Optimal Online Discrepancy Minimization

Victor Reis
Joint with Janardhan Kulkarni and Thomas Rothvoss
Princeton Theory Lunch
March 1, 2024

Microsoft Research

Warmup: edge orientation

Warmup: edge orientation

Warmup: edge orientation

Warmup: edge orientation

Beck-Fiala Theorem (1981)

For any vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{\mathrm{n}}$ with at most d nonzeros each,

$$
\left\|x_{1} v_{1}+\cdots+x_{T} v_{T}\right\|_{\infty}<2 d
$$

for some choice of signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$.

Beck-Fiala Theorem (1981)

For any vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{n}$ with at most d nonzeros each,

$$
\left\|x_{1} v_{1}+\cdots+x_{T} v_{T}\right\|_{\infty}<2 d
$$

for some choice of signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $\mathrm{O}(\sqrt{\mathrm{d}})$?

Beck-Fiala Theorem (1981)

For any vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{n}$ with at most d nonzeros each,

$$
\left\|\mathrm{x}_{1} v_{1}+\cdots+\mathrm{x}_{\mathrm{T}} v_{\mathrm{T}}\right\|_{\infty}<2 \mathrm{~d}
$$

for some choice of signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $\mathrm{O}(\sqrt{\mathrm{d}})$?

The Komlós Conjecture

For $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$, do there exist $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ with

$$
\left\|x_{1} v_{1}+\cdots+x_{\mathrm{T}} v_{\mathrm{T}}\right\|_{\infty} \leqslant \mathrm{O}(1) ?
$$

Beck-Fiala Theorem (1981)

For any vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{n}$ with at most d nonzeros each,

$$
\left\|\mathrm{x}_{1} v_{1}+\cdots+\mathrm{x}_{\mathrm{T}} v_{\mathrm{T}}\right\|_{\infty}<2 \mathrm{~d}
$$

for some choice of signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$.

The Beck-Fiala Conjecture

Can we improve the above bound to $\mathrm{O}(\sqrt{\mathrm{d}})$?

The Komlós Conjecture

For $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$, do there exist $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ with

$$
\left\|x_{1} v_{1}+\cdots+x_{\mathrm{T}} v_{\mathrm{T}}\right\|_{\infty} \leqslant \mathrm{O}(1) ?
$$

- Best known bound $\mathrm{O}(\sqrt{\log \min (\mathrm{n}, \mathrm{T})})$ (Banaszczyk '98, BDG '16)

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

- Adaptive adversary can always pick v_{t} so that $\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{2} \geqslant \sqrt{\mathrm{~T}}$

Introduction to online discrepancy

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $x_{1} v_{1}+\cdots+x_{t} v_{t}$ is balanced for all $t \in[T]$
- Example: unit vectors, ℓ_{2} discrepancy

- Adaptive adversary can always pick v_{t} so that $\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{2} \geqslant \sqrt{\mathrm{~T}}$
- Player can also ensure $\leqslant \sqrt{\top}$

Example II: Spencer's hyperbolic cosine algorithm

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{\mathrm{n}}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $\left\|x_{1} v_{1}+\cdots+x_{t} v_{t}\right\|_{\infty}$ small for all $t \in[T]$

Example II: Spencer's hyperbolic cosine algorithm

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $\left\|x_{1} v_{1}+\cdots+x_{t} v_{t}\right\|_{\infty}$ small for all $t \in[T]$
- Move to the position $p_{\mathrm{t}}:=\mathrm{p}_{\mathrm{t}-1}+\mathrm{x}_{\mathrm{t}} v_{\mathrm{t}}$ that minimizes the potential

$$
\sum_{i=1}^{n}\left(e^{\alpha p_{t}(i)}+e^{-\alpha p_{t}(i)}\right)
$$

Example II: Spencer's hyperbolic cosine algorithm

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $\left\|x_{1} v_{1}+\cdots+x_{t} v_{t}\right\|_{\infty}$ small for all $t \in[T]$
- Move to the position $p_{t}:=p_{\mathrm{t}-1}+x_{\mathrm{t}} v_{\mathrm{t}}$ that minimizes the potential

$$
\sum_{i=1}^{n}\left(e^{\alpha p_{t}(i)}+e^{-\alpha p_{t}(i)}\right)
$$

- $\alpha:=\sqrt{\frac{2 \log (2 n)}{T}}$ ensures $\left\|x_{1} v_{1}+\cdots+x_{t} v_{t}\right\|_{\infty} \leqslant \sqrt{2 T \log (2 n)}$

Example II: Spencer's hyperbolic cosine algorithm

- Player given vectors $v_{1}, \ldots, v_{\mathrm{T}} \in[-1,1]^{n}$ one at a time
- Find $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $\left\|x_{1} v_{1}+\cdots+x_{t} v_{t}\right\|_{\infty}$ small for all $t \in[T]$
- Move to the position $p_{t}:=p_{\mathrm{t}-1}+x_{\mathrm{t}} v_{\mathrm{t}}$ that minimizes the potential

$$
\sum_{i=1}^{n}\left(e^{\alpha p_{t}(i)}+e^{-\alpha p_{t}(i)}\right)
$$

- $\alpha:=\sqrt{\frac{2 \log (2 n)}{T}}$ ensures $\left\|x_{1} v_{1}+\cdots+x_{t} v_{t}\right\|_{\infty} \leqslant \sqrt{2 T \log (2 n)}$
- Matching lower bound $\Omega(\sqrt{n \log (2 n)})$ for $T=n$

Oblivious adversary

- Suppose adversary picks unit vectors $v_{1}, \ldots, v_{\mathrm{T}}$ in advance

Oblivious adversary

- Suppose adversary picks unit vectors $v_{1}, \ldots, v_{\mathrm{T}}$ in advance
- Player still receives one at a time and must pick signs online

Oblivious adversary

- Suppose adversary picks unit vectors $v_{1}, \ldots, v_{\mathrm{T}}$ in advance
- Player still receives one at a time and must pick signs online
- If player deterministic, same as adaptive

Oblivious adversary

- Suppose adversary picks unit vectors $v_{1}, \ldots, v_{\mathrm{T}}$ in advance
- Player still receives one at a time and must pick signs online
- If player deterministic, same as adaptive
- What if player can use randomization?

