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Beck-Fiala Theorem (1981)
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Beck-Fiala Theorem (1981)

For any vectors vy, ..., vr € [—1,1]™ with at most d nonzeros each,

||X1V1 qFocoaF XTVTHoo <2d

for some choice of signs x1,...,x1 € {£1}.

Can we improve the above bound to O(v/d)?

For vy, ..., vr € R™ with ||vi|]z < 1, do there exist x1, ..., xT € {1} with

[Ix1vi + -« + X170 < O(1)?

» Best known bound O(/logmin(n, T)) (Banaszczyk '98, BDG "16)
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Introduction to online discrepancy

» Player given vectors vy, ..., vt € R™ one at a time
» Find xq,...,x7 € {1} so that x;v1 + - - - +x¢ V¢ is balanced for all t € [T]
» Example: unit vectors, {, discrepancy

> Adaptive adversary can always pick v; so that || 5, xivi|l2 > VT
» Player can also ensure < VT
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Example II: Spencer’s hyperbolic cosine algorithm

» Player given vectors vy, ..., vt € [—1,1]™ one at a time
» Find xq,...,x1 € {£1} so that ||[x;v1 + - - - + XtV || sSmall for all t € [T]
Move to the position pt := pt—1 + x¢v¢ that minimizes the potential

v

> o= M ensures |[xqvi + - - - + XV |lo < 4/2Tlog(2n)

v

Matching lower bound Q(y/nlog(2n)) for T=n
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Oblivious adversary

> Suppose adversary picks unit vectors vy, ..., v in advance
> Player still receives one at a time and must pick signs online
» If player deterministic, same as adaptive

» What if player can use randomization?
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Special case: edge orientation [Kalai '01]

» Suppose edge vectors of the form (0,0,...,0,1,0,...,0,—1,0,...,0)

» For each coordinate i € [n], draw an infinite random s; € {0, 1}

» Upon receiving an edge {1, j}:
Let k := first position where s; (k) # s;(k), i.e. {si(k),sj(k)} = {0, 1}
Orient edge from 0 to 1
Swap values of s; (k) and s;(k).

Theorem [Kalai '01]

The above algorithm achieves || 5 _; xiVi||oo < O(logT) after T rounds.

> Imbalance at a vertex upper bounded by the longest prefix ever used
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Self-balancing random walk [ALS "20]

» Consider now ||v¢|2 < 1 and let p, := position when v, arrives

> Set x; := 1 with probability 1 & , else x¢ :== —1; ¢ = O(log(nT))

Theorem [ALS "20]
All prefix sums py = Y _;_; x;v; are O(/c)-subgaussian.

> Xis C-subgaussian:

<= Elexp({(X,u)?/C?)] <2forallu e S™!
— Pr(|(X,u)| > Al < 2 M/ forallu € STIA>0

Corollary [ALS "20]
All prefix sums || ¥ {_; xiVi||oo < O(log(nT)) with high probability.




Gaussian fixed point random walk [LSS "21]

> Fix a parameter o > 1



Gaussian fixed point random walk [LSS "21]

> Fix a parameter o > 1

» Construct Markov chain on R with 0, £1 steps and stationary N(0, 0?)



Gaussian fixed point random walk [LSS "21]

> Fix a parameter o > 1
» Construct Markov chain on R with 0, £1 steps and stationary N(0, 0?)
> Mg(x) ~{0,+1}and g + M(g) ~ g for g ~ N(0, 0?)



Gaussian fixed point random walk [LSS "21]

> Fix a parameter o > 1

» Construct Markov chain on R with 0, £1 steps and stationary N(0, 0?)
> Mg (x) ~{0,£1}and g + My(g) ~ g for g ~ N(0, 6?)

> At the start of the algorithm, sample pg ~ N(0, 0’l,)



Gaussian fixed point random walk [LSS "21]

> Fix a parameter o > 1

» Construct Markov chain on R with 0, £1 steps and stationary N(0, 0?)
> Mq(x) ~{0,£1}and g + Mq(g) ~ g for g ~ N(0, 0?)

