
Towards Sensor Autonomy in Sub-Gram Flying Insect Robots: A
Lightweight and Power-Efficient Avionics System

Yash P. Talwekar1, Andrew Adie1, Vikram Iyer2, Sawyer B. Fuller1,2

Abstract— Flying insect robots weighing less than a gram
(FIRs) have advantages over their larger counterparts due to
their low materials cost, small size, and low weight, allowing
for deployment in large numbers. Control autonomy in such
aircraft introduces challenges arising from their small size such
as high-speed dynamics, limited power and payload capacity.
Previous work has produced and characterized sensors with
compatible mass and power specifications, many of which are
biologically-inspired. And controlled flight has been demon-
strated using feedback from external motion capture cameras.
But to date, no avionics system has been reported that is
light enough and capable of providing the feedback necessary
to perform controlled hovering flight using only components
carried on-board. Here we present such a system. It consists
a sensor package consisting of an inertial measurement unit, a
laser rangefinder and an optical flow sensor, and an associated
estimator based on the nonlinear Extended Kalman Filter
(EKF). The sensor suite weighs 187 mg and consumes 21 mW.
We implemented a low-latency wireless link to transmit this
data at 1 kHz without cumbersome wires. The EKF estimates
attitude, altitude and lateral velocities. We estimate that compu-
tation power usage is <400 µW using floating-point operations
on a standard microcontroller. Our system’s RMSE attitude
and position error are less than 4◦and 1 cm relative to motion
capture estimates.

I. INTRODUCTION

Because of their small size, flying insect-sized robots
(FIRs) weighing less than a gram have the potential to out-
perform larger robots at tasks that include search and rescue
operations, gas leak detection, and environment monitoring.
Their advantages originate from a lower materials cost,
allowing greater deployment numbers. Their small size also
enables navigation in confined spaces, and around humans
without impact hazard. Despite these advantages, such robots
operating autonomously have not been realized because of
the challenges of miniaturizing their actuators, mechanical
systems, power system, and sensing and control systems.

We are concerned here with establishing the ability to
hover in air without crashing. This requires “sensor auton-
omy,” the first layer of autonomy in the hierarchy proposed
in [1] and [2]. Stable hover is required before higher-level
capabilities such as obstacle avoidance or navigation can be
executed. The combination of small scale and the flapping-
wing designs makes the governing dynamics inherently un-
stable for these small robots [3], [4]; therefore, to achieve
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Fig. 1: The proposed miniaturized sensor suite, shown to scale with the
University of Washington Robofly and a US penny. (bottom right) Diagram
of sensor suite. A gyroscope measures angular velocity, an accelerometer
senses inclination angle, a downward-facing rangefinder measures distance
to ground r, and a downward-facing optic flow camera measures the rate
of visual motion as the robot moves. An onboard radio transmits telemetry
data to a remote receiver with low latency. The bottom left image shows
the rangefinder and optic flow camera; a side view (inset) shows an IMU
on the opposite side of the flex circuit board.

a stable hovering flight, active stabilization of the attitude,
altitude and lateral motion of the robot is necessary [5]. In
nature, real insects rely heavily on optical flow perception
for multiple tasks including navigation, speed regulation and
collision avoidance [6], [7]. Various sensors of suitable mass
and power usage have been explored for insect-sized robots.
These include low-resolution cameras [8], [9], [10], [11],
angular-rate-sensing ocelli [12] and gyroscopes [13], mag-
netometers [14], rangefinders [15], and wind sensors [16].
However, they have all been explored on an individual basis
and have not been combined in such a way so that they could
be used to estimate the state of a vehicle in flight.

Previous work has proposed various mechanical designs
and control architectures for FIRs that are precise enough
that they are able to perform controlled flight maneuvers
using feedback from external motion capture cameras [17],
[18], [19], [20]. Larger drones such as quad-rotor drones
can hover stably using only on-board sensor feedback such
as from inertial measurement units (IMUs) and the global
positioning system (GPS). In many applications of interest,
however, such as indoors and in “urban canyons”, the GPS
signal is disrupted or denied entirely. We take inspiration
from a sensor suite that is successful for small drones for



GPS-denied environments that consists of a downward-facing
camera, an IMU, and a downward-oriented ultrasonic or laser
rangefinder [21], [22].