Special case: edge orientation [Kalai '01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$

Special case: edge orientation [Kalai '01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$
- For each coordinate $i \in[n]$, draw an infinite random $s_{i} \in\{0,1\}^{\mathbb{N}}$

Special case: edge orientation [Kalai '01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$
- For each coordinate $i \in[n]$, draw an infinite random $s_{i} \in\{0,1\}^{\mathbb{N}}$
- Upon receiving an edge $\{i, j\}$:

Special case: edge orientation [Kalai '01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$
- For each coordinate $i \in[n]$, draw an infinite random $s_{i} \in\{0,1\}^{\mathbb{N}}$
- Upon receiving an edge $\{i, j\}$:

Let $k:=$ first position where $s_{i}(k) \neq s_{\mathfrak{j}}(k)$, i.e. $\left\{s_{i}(k), s_{j}(k)\right\}=\{0,1\}$

Special case: edge orientation [Kalai '01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$
- For each coordinate $i \in[n]$, draw an infinite random $s_{i} \in\{0,1\}^{\mathbb{N}}$
- Upon receiving an edge $\{i, j\}$:

Let $k:=$ first position where $s_{i}(k) \neq s_{j}(k)$, i.e. $\left\{s_{i}(k), s_{j}(k)\right\}=\{0,1\}$
Orient edge from 0 to 1

Special case: edge orientation [Kalai ’01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$
- For each coordinate $i \in[n]$, draw an infinite random $s_{i} \in\{0,1\}^{\mathbb{N}}$
- Upon receiving an edge $\{i, j\}$:

Let $k:=$ first position where $s_{i}(k) \neq s_{\mathfrak{j}}(k)$, i.e. $\left\{s_{i}(k), s_{\mathfrak{j}}(k)\right\}=\{0,1\}$
Orient edge from 0 to 1
Swap values of $s_{i}(k)$ and $s_{j}(k)$.

Special case: edge orientation [Kalai '01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$
- For each coordinate $i \in[n]$, draw an infinite random $s_{i} \in\{0,1\}^{\mathbb{N}}$
- Upon receiving an edge $\{i, j\}$:

Let $k:=$ first position where $s_{i}(k) \neq s_{\mathfrak{j}}(k)$, i.e. $\left\{s_{i}(k), s_{j}(k)\right\}=\{0,1\}$
Orient edge from 0 to 1
Swap values of $s_{i}(k)$ and $s_{j}(k)$.

Theorem [Kalai '01]

The above algorithm achieves $\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\log \mathrm{T})$ after T rounds.

Special case: edge orientation [Kalai '01]

- Suppose edge vectors of the form $(0,0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0)$
- For each coordinate $i \in[n]$, draw an infinite random $s_{i} \in\{0,1\}^{\mathbb{N}}$
- Upon receiving an edge $\{i, j\}$:

Let $k:=$ first position where $s_{i}(k) \neq s_{\mathfrak{j}}(k)$, i.e. $\left\{s_{i}(k), s_{j}(k)\right\}=\{0,1\}$
Orient edge from 0 to 1
Swap values of $s_{i}(k)$ and $s_{\mathfrak{j}}(k)$.

Theorem [Kalai '01]

The above algorithm achieves $\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\log \mathrm{T})$ after T rounds.

- Imbalance at a vertex upper bounded by the longest prefix ever used

Self-balancing random walk [ALS '20]

- Consider now $\left\|\nu_{\mathrm{t}}\right\|_{2} \leqslant 1$ and let $\mathrm{p}_{\mathrm{t}}:=$ position when ν_{t} arrives

Self-balancing random walk [ALS '20]

- Consider now $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$ and let $\mathrm{p}_{\mathrm{t}}:=$ position when v_{t} arrives
- Set $x_{\mathrm{t}}:=1$ with probability $\frac{1}{2}-\frac{\left\langle p_{t}, v_{\mathrm{t}}\right\rangle}{\mathrm{c}}$, else $\mathrm{x}_{\mathrm{t}}:=-1 ; \mathrm{c}=\mathrm{O}(\log (n T))$

Self-balancing random walk [ALS '20]

- Consider now $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$ and let $p_{\mathrm{t}}:=$ position when ν_{t} arrives
- Set $x_{\mathrm{t}}:=1$ with probability $\frac{1}{2}-\frac{\left\langle p_{t}, v_{\mathrm{t}}\right\rangle}{\mathrm{c}}$, else $\mathrm{x}_{\mathrm{t}}:=-1 ; \mathrm{c}=\mathrm{O}(\log (\mathrm{n} T))$

Theorem [ALS '20]

All prefix sums $p_{t}=\sum_{i=1}^{t} x_{i} v_{i}$ are $O(\sqrt{c})$-subgaussian.

Self-balancing random walk [ALS '20]

- Consider now $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$ and let $p_{\mathrm{t}}:=$ position when ν_{t} arrives
- Set $x_{\mathrm{t}}:=1$ with probability $\frac{1}{2}-\frac{\left\langle p_{t}, v_{\mathrm{t}}\right\rangle}{\mathrm{c}}$, else $\mathrm{x}_{\mathrm{t}}:=-1 ; \mathrm{c}=\mathrm{O}(\log (\mathrm{n} T))$

Theorem [ALS '20]

All prefix sums $p_{t}=\sum_{i=1}^{t} x_{i} v_{i}$ are $O(\sqrt{c})$-subgaussian.