> At the start of the algorithm, sample pg ~ N(0, 0’l,)

>

Upon receiving vector vy: set py := pi—1 + Mo ((Pt—1,Vt)) - V¢



Gaussian fixed point random walk [LSS "21]

Fix a parameter o > 1

Construct Markov chain on R with 0, £1 steps and stationary N(0, 0?)
M (x) ~{0,£1}and g + My(g) ~ g for g ~ N(0, 6?)

At the start of the algorithm, sample pg ~ N(0, 0’l,)

Upon receiving vector vy: set py := pi—1 + Mo ((Pt—1,Vt)) - V¢

vVVvyVvyVvyYYVvyy

Invariant: p; ~ N(0, 0°,,) at all times



Gaussian fixed point random walk [LSS "21]

Fix a parameter o > 1

Construct Markov chain on R with 0, £1 steps and stationary N(0, 0?)
M (x) ~{0,£1}and g + My(g) ~ g for g ~ N(0, 6?)

At the start of the algorithm, sample pg ~ N(0, 0’l,)

Upon receiving vector vy: set py := pi—1 + Mo ((Pt—1,Vt)) - V¢
Invariant: p; ~ N(0, 0°,,) at all times

Output p1 — po.

VVvyVvyVvVVYYVYYy



Gaussian fixed point random walk [LSS "21]

Fix a parameter o > 1

Construct Markov chain on R with 0, £1 steps and stationary N(0, 02)
M (x) ~{0,£1}and g + My(g) ~ g for g ~ N(0, 6?)

At the start of the algorithm, sample pg ~ N(0, 0’l,)

Upon receiving vector vy: set py := pi—1 + Mo ((Pt—1,Vt)) - V¢
Invariant: p; ~ N(0, 0°,,) at all times

Output p1 — po.

VVvyVvyVvVVYYVYYy

Theorem [LSS "21]
For o := \/log T, all prefix sums are 20-subgaussian and all steps are +1.




Gaussian fixed point random walk [LSS "21]

Fix a parameter o > 1

Construct Markov chain on R with 0, £1 steps and stationary N(0, 02)
M (x) ~{0,£1}and g + My(g) ~ g for g ~ N(0, 6?)

At the start of the algorithm, sample pg ~ N(0, 0’l,)

Upon receiving vector vy: set py := pi—1 + Mo ((Pt—1,Vt)) - V¢
Invariant: p; ~ N(0, 0°,,) at all times

Output p1 — po.

VVvyVvyVvVVYYVYYy

Theorem [LSS "21]
For o := \/log T, all prefix sums are 20-subgaussian and all steps are +1.

Technical: construct M so that PriMy(x) = 0] < e forall x € R.
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Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss 23]

For any n > 2, there is a strategy for an oblivious adversary that yields a
sequence of unit vectors vy, ..., vr € R™ so that for any online algorithm,
with probability at least 1 — Z_POIY(T),

max H E XiVi

logT.

» Proof sketch: split time horizon into blocks of size k := O(log T)

» Within each block, guess all k signs chosen by the player

> Simulate the strategy of adaptive adversary to get Q(vk) w.p. 27%

> One of the blocks will succeed with probability 1 — (1 —27%)7/k. [
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e-nets

» P C R" so that, forall ||[v[| < 1, thereis p € P with ||[p — V|2 < e.
» There exists an ¢-net with |P| < (3/¢)™.
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Overview of the algorithm

start

children labeled with e-net

children labeled with e-net

depth T'

Theorem [Kulkarni, R., Rothvoss 23]
Let T = (V, E) be a rooted tree with vectors |[ve||2 < 1 on edges.
Then there is a distribution D over {—1, 1}F so that for x ~ D,

2 ccp, XeVe is 10-subgaussian for every i € V.
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Banaszczyk prefix balancing

Theorem [Banaszczyk "12]

For any vy, .. vT € R™ with ||vi|]2 < 1 and any convex body K C R™ with
Yu(K) > 1— 2T’ there are signs x1, ..., x1 € {£1} so that

t
> xivi€5K vt=1,...,T.
1i=1

Theorem [Banaszczyk 98]

For any convex body K € R™ with y,,(K) > 1 and u € R™ with |[u|, < %,

there is a convex body (K*u) C (K+u) U (K —u) with yn (Kxu) > (K)

» Define Kt := Kand Ki_1 := (K¢ * v¢) N K.
» Show by induction y(K) > 1 — 15 t“ , then iteratively find xq,...,xT
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Theorem [Banaszczyk "12]

For any vy, ..., vr € R™ with ||vi| < 1 and any convex body K C R™ with
Yn(K) > 1— 2, there are signs x, ..., x1 € {£1} so that

t
invi €5k vt=1,...,T.

i=1

Theorem [Kulkarni, R., Rothvoss 23]

Let T = (V, E) be a rooted tree with vectors |[ve|2 < 1 on edges.