In this paper, we present, to our knowledge, the first avion-
ics system to be suitable in terms of mass and power usage
for a sub-gram FIR to perform sensor-autonomous hovering
flight (Fig. 1). Our sensor package and estimator algorithm is
able to estimate attitude, altitude, and lateral velocity of the
vehicle. Our contributions address four objectives: 1) arrive
at the most optimal state estimate given different update rates
of the different sensors, 2) minimize the computation power
consumed, 3) minimize the total weight of the sensor suite,
4) transmit this data for online estimation or offline analysis
without cumbersome wires. In the remainder of the paper
we describe the sensors, dynamics and measurement model,
compare state estimation approaches in terms of computation
power, and validate our results on data collected from our
sensor suite that was transmitted wirelessly to a desktop
computer for analysis.

II. DYNAMICS

The equations describing the dynamics of any aircraft in
flight follow the Euler-Lagrange equations of motion for a
rigid body:

mv̇ = Σf

Jω̇ = Στ − ω × Jω
(1)

where f is the force and τ is the torque acting on the robot,
m and J are the mass and moment of inertia, v is the velocity
vector, and ω is the angular velocity vector. The first equation
is typically expressed in world coordinates and the second
in body-attached coordinates.

Let θx and θy be the angular rotation (Euler Angles) of the
robot about body-fixed x and y axes. The 3D dynamics in
Eq. (1) of the robot can be decoupled into two independent
2D dynamics in the x-z and y-z planes if the robot attitude is
restricted to the neighborhood of the upright position (θx ≈
0, θy ≈ 0) and ωz, the angular velocity component in the
body z direction is small [16].

We consider motion in x-z plane; the y-z plane is only
slightly different. We define a minimal state vector that
is observable with our proposed sensor suite that provides
enough information to attain both stable hovering flight as
well as the ability to follow trajectories:

q =
[
θ vx z vz

]T
, (2)

where θ is the robot’s angular rotation w.r.t. the body-fixed
y-axis, vx is the velocity along the world x-axis, and z and
vz are the position and velocity along global z-axis.

Controlling flight entails varying wing amplitude and off-
set to produce forces and torques [17]. As in other domains
of control, we assume that the model of the actuator is
uncertain and rely on our sensors to provide robustness to
this uncertainty. Instead of feeding motor inputs into the
estimator, we use the more precise gyroscope measurement
itself as an “input.” In addition to allowing us to test the
estimator without knowing inputs, this reduces the number

of states, reducing computation requirements. Thus, in the
2-D plane in consideration, we can write the dynamics as

q̇ =
[
ω 0 vz 0

]T
, (3)

where ω is the angular velocity along the body-fixed y-axis.
As justified above, we define the control input vector as

u =
[
ωm
]
, (4)

where ωm is the angular velocity measurement from the
gyroscope. This allows us to write the dynamics in Eq. (3)
as

q̇ = fc(q,u). (5)

III. SENSOR SUITE

For the estimator design, we consider a suite of sensors
mounted on the robot consisting of a laser rangefinder, an
optical flow sensor, and an IMU that houses a gyroscope and
an accelerometer. Table I summarizes the relevant specifica-
tions of these sensors. We assume the noise in each of the
sensors to be a zero-mean additive, uncorrelated Gaussian
white noise.

component size mass data rate power
IMU 2.5×3×0.91 14 1000 3

rangefinder 4.9×2.5×1.56 16 50 6
optical flow 5×5×3.08 97 100 12

discretes – 40 – –
board+solder – 20 – –

total – 187 – 21

TABLE I: Sensor specifications. Units are mm, mg, Hz, and mW, respec-
tively.

A. Inertial Measurement Unit

We selected the ICM-20600 (TDK Invensense, USA)
as the IMU for our system because it is small
(2.5×3×0.91 mm) and light (14 mg). This single package
contains both a 3-axis gyroscope and a 3-axis accelerom-
eter. Briefly, the gyroscope operates by measuring angular
velocity by sensing Coriolis forces in an electromechanical
resonator; the accelerometer senses deflections in a proof
mass. Both support data rates of over 1 kHz over the I2C
communication protocol and have a programmable full-scale
range. They were configured for a range of ±250◦/s and
±2g respectively. The sensors are mounted close to the robot
body’s center of gravity to avoid the effects of centripetal
accelerations.