- X is C-subgaussian:

$$
\Longleftrightarrow \mathbb{E}\left[\exp \left(\langle X, u\rangle^{2} / C^{2}\right)\right] \leqslant 2 \text { for all } u \in S^{n-1}
$$

Self-balancing random walk [ALS '20]

- Consider now $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$ and let $p_{\mathrm{t}}:=$ position when v_{t} arrives
- Set $x_{\mathrm{t}}:=1$ with probability $\frac{1}{2}-\frac{\left\langle p_{t}, v_{\mathrm{t}}\right\rangle}{\mathrm{c}}$, else $\mathrm{x}_{\mathrm{t}}:=-1 ; \mathrm{c}=\mathrm{O}(\log (\mathrm{n} T))$

Theorem [ALS '20]

All prefix sums $p_{t}=\sum_{i=1}^{t} x_{i} v_{i}$ are $O(\sqrt{c})$-subgaussian.

- X is C-subgaussian:

$$
\begin{aligned}
& \Longleftrightarrow \mathbb{E}\left[\exp \left(\langle X, u\rangle^{2} / C^{2}\right)\right] \leqslant 2 \text { for all } u \in S^{n-1} \\
& \Longleftrightarrow \operatorname{Pr}[|\langle X, u\rangle| \geqslant \lambda] \leqslant 2 e^{-\lambda^{2} / C^{2}} \text { for all } u \in S^{n-1}, \lambda \geqslant 0
\end{aligned}
$$

Self-balancing random walk [ALS '20]

- Consider now $\left\|\nu_{\mathrm{t}}\right\|_{2} \leqslant 1$ and let $p_{\mathrm{t}}:=$ position when v_{t} arrives
- Set $x_{\mathrm{t}}:=1$ with probability $\frac{1}{2}-\frac{\left\langle p_{t}, v_{\mathrm{t}}\right\rangle}{\mathrm{c}}$, else $\mathrm{x}_{\mathrm{t}}:=-1 ; \mathrm{c}=\mathrm{O}(\log (\mathrm{n} T))$

Theorem [ALS '20]

All prefix sums $p_{t}=\sum_{i=1}^{t} x_{i} v_{i}$ are $O(\sqrt{c})$-subgaussian.

- X is C -subgaussian:

$$
\begin{aligned}
& \Longleftrightarrow \mathbb{E}\left[\exp \left(\langle X, u\rangle^{2} / C^{2}\right)\right] \leqslant 2 \text { for all } u \in S^{n-1} \\
& \Longleftrightarrow \operatorname{Pr}[|\langle X, u\rangle| \geqslant \lambda] \leqslant 2 e^{-\lambda^{2} / C^{2}} \text { for all } u \in S^{n-1}, \lambda \geqslant 0
\end{aligned}
$$

Corollary [ALS '20]
All prefix sums $\left\|\sum_{i=1}^{t} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\log (n T))$ with high probability.

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathrm{N}\left(0, \sigma^{2}\right)$

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathrm{N}\left(0, \sigma^{2}\right)$
- $M_{\sigma}(x) \sim\{0, \pm 1\}$ and $g+M_{\sigma}(g) \sim g$ for $g \sim N\left(0, \sigma^{2}\right)$

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathrm{N}\left(0, \sigma^{2}\right)$
- $M_{\sigma}(x) \sim\{0, \pm 1\}$ and $g+M_{\sigma}(g) \sim g$ for $g \sim N\left(0, \sigma^{2}\right)$
- At the start of the algorithm, sample $p_{0} \sim N\left(0, \sigma^{2} I_{n}\right)$

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $\mathrm{N}\left(0, \sigma^{2}\right)$
- $M_{\sigma}(x) \sim\{0, \pm 1\}$ and $g+M_{\sigma}(g) \sim g$ for $g \sim N\left(0, \sigma^{2}\right)$
- At the start of the algorithm, sample $p_{0} \sim N\left(0, \sigma^{2} I_{n}\right)$
- Upon receiving vector $v_{\mathrm{t}}:$ set $\mathrm{p}_{\mathrm{t}}:=\mathrm{p}_{\mathrm{t}-1}+\mathrm{M}_{\sigma}\left(\left\langle\mathrm{p}_{\mathrm{t}-1}, v_{\mathrm{t}}\right\rangle\right) \cdot v_{\mathrm{t}}$

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $N\left(0, \sigma^{2}\right)$
- $M_{\sigma}(x) \sim\{0, \pm 1\}$ and $g+M_{\sigma}(g) \sim g$ for $g \sim N\left(0, \sigma^{2}\right)$
- At the start of the algorithm, sample $p_{0} \sim N\left(0, \sigma^{2} I_{n}\right)$
- Upon receiving vector $v_{\mathrm{t}}:$ set $\mathrm{p}_{\mathrm{t}}:=\mathrm{p}_{\mathrm{t}-1}+M_{\sigma}\left(\left\langle\mathrm{p}_{\mathrm{t}-1}, v_{\mathrm{t}}\right\rangle\right) \cdot v_{\mathrm{t}}$
- Invariant: $p_{t} \sim N\left(0, \sigma^{2} I_{n}\right)$ at all times

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $N\left(0, \sigma^{2}\right)$
- $M_{\sigma}(x) \sim\{0, \pm 1\}$ and $g+M_{\sigma}(g) \sim g$ for $g \sim N\left(0, \sigma^{2}\right)$
- At the start of the algorithm, sample $p_{0} \sim N\left(0, \sigma^{2} I_{n}\right)$
- Upon receiving vector v_{t} : set $\mathrm{p}_{\mathrm{t}}:=\mathrm{p}_{\mathrm{t}-1}+\mathrm{M}_{\sigma}\left(\left\langle\mathrm{p}_{\mathrm{t}-1}, v_{\mathrm{t}}\right\rangle\right) \cdot v_{\mathrm{t}}$
- Invariant: $p_{\mathrm{t}} \sim \mathrm{N}\left(0, \sigma^{2} \mathrm{I}_{\mathrm{n}}\right)$ at all times
- Output $p_{T}-p_{0}$.