Let K C R™ be a convex body with yn (K) > 1 — 5.

Then there are signs x € {—1,1}F so that for every root-vertex path P;,

D xeve €5K VieV.
ecPy




Banaszczyk prefix balancing for trees

Theorem [Banaszczyk "12]

For any vy, ..., vr € R™ with ||vi| < 1 and any convex body K C R™ with
Yn(K) > 1— 5%, there are signs x;, ..., x1 € {1} so that

t
invi €5k vt=1,...,T.

i=1

Theorem [Kulkarni, R., Rothvoss 23]

Let T = (V, E) be a rooted tree with vectors |[ve|2 < 1 on edges.

Let K C R™ be a convex body with yn (K) > 1 — 5.

Then there are signs x € {—1,1}F so that for every root-vertex path P;,

D xeve €5K VieV.
ecPy

» Analogous proof with K; := (ﬂjEChﬂdreni (Kj * v{i,j})) nK.
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Cloning: coloring = distribution

Theorem [Kulkarni, R., Rothvoss 23]
Let T = (V, E) be a rooted tree with vectors |[ve||2 < 1 on edges.
Then there is a distribution D over {—1, 1}F so that for x ~ D,

Zeepi XeVe is 10-subgaussian for every i € V.

» Idea: clone each edge N times, find a coloring, sample random clone

» Define a convex body K and show ynn (K) > 1 — NEH >1-— 2N1\E|
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Body of subgaussian distributions

» Take any C > 2 and define
K:= {(ym,...,y(m) eRNM Y~ yW, . ., yMNis C-subgaussian}.

» Need to show ynn(K) > 1—1/NI+®

> By a net argument, suffices to consider a single unit vector w € S™1:

i () R 5 Lo ()] <)

> Concentration inequality: heavy-tailed random variables exp(&; g3)

> X :=exp(gr93) satisfy E[X}] < oo for p < C2/2 (wantp > 2)
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Lemma
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Concentration for heavy-tailed random variables

Lemma
Letp > 2 and Xy, ..., Xn be centered, indep. r.v.’s with E[[X;[P] = O, (1).
Then 0,(1)

PriXg+---+Xn > NI < NP/2

> In general, follows by Markov + Rosenthal’s inequality:

Rosenthal "70
Letp > 2and Xy, ..., Xn centered, indep. r.v.’s with E[|X,[P] < co. Then

I e ;X 1/2
EIX+ -+ XnPIP <20 max { (3 EIXIP) L (3 EDG))
i=1 i
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Online algorithm

Given T, build depth T tree where children are labeled with e-net
Find a 10-subgaussian distribution D on its edges and sample x ~ D
Keep track of position in the tree (starting at root)

When receiving a vector, find closest child and move there

Output sign corresponding to edges visited

vV v v v.v Yy

If T unknown: compactness yields sequence of distributions Dj:
Dt = Myee (Disq)-

> Subgaussian norm is 4.999 - (2 + ) < 10.
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Given oblivious vy, ..., vy € R™ with ||v¢||> < 1, does there exist a
polynomial time online algorithm against an oblivious adversary which
keeps all signed prefix sums O(1)-subgaussian?

Given oblivious edge vectors vy, ..., vt € R™, can we find online signs
X1, ..., X1 € {£1} so that || ZLl XiVillo < O(3/logT) w.h.p.?

» Main theorem: O(4/logT), also Q(:/logmin(n, T)) [AANRSW’98]

Given oblivious vy, ...,vn € [-1,1]™, can we find online signs
X1,...,%n € {£1}sothat | > | xivill < O(y/n) w.h.p.?

Thanks for your attention!



