq \mathbb{E}[(X_1 + \dots + X_N)^2]/N^2 \\ &= \frac{\sum_{i=1}^{N} \underbrace{\mathbb{E}[X_i^2]}_{i \neq j} + \sum_{i \neq j} \underbrace{\mathbb{E}[X_i]}_{i \neq j} \underbrace{\mathbb{E}[X_j]}_{N^2} = O(1/N). \end{aligned}$$

Lemma

Let $p\geqslant 2$ and X_1,\ldots,X_N be centered, indep. r.v.'s with $\mathop{\mathbb{E}}[|X_i|^p]=O_p(1).$ Then $Pr[X_1+\cdots+X_N>N]\leqslant \frac{O_p(1)}{^{Np/2}}.$

▶ In general, follows by Markov + *Rosenthal's inequality*:

Lemma

Let $p\geqslant 2$ and X_1,\ldots,X_N be centered, indep. r.v.'s with $\mathop{\mathbb{E}}[|X_i|^p]=O_p(1).$ Then $Pr[X_1+\cdots+X_N>N]\leqslant \frac{O_p(1)}{N^{p/2}}.$

▶ In general, follows by Markov + *Rosenthal's inequality*:

Rosenthal '70

Let $p\geqslant 2$ and X_1,\ldots,X_N centered, indep. r.v.'s with $\mathbb{E}[|X_\ell|^p]<\infty.$ Then

$$\mathbb{E}[|X_1 + \dots + X_N|^p]^{1/p} \leq 2^p \cdot \max\left\{\left(\sum_{i=1}^N \mathbb{E}[|X_i|^p]\right)^{1/p}, \left(\sum_{i=1}^N \mathbb{E}[X_i^2]\right)^{1/2}\right\}.$$

Given T, build depth T tree where children are labeled with ε-net

- **•** Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- ▶ When receiving a vector, find closest child and move there

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited
- ▶ If T unknown: compactness yields sequence of distributions D_t^* :

 $\mathcal{D}_t^* = \Pi_{\{\pm 1\}^{\mathsf{E}_t}}(\mathcal{D}_{t+1}^*).$

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited
- ▶ If T unknown: compactness yields sequence of distributions D_t^* :

$$\mathcal{D}_t^* = \Pi_{\{\pm 1\}^{\mathsf{E}_t}}(\mathcal{D}_{t+1}^*).$$

Subgaussian norm is $4.999 \cdot (2 + \delta) < 10$.

Polynomial time algorithm

Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_t\|_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums O(1)-subgaussian?

Polynomial time algorithm

Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_t\|_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_1, \ldots, v_T \in \mathbb{R}^n$, can we find online signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|\sum_{i=1}^T x_i v_i\|_{\infty} \leq O(\sqrt[3]{\log T})$ w.h.p.?

Polynomial time algorithm

Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_t\|_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_1, \ldots, v_T \in \mathbb{R}^n$, can we find online signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|\sum_{i=1}^T x_i v_i\|_{\infty} \leq O(\sqrt[3]{\log T})$ w.h.p.?

• Main theorem: $O(\sqrt{\log T})$, also $\Omega(\sqrt[3]{\log \min(n, T)})$ [AANRSW'98]

Polynomial time algorithm

Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_t||_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_1, \ldots, v_T \in \mathbb{R}^n$, can we find online signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|\sum_{i=1}^T x_i v_i\|_{\infty} \leq O(\sqrt[3]{\log T})$ w.h.p.?

• Main theorem: $O(\sqrt{\log T})$, also $\Omega(\sqrt[3]{\log \min(n, T)})$ [AANRSW'98]

Oblivious Spencer

Given oblivious $v_1, \ldots, v_n \in [-1, 1]^n$, can we find online signs $x_1, \ldots, x_n \in \{\pm 1\}$ so that $\|\sum_{i=1}^n x_i v_i\|_{\infty} \leq O(\sqrt{n})$ w.h.p.?

Polynomial time algorithm

Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_t||_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_1, \ldots, v_T \in \mathbb{R}^n$, can we find online signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|\sum_{i=1}^T x_i v_i\|_{\infty} \leq O(\sqrt[3]{\log T})$ w.h.p.?

• Main theorem: $O(\sqrt{\log T})$, also $\Omega(\sqrt[3]{\log \min(n, T)})$ [AANRSW'98]

Oblivious Spencer

Given oblivious $v_1, \ldots, v_n \in [-1, 1]^n$, can we find online signs $x_1, \ldots, x_n \in \{\pm 1\}$ so that $\|\sum_{i=1}^n x_i v_i\|_{\infty} \leq O(\sqrt{n})$ w.h.p.?

Polynomial time algorithm

Given oblivious $v_1, \ldots, v_T \in \mathbb{R}^n$ with $\|v_t\|_2 \leq 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums O(1)-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_1, \ldots, v_T \in \mathbb{R}^n$, can we find online signs $x_1, \ldots, x_T \in \{\pm 1\}$ so that $\|\sum_{i=1}^T x_i v_i\|_{\infty} \leq O(\sqrt[3]{\log T})$ w.h.p.?

• Main theorem: $O(\sqrt{\log T})$, also $\Omega(\sqrt[3]{\log \min(n, T)})$ [AANRSW'98]

Oblivious Spencer

Given oblivious $v_1, \ldots, v_n \in [-1, 1]^n$, can we find online signs $x_1, \ldots, x_n \in \{\pm 1\}$ so that $\|\sum_{i=1}^n x_i v_i\|_{\infty} \leq O(\sqrt{n})$ w.h.p.?

Thanks for your attention!