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $N\left(0, \sigma^{2}\right)$
- $M_{\sigma}(x) \sim\{0, \pm 1\}$ and $g+M_{\sigma}(g) \sim g$ for $g \sim N\left(0, \sigma^{2}\right)$
- At the start of the algorithm, sample $p_{0} \sim N\left(0, \sigma^{2} I_{n}\right)$
- Upon receiving vector $v_{\mathrm{t}}:$ set $\mathrm{p}_{\mathrm{t}}:=\mathrm{p}_{\mathrm{t}-1}+M_{\sigma}\left(\left\langle\mathrm{p}_{\mathrm{t}-1}, v_{\mathrm{t}}\right\rangle\right) \cdot v_{\mathrm{t}}$
- Invariant: $p_{t} \sim N\left(0, \sigma^{2} I_{n}\right)$ at all times
- Output $\mathrm{p}_{\mathrm{T}}-\mathrm{p}_{0}$.

Theorem [LSS '21]

For $\sigma:=\sqrt{\log \mathrm{T}}$, all prefix sums are 2σ-subgaussian and all steps are ± 1.

Gaussian fixed point random walk [LSS '21]

- Fix a parameter $\sigma \geqslant 1$
- Construct Markov chain on \mathbb{R} with $0, \pm 1$ steps and stationary $N\left(0, \sigma^{2}\right)$
- $M_{\sigma}(x) \sim\{0, \pm 1\}$ and $g+M_{\sigma}(g) \sim g$ for $g \sim N\left(0, \sigma^{2}\right)$
- At the start of the algorithm, sample $p_{0} \sim N\left(0, \sigma^{2} I_{n}\right)$
- Upon receiving vector $v_{\mathrm{t}}:$ set $\mathrm{p}_{\mathrm{t}}:=\mathrm{p}_{\mathrm{t}-1}+\mathrm{M}_{\sigma}\left(\left\langle\mathrm{p}_{\mathrm{t}-1}, v_{\mathrm{t}}\right\rangle\right) \cdot v_{\mathrm{t}}$
- Invariant: $p_{t} \sim N\left(0, \sigma^{2} I_{n}\right)$ at all times
- Output $\mathrm{p}_{\mathrm{T}}-\mathrm{p}_{0}$.

Theorem [LSS '21]

For $\sigma:=\sqrt{\log \mathrm{T}}$, all prefix sums are 2σ-subgaussian and all steps are ± 1.
Technical: construct M_{σ} so that $\operatorname{Pr}\left[M_{\sigma}(x)=0\right] \leqslant e^{-\sigma^{2}}$ for all $x \in \mathbb{R}$.

Our contribution

Theorem [Kulkarni, R., Rothvoss '23]

For $\left\|v_{t}\right\|_{2} \leqslant 1$, there is an online algorithm against an oblivious adversary which keeps all prefix sums 10-subgaussian. In particular,

$$
\left\|\sum_{i=1}^{t} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt{\log \mathrm{~T}}) \text { for all } \mathrm{t} \in[\mathrm{~T}] \text { with high probability. }
$$

Our contribution

Theorem [Kulkarni, R., Rothvoss '23]

For $\left\|v_{t}\right\|_{2} \leqslant 1$, there is an online algorithm against an oblivious adversary which keeps all prefix sums 10-subgaussian. In particular,

$$
\left\|\sum_{i=1}^{t} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt{\log \mathrm{~T}}) \text { for all } \mathrm{t} \in[\mathrm{~T}] \text { with high probability. }
$$

Theorem [Kulkarni, R., Rothvoss '23]

For any $\mathrm{n} \geqslant 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ so that for any online algorithm, with probability at least $1-2^{-\mathrm{poly}(\mathrm{T})}$,

$$
\max _{\mathrm{t} \in[\mathrm{~T}]}\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{\infty} \gtrsim \sqrt{\log \mathrm{T}}
$$

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss '23]

For any $\mathrm{n} \geqslant 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ so that for any online algorithm, with probability at least $1-2^{-\mathrm{poly}(\mathrm{T})}$,

$$
\max _{t \in[T]}\left\|\sum_{i=1}^{t} x_{i} v_{i}\right\|_{\infty} \gtrsim \sqrt{\log T}
$$

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss '23]

For any $\mathrm{n} \geqslant 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ so that for any online algorithm, with probability at least $1-2^{-\mathrm{poly}(\mathrm{T})}$,

$$
\max _{\mathrm{t} \in[\mathrm{~T}]}\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{\infty} \gtrsim \sqrt{\log \mathrm{T}}
$$

- Proof sketch: split time horizon into blocks of size $\mathrm{k}:=\Theta(\log \mathrm{T})$

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss '23]

For any $\mathrm{n} \geqslant 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ so that for any online algorithm, with probability at least $1-2^{-\mathrm{poly}(\mathrm{T})}$,

$$
\max _{t \in[T]}\left\|\sum_{i=1}^{t} x_{i} v_{i}\right\|_{\infty} \gtrsim \sqrt{\log T}
$$

- Proof sketch: split time horizon into blocks of size $k:=\Theta(\log T)$
- Within each block, guess all k signs chosen by the player

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss '23]

For any $\mathrm{n} \geqslant 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ so that for any online algorithm, with probability at least $1-2^{-\mathrm{poly}(\mathrm{T})}$,

$$
\max _{\mathrm{t} \in[\mathrm{~T}]}\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{\infty} \gtrsim \sqrt{\log \mathrm{T}}
$$

- Proof sketch: split time horizon into blocks of size $k:=\Theta(\log T)$
- Within each block, guess all k signs chosen by the player
- Simulate the strategy of adaptive adversary to get $\Omega(\sqrt{k})$ w.p. 2^{-k}

Lower bound for an oblivious adversary

Theorem [Kulkarni, R., Rothvoss '23]

For any $\mathrm{n} \geqslant 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_{1}, \ldots, v_{T} \in \mathbb{R}^{n}$ so that for any online algorithm, with probability at least $1-2^{-\mathrm{poly}(\mathrm{T})}$,

$$
\max _{\mathrm{t} \in[\mathrm{~T}]}\left\|\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{i}\right\|_{\infty} \gtrsim \sqrt{\log \mathrm{T}}
$$

- Proof sketch: split time horizon into blocks of size $k:=\Theta(\log T)$
- Within each block, guess all k signs chosen by the player
- Simulate the strategy of adaptive adversary to get $\Omega(\sqrt{k})$ w.p. 2^{-k}
- One of the blocks will succeed with probability $1-\left(1-2^{-k}\right)^{T / k}$.