The sensor measurements for ω, and accelerations ax
about the world x-axis and world az about the z-axis can be
expressed as

ωm = ω + νg

axm = ax + νax

azm = az + νaz,

where νg, νax and νaz are the additive noise terms.



B. Rangefinder

A laser rangefinder (also known as a time-of-flight sen-
sor) emits laser pulses towards a surface and estimates the
distance to it based upon the time taken by the pulse to
reach back to the sensor after reflecting from the surface.
We used the VL53L1X (STMicroelectronics), which comes
in a small package of 4.9×2.5×1.56 mm weighing 16 mg,
and supports a data rate of up to 50 Hz over the I2C protocol.
We mounted this sensor below the robot, facing the ground,
to get a measurement of the robot altitude (in the robot’s
rotated reference frame). This measurement can be expressed
as [23]

rm =
z

cos(θ)
+ νr

where νr is an additive noise term.

C. Optical Flow

An optical flow sensor is typically a camera module which
computes the rate of relative visual motion by comparing
consecutive frames. We used the PAW3902JF-TXQT (PixArt
Imaging) which comes in a package of 5×5×3.08 mm and
weighs 97 mg. The sensor provides an accumulated pixel
count, which we then convert to rad/s with a scaling factor,
at a frame rate of 126 fps over the SPI communication
protocol. This high rate allows us to sample data at 100 Hz.
We estimated its latency to be approximately 2 ms, negligible
compared to its update rate. To do so we found the maximum
cross-correlation between its output read in from an SPI-to-
USB adaptor, and the time-derivative of the voltage from a
linear potentiometer to which it was attached (measured by
NI-6000 USB DAQ).

As with the rangefinder, we mounted this sensor at the
bottom of the sensor package facing the directly down in
the negative z-direction. In addition to translational motion,
the rotation of the robot also contributes to the optical
flow measured by the sensor, and therefore we place it
exactly below the IMU in order to accurately compensate
for the rotational effects in the measurement model. The
measurement equation for the optical flow measured along
the body x-axis can be written as

Ωm =
cos(θ)

z
(vx cos(θ) + vz sin(θ))− ω + νo

where νo is the additive noise term.

D. Fabrication

We fabricated three separate circuit boards for the sensors
using thin copper-clad flex circuit material (DuPont Pyralux
AC121200E, 12.5 µm copper, 12.5 µm polyimide) to mini-
mize the total board weight. We first coated the copper with
an ink mask and patterned the circuit traces using a UV
diode-pumped solid-state (DPSS) laser machining system.
The remaining copper was etched using ferric chloride to
produce the final circuit. Components and 43-gauge copper
wires for power, I2C and SPI connections were manually
soldered onto the circuit. Figure 1 shows the final assembly
and Table I gives the weight break-down of the assembly
and estimated power requirements taken from datasheets.

E. Data Acquisition

Our sensor suite communicates over two different proto-
cols, I2C and SPI. Adding power and ground, this requires
providing a total of 8 signals to the robot. We observe that
even thin (>50 AWG) wires cause significant disturbance on
a fly-sized flying robot. Our sensor suite instead incorporates
an onboard wireless microcontroller to transfer the sensor
data. We selected the nRF52832 (Nordic Semiconductors)
because it offers a small 3.0x3.2 mm wafer-level package
and, in addition to 2.4 Ghz Bluetooth low-energy wireless
communication, it provides a high-speed protocol known as
Enhanced ShockBurst (ESB). We wrote firmware for the
microcontroller that uses hardware timers to query each
sensor at its corresponding time intervals. As soon as the
data is fetched for any sensor, it is transmitted over ESB
to another nRF52832 chip acting as a receiver and can
communicate over UART (RS-232) to a Windows PC.

In order to evaluate the state estimates from our estimator
we used a four-camera motion capture arena (Prime13,
OptiTrack Inc., Salem, OR) operating at 240 Hz to provide
ground-truth measurements for our estimator. We attached
reflective markers to the sensor suite. We recorded incoming
sensor data and motion capture outputs simultaneously on the
PC, along with timestamps from its internal clock, using a
Python script running in Cygwin. Post-processing in Python
was done to time-align sensor measurements with motion
capture estimates.