ε-nets

- $\mathrm{P} \subseteq \mathbb{R}^{n}$ so that, for all $\|v\|_{2} \leqslant 1$, there is $p \in \mathrm{P}$ with $\|p-v\|_{2} \leqslant \varepsilon$.

ε-nets

- $\mathrm{P} \subseteq \mathbb{R}^{n}$ so that, for all $\|v\|_{2} \leqslant 1$, there is $p \in \mathrm{P}$ with $\|p-v\|_{2} \leqslant \varepsilon$.
- There exists an ε-net with $|\mathrm{P}| \leqslant(3 / \varepsilon)^{n}$.

Overview of the algorithm

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ be a rooted tree with vectors $\left\|v_{e}\right\|_{2} \leqslant 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1,1\}^{\mathrm{E}}$ so that for $x \sim \mathcal{D}$,

$$
\sum_{e \in P_{i}} x_{e} v_{e} \text { is } 10 \text {-subgaussian for every } i \in V \text {. }
$$

Banaszczyk prefix balancing

Theorem [Banaszczyk '12]

For any $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$ and any convex body $\mathrm{K} \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant 1-\frac{1}{2 T}$, there are signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that

$$
\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{\mathrm{i}} \in 5 \mathrm{~K} \quad \forall \mathrm{t}=1, \ldots, \mathrm{~T} .
$$

Banaszczyk prefix balancing

Theorem [Banaszczyk '12]

For any $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$ and any convex body $\mathrm{K} \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant 1-\frac{1}{2 T}$, there are signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that

$$
\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{\mathrm{i}} \in 5 \mathrm{~K} \quad \forall \mathrm{t}=1, \ldots, \mathrm{~T} .
$$

Theorem [Banaszczyk '98]

For any convex body $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant \frac{1}{2}$ and $u \in \mathbb{R}^{n}$ with $\|u\|_{2} \leqslant \frac{1}{5}$, there is a convex body $(K * u) \subseteq(K+u) \cup(K-u)$ with $\gamma_{n}(K * u) \geqslant \gamma_{n}(K)$.

Banaszczyk prefix balancing

Theorem [Banaszczyk '12]

For any $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$ and any convex body $\mathrm{K} \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant 1-\frac{1}{2 \mathrm{~T}}$, there are signs $\mathrm{x}_{1}, \ldots, x_{\mathrm{T}} \in\{ \pm 1\}$ so that

$$
\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{\mathrm{i}} \in 5 \mathrm{~K} \quad \forall \mathrm{t}=1, \ldots, \mathrm{~T} .
$$

Theorem [Banaszczyk '98]

For any convex body $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant \frac{1}{2}$ and $u \in \mathbb{R}^{n}$ with $\|u\|_{2} \leqslant \frac{1}{5}$, there is a convex body $(K * u) \subseteq(K+u) \cup(K-u)$ with $\gamma_{n}(K * u) \geqslant \gamma_{n}(K)$.

- Define $\mathrm{K}_{\mathrm{T}}:=\mathrm{K}$ and $\mathrm{K}_{\mathrm{t}-1}:=\left(\mathrm{K}_{\mathrm{t}} * v_{\mathrm{t}}\right) \cap \mathrm{K}$.

Banaszczyk prefix balancing

Theorem [Banaszczyk '12]

For any $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$ and any convex body $\mathrm{K} \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant 1-\frac{1}{2 \mathrm{~T}}$, there are signs $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}} \in\{ \pm 1\}$ so that

$$
\sum_{i=1}^{\mathrm{t}} \mathrm{x}_{\mathrm{i}} v_{\mathrm{i}} \in 5 \mathrm{~K} \quad \forall \mathrm{t}=1, \ldots, \mathrm{~T} .
$$

Theorem [Banaszczyk '98]

For any convex body $K \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant \frac{1}{2}$ and $u \in \mathbb{R}^{n}$ with $\|u\|_{2} \leqslant \frac{1}{5}$, there is a convex body $(\mathrm{K} * u) \subseteq(\mathrm{K}+\mathfrak{u}) \cup(\mathrm{K}-\mathrm{u})$ with $\gamma_{\mathrm{n}}(\mathrm{K} * u) \geqslant \gamma_{n}(\mathrm{~K})$.

- Define $\mathrm{K}_{\mathrm{T}}:=\mathrm{K}$ and $\mathrm{K}_{\mathrm{t}-1}:=\left(\mathrm{K}_{\mathrm{t}} * \nu_{\mathrm{t}}\right) \cap \mathrm{K}$.
- Show by induction $\gamma\left(\mathrm{K}_{\mathrm{t}}\right) \geqslant 1-\frac{\mathrm{T}-\mathrm{t}+1}{2 \mathrm{~T}}$, then iteratively find $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$

Banaszczyk prefix balancing for trees

Theorem [Banaszczyk '12]

For any $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$ and any convex body $\mathrm{K} \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant 1-\frac{1}{2 T}$, there are signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that

$$
\sum_{i=1}^{\mathrm{t}} x_{i} v_{i} \in 5 K \quad \forall \mathrm{t}=1, \ldots, \mathrm{~T}
$$

Banaszczyk prefix balancing for trees

Theorem [Banaszczyk '12]

For any $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$ and any convex body $\mathrm{K} \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant 1-\frac{1}{2 T}$, there are signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that

$$
\sum_{i=1}^{\mathrm{t}} x_{i} v_{i} \in 5 K \quad \forall \mathrm{t}=1, \ldots, \mathrm{~T}
$$

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ be a rooted tree with vectors $\left\|v_{e}\right\|_{2} \leqslant 1$ on edges.
Let $K \subseteq \mathbb{R}^{n}$ be a convex body with $\gamma_{n}(K) \geqslant 1-\frac{1}{2|E|}$.
Then there are signs $x \in\{-1,1\}^{E}$ so that for every root-vertex path P_{i},

$$
\sum_{e \in \mathrm{P}_{i}} x_{e} v_{e} \in 5 K \quad \forall i \in V
$$

Banaszczyk prefix balancing for trees

Theorem [Banaszczyk '12]

For any $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{i}\right\|_{2} \leqslant 1$ and any convex body $\mathrm{K} \subseteq \mathbb{R}^{n}$ with $\gamma_{n}(K) \geqslant 1-\frac{1}{2 T}$, there are signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that

$$
\sum_{i=1}^{\mathrm{t}} x_{i} v_{i} \in 5 K \quad \forall \mathrm{t}=1, \ldots, \mathrm{~T}
$$

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ be a rooted tree with vectors $\left\|v_{\mathrm{e}}\right\|_{2} \leqslant 1$ on edges.
Let $K \subseteq \mathbb{R}^{n}$ be a convex body with $\gamma_{n}(K) \geqslant 1-\frac{1}{2|E|}$.
Then there are signs $x \in\{-1,1\}^{E}$ so that for every root-vertex path P_{i},

$$
\sum_{e \in \mathrm{P}_{i}} x_{e} v_{e} \in 5 \mathrm{~K} \quad \forall i \in \mathrm{~V}
$$

- Analogous proof with $\mathrm{K}_{\mathrm{i}}:=\left(\bigcap_{\mathrm{j} \in \text { children }_{\mathrm{i}}}\left(\mathrm{K}_{\mathrm{j}} * v_{\{\mathrm{i}, \mathrm{j}\}}\right)\right) \cap \mathrm{K}$.

Cloning: coloring \Longrightarrow distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ be a rooted tree with vectors $\left\|v_{\mathrm{e}}\right\|_{2} \leqslant 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1,1\}^{\mathrm{E}}$ so that for $x \sim \mathcal{D}$,

$$
\sum_{e \in P_{i}} x_{e} v_{e} \text { is } 10 \text {-subgaussian for every } i \in V .
$$

Cloning: coloring \Longrightarrow distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ be a rooted tree with vectors $\left\|v_{e}\right\|_{2} \leqslant 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1,1\}^{\mathrm{E}}$ so that for $x \sim \mathcal{D}$,

$$
\sum_{e \in P_{i}} x_{e} v_{e} \text { is } 10 \text {-subgaussian for every } i \in V .
$$

Cloning: coloring \Longrightarrow distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ be a rooted tree with vectors $\left\|v_{e}\right\|_{2} \leqslant 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1,1\}^{\mathrm{E}}$ so that for $x \sim \mathcal{D}$,

$$
\sum_{e \in P_{i}} x_{e} v_{e} \text { is } 10 \text {-subgaussian for every } i \in V .
$$

- Idea: clone each edge N times, find a coloring, sample random clone

Cloning: coloring \Longrightarrow distribution

Theorem [Kulkarni, R., Rothvoss '23]

Let $\mathcal{T}=(\mathrm{V}, \mathrm{E})$ be a rooted tree with vectors $\left\|v_{\mathrm{e}}\right\|_{2} \leqslant 1$ on edges. Then there is a distribution \mathcal{D} over $\{-1,1\}^{\mathrm{E}}$ so that for $x \sim \mathcal{D}$,

$$
\sum_{e \in P_{i}} x_{e} v_{e} \text { is } 10 \text {-subgaussian for every } i \in V .
$$

- Idea: clone each edge N times, find a coloring, sample random clone
- Define a convex body K and show $\gamma_{\mathrm{Nn}}(\mathrm{K}) \geqslant 1-\frac{1}{\mathrm{~N}^{1+\delta}} \geqslant 1-\frac{1}{2 \mathrm{~N}|\mathrm{E}|}$

Body of subgaussian distributions

- Take any C > 2 and define

$$
K:=\left\{\left(y^{(1)}, \ldots, y^{(N)}\right) \in \mathbb{R}^{N n} \mid Y \sim\left\{y^{(1)}, \ldots, y^{(N)}\right\} \text { is C-subgaussian }\right\} .
$$

Body of subgaussian distributions

- Take any C > 2 and define

$$
K:=\left\{\left(y^{(1)}, \ldots, y^{(N)}\right) \in \mathbb{R}^{N n} \mid Y \sim\left\{y^{(1)}, \ldots, y^{(N)}\right\} \text { is C-subgaussian }\right\} .
$$

- Need to show $\gamma_{\mathrm{Nn}}(\mathrm{K}) \geqslant 1-1 / \mathrm{N}^{1+\delta}$

Body of subgaussian distributions

- Take any C >2 and define

$$
K:=\left\{\left(y^{(1)}, \ldots, y^{(N)}\right) \in \mathbb{R}^{N n} \mid Y \sim\left\{y^{(1)}, \ldots, y^{(N)}\right\} \text { is C-subgaussian }\right\} .
$$

- Need to show $\gamma_{\mathrm{Nn}}(\mathrm{K}) \geqslant 1-1 / \mathrm{N}^{1+\delta}$
- By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$
\mathrm{K}_{w}:=\left\{\left(\mathrm{y}^{(1)}, \ldots, \mathrm{y}^{(\mathrm{N})}\right) \in \mathbb{R}^{\mathrm{Nn}} \left\lvert\, \underset{\sim \sim[\mathrm{N}]}{\mathbb{E}}\left[\exp \left(\frac{1}{\mathrm{C}^{2}}\left\langle w, \mathrm{y}^{(\ell)}\right\rangle^{2}\right)\right] \leqslant 2\right.\right\}
$$

Body of subgaussian distributions

- Take any C > 2 and define

$$
K:=\left\{\left(y^{(1)}, \ldots, y^{(N)}\right) \in \mathbb{R}^{N n} \mid Y \sim\left\{y^{(1)}, \ldots, y^{(N)}\right\} \text { is C-subgaussian }\right\} .
$$

- Need to show $\gamma_{\mathrm{Nn}}(\mathrm{K}) \geqslant 1-1 / \mathrm{N}^{1+\delta}$
- By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$
\mathrm{K}_{w}:=\left\{\left(\mathrm{y}^{(1)}, \ldots, \mathrm{y}^{(\mathrm{N})}\right) \in \mathbb{R}^{\mathrm{Nn}} \left\lvert\, \underset{\vee \sim[\mathrm{N}]}{\mathbb{E}}\left[\exp \left(\frac{1}{\mathrm{C}^{2}}\left\langle w, \mathrm{y}^{(\ell)}\right\rangle^{2}\right)\right] \leqslant 2\right.\right\}
$$

- Concentration inequality: heavy-tailed random variables $\exp \left(\frac{1}{\mathrm{C}^{2}} g_{\ell}^{2}\right)$

Body of subgaussian distributions

- Take any C > 2 and define

$$
K:=\left\{\left(y^{(1)}, \ldots, y^{(N)}\right) \in \mathbb{R}^{\mathrm{Nn}} \mid \mathrm{Y} \sim\left\{y^{(1)}, \ldots, y^{(N)}\right\} \text { is C-subgaussian }\right\} .
$$

- Need to show $\gamma_{\mathrm{Nn}}(\mathrm{K}) \geqslant 1-1 / \mathrm{N}^{1+\delta}$
- By a net argument, suffices to consider a single unit vector $w \in S^{n-1}$:

$$
\mathrm{K}_{w}:=\left\{\left(\mathrm{y}^{(1)}, \ldots, \mathrm{y}^{(\mathrm{N})}\right) \in \mathbb{R}^{\mathrm{Nn}} \left\lvert\, \underset{\sim \sim[\mathrm{N}]}{\mathbb{E}}\left[\exp \left(\frac{1}{\mathrm{C}^{2}}\left\langle w, \mathrm{y}^{(\ell)}\right\rangle^{2}\right)\right] \leqslant 2\right.\right\}
$$

- Concentration inequality: heavy-tailed random variables $\exp \left(\frac{1}{\mathrm{C}^{2}} g_{\ell}^{2}\right)$
- $X_{\ell}:=\exp \left(\frac{1}{\mathrm{C}^{2}} g_{\ell}^{2}\right)$ satisfy $\mathbb{E}\left[X_{\ell}^{p}\right]<\infty$ for $p<C^{2} / 2($ want $p>2)$

Concentration for heavy-tailed random variables

Lemma
Let $p \geqslant 2$ and X_{1}, \ldots, X_{N} be centered, indep. r.v.'s with $\mathbb{E}\left[\left|X_{i}\right|^{p}\right]=O_{p}(1)$. Then

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] \leqslant \frac{O_{p}(1)}{N^{p / 2}}
$$

Concentration for heavy-tailed random variables

Lemma
Let $p \geqslant 2$ and X_{1}, \ldots, X_{N} be centered, indep. r.v.'s with $\mathbb{E}\left[\left|X_{i}\right|^{p}\right]=O_{p}(1)$. Then

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] \leqslant \frac{O_{p}(1)}{N^{p / 2}}
$$

- Proof for $p=2$:

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] \leqslant \operatorname{Pr}\left[\left(X_{1}+\cdots+X_{N}\right)^{2}>N^{2}\right]
$$

Concentration for heavy-tailed random variables

Lemma
Let $p \geqslant 2$ and X_{1}, \ldots, X_{N} be centered, indep. r.v.'s with $\mathbb{E}\left[\left|X_{i}\right|^{p}\right]=O_{p}(1)$. Then

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] \leqslant \frac{O_{p}(1)}{N^{p / 2}}
$$

- Proof for $p=2$:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] & \leqslant \operatorname{Pr}\left[\left(X_{1}+\cdots+X_{N}\right)^{2}>N^{2}\right] \\
& \leqslant \mathbb{E}\left[\left(X_{1}+\cdots+X_{N}\right)^{2}\right] / N^{2}
\end{aligned}
$$

Concentration for heavy-tailed random variables

Lemma
Let $p \geqslant 2$ and X_{1}, \ldots, X_{N} be centered, indep. r.v.'s with $\mathbb{E}\left[\left|X_{i}\right| p\right]=O_{p}(1)$. Then

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] \leqslant \frac{O_{p}(1)}{N^{p / 2}}
$$

- Proof for $\mathrm{p}=2$:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] & \leqslant \operatorname{Pr}\left[\left(X_{1}+\cdots+X_{N}\right)^{2}>N^{2}\right] \\
& \leqslant \mathbb{E}\left[\left(X_{1}+\cdots+X_{N}\right)^{2}\right] / N^{2} \\
& =\frac{\sum_{i=1}^{N} \overbrace{\mathbb{E}\left[X_{i}^{2}\right]}^{O(1)}+\sum_{i \neq j} \overbrace{\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]}^{=0}}{N^{2}}=O(1 / N) .
\end{aligned}
$$

Concentration for heavy-tailed random variables

Lemma
Let $p \geqslant 2$ and X_{1}, \ldots, X_{N} be centered, indep. r.v.'s with $\mathbb{E}\left[\left|X_{i}\right|^{p}\right]=O_{p}(1)$. Then

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] \leqslant \frac{O_{p}(1)}{N^{p / 2}} .
$$

- In general, follows by Markov + Rosenthal's inequality:

Concentration for heavy-tailed random variables

Lemma

Let $p \geqslant 2$ and X_{1}, \ldots, X_{N} be centered, indep. r.v.'s with $\mathbb{E}\left[\left|X_{i}\right|^{p}\right]=O_{p}(1)$. Then

$$
\operatorname{Pr}\left[X_{1}+\cdots+X_{N}>N\right] \leqslant \frac{O_{p}(1)}{N^{p / 2}} .
$$

- In general, follows by Markov + Rosenthal's inequality:

Rosenthal '70

Let $p \geqslant 2$ and X_{1}, \ldots, X_{N} centered, indep. r.v.'s with $\mathbb{E}\left[\left|X_{\ell}\right| p\right]<\infty$. Then

$$
\mathbb{E}\left[\left|X_{1}+\cdots+X_{N}\right|^{p}\right]^{1 / p} \leqslant 2^{p} \cdot \max \left\{\left(\sum_{i=1}^{N} \mathbb{E}\left[\left|X_{i}\right|^{p}\right]\right)^{1 / p},\left(\sum_{i=1}^{N} \mathbb{E}\left[X_{i}^{2}\right]\right)^{1 / 2}\right\} .
$$

Online algorithm

- Given T, build depth T tree where children are labeled with ε-net

Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10 -subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$

Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10 -subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)

Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10 -subgaussian distribution \mathcal{D} on its edges and sample $\chi \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there

Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10-subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited

Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10 -subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited
- If T unknown: compactness yields sequence of distributions $\mathcal{D}_{\mathrm{t}}^{*}$:

$$
\mathcal{D}_{\mathfrak{t}}^{*}=\Pi_{\{ \pm 1\}\}_{\mathrm{t}}}\left(\mathcal{D}_{\mathrm{t}+1}^{*}\right) .
$$

Online algorithm

- Given T, build depth T tree where children are labeled with ε-net
- Find a 10 -subgaussian distribution \mathcal{D} on its edges and sample $x \sim \mathcal{D}$
- Keep track of position in the tree (starting at root)
- When receiving a vector, find closest child and move there
- Output sign corresponding to edges visited
- If T unknown: compactness yields sequence of distributions $\mathcal{D}_{\mathrm{t}}^{*}$:

$$
\mathcal{D}_{\mathfrak{t}}^{*}=\Pi_{\{ \pm 1\}^{E_{t}}}\left(\mathcal{D}_{\mathfrak{t}+1}^{*}\right) .
$$

- Subgaussian norm is $4.999 \cdot(2+\delta)<10$.

Open problems

Polynomial time algorithm
Given oblivious $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $\mathrm{O}(1)$-subgaussian?

Open problems

Polynomial time algorithm

Given oblivious $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $\mathrm{O}(1)$-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$, can we find online signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{T} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt[3]{\log \mathrm{T}})$ w.h.p.?

Open problems

Polynomial time algorithm

Given oblivious $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $O(1)$-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$, can we find online signs $x_{1}, \ldots, x_{T} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{T} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt[3]{\log T})$ w.h.p.?

- Main theorem: $\mathrm{O}(\sqrt{\log \mathrm{T}})$, also $\Omega(\sqrt[3]{\log \min (n, T)})$ [AANRSW'98]

Open problems

Polynomial time algorithm

Given oblivious $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $O(1)$-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$, can we find online signs $x_{1}, \ldots, x_{\mathrm{T}} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{\mathrm{T}} \mathrm{x}_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt[3]{\log \mathrm{T}})$ w.h.p.?

- Main theorem: $\mathrm{O}(\sqrt{\log \mathrm{T}})$, also $\Omega(\sqrt[3]{\log \min (n, T)})$ [AANRSW'98]

Oblivious Spencer

Given oblivious $v_{1}, \ldots, v_{n} \in[-1,1]^{n}$, can we find online signs $x_{1}, \ldots, x_{n} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{n} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt{n})$ w.h.p.?

Open problems

Polynomial time algorithm

Given oblivious $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $O(1)$-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$, can we find online signs $x_{1}, \ldots, x_{\mathrm{T}} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{\mathrm{T}} \mathrm{x}_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt[3]{\log \mathrm{T}})$ w.h.p.?

- Main theorem: $\mathrm{O}(\sqrt{\log \mathrm{T}})$, also $\Omega(\sqrt[3]{\log \min (n, T)})$ [AANRSW'98]

Oblivious Spencer

Given oblivious $v_{1}, \ldots, v_{n} \in[-1,1]^{n}$, can we find online signs $x_{1}, \ldots, x_{n} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{n} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt{n})$ w.h.p.?

Open problems

Polynomial time algorithm

Given oblivious $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$ with $\left\|v_{\mathrm{t}}\right\|_{2} \leqslant 1$, does there exist a polynomial time online algorithm against an oblivious adversary which keeps all signed prefix sums $\mathrm{O}(1)$-subgaussian?

Oblivious edge orientation

Given oblivious edge vectors $v_{1}, \ldots, v_{\mathrm{T}} \in \mathbb{R}^{n}$, can we find online signs $x_{1}, \ldots, x_{\mathrm{T}} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{\mathrm{T}} \mathrm{x}_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt[3]{\log \mathrm{T}})$ w.h.p.?

- Main theorem: $\mathrm{O}(\sqrt{\log \mathrm{T}})$, also $\Omega(\sqrt[3]{\log \min (n, T)})$ [AANRSW'98]

Oblivious Spencer

Given oblivious $v_{1}, \ldots, v_{n} \in[-1,1]^{n}$, can we find online signs $x_{1}, \ldots, x_{n} \in\{ \pm 1\}$ so that $\left\|\sum_{i=1}^{n} x_{i} v_{i}\right\|_{\infty} \leqslant \mathrm{O}(\sqrt{n})$ w.h.p.?

Thanks for your attention!