IV. ESTIMATOR DESIGN

For designing a useful yet computationally efficient es-
timator, we start by introducing the full Extended Kalman
Filter (EKF), before exploring simplifications aimed at power
reduction.

We discretize the dynamics in Eq. (5) as

qk+1 = f(qk,uk,wk) = qk + ∆tfc(qk,uk) +Gwk, (6)

where ∆t is the time interval between subsequent estimator
updates (which varies depending on communication latency
or dropouts), k ∈ {0}∪Z+ is the time index, and wk is the
input noise vector propagated through linear dynamics G.
We denote the covariance of wk by Q = E[wkw

T
k ].

The complete measurement model including rangefinder,
optic flow camera, and accelerometer, is given by

yk = h(qk,uk,νk)

=


z

cos(θ)
cos(θ)
z (vx cos(θ) + vz sin(θ))− ω

−g sin(θ)
g cos(θ)

+ νk.
(7)

We denote the covariance of νk by R = E[νkν
T
k ]. We

further assume that the measurement and process noise are
uncorrelated, i.e, E[wkν

T
k ] = 0. We further define the



Jacobians

F k =
∂f(q,u, 0)

∂q
|(qk,uk) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Hk =

∂h(q,u, 0)

∂q
|(qk,uk)

. (8)

The simplicity of the dynamics model given by Eq. (3)
results in a time-invariant dynamics Jacobian F . We per-
formed an observability analysis at anticipated hover equi-
librium, q = [0, 0, zop, 0]T , in which the Jacobian for the
measurement model (Eq. (8)) is given by

Hk =


0 0 1 0
0 1

zop
0 0

−g 0 0 0
0 0 0 0

 .
We used the obsv command in python-control [24] to com-
pute the observability matrix. The rank of the observability
matrix is 4, which satisfies the observability criterion [25]
and indicates that all states are observable in a neighborhood
of this point.

The standard discrete-time EKF [26] (Supplement:
Optimization-based control) is a widely used state estimation
technique for nonlinear systems. At each time instant, the
estimator starts with a knowledge of the present state and
inputs and predicts the state at the next time instant based
on the system dynamics f(q̂k,uk, 0). The estimator then
computes the Kalman gain K which is multiplied to the
difference in the observed and predicted measurements to
produce a correction which is added to the earlier predicted
state to provide an updated estimate.

In practice, different sensors produce readings at different
rates, requiring an alternate formulation of the EKF. In
our estimator, an update is performed every time a new
IMU measurement arrives. The polling of the IMU, and
consequently the estimator calls, runs at about 1 kHz. Given
the different data rates of the sensors, at each update, we
keep track of which sensors in the measurement model are
available, based on which, we modify the update step of
the EKF as described in more detail below. Occasionally,
data arrives from one or two of the other sensors but not
from the IMU. We implemented a workaround in which
this data is stored and then used in combination with the
subsequent IMU reading. This imposes an occasional, small
latency penalty that is relatively insignificant compared to
the intermittency of non-IMU measurements.

To incorporate the effect of disparate sensor update rates,
we consider the general case in which there are n measure-
ments possible, but at a given instant only m are available.

A. Sequential Update

In this approach we start with a measurement noise
covariance matrix R̃ such that the standard deviations of all
the sensors is∞, or equivalently, R̃

−1
= 0. Computationally

we implement this as R̃ = ξIn×n, where ξ is a very large

finite number. Then we loop through all the sensors, and
for each j-th sensor that is available, we set R̃j,j = Rj,j ,
and proceed with the usual EKF update step of computing
the gain matrix and applying the correction. This update
procedure is repeated until all the available sensors are
accounted for, and then we consider the final update to be
the state estimate. This approach is outlined in Algorithm 1.

Algorithm 1: Sequential Update
Data: q̂k,uk,yk,F k,Hk,P k

1 q̂−k+1 ← f(q̂k,uk, 0)

2 P−
k+1 ← F kP kF

T
k +GQGT

3 for j ∈ {1, · · · , n} do
4 R̃← ξIn×n
5 if j-th sensor is available then
6 R̃j,j ← Rj,j

7 K ← P−
k+1H

T
k

(
HkP

−
k+1H

T
k + R̃

)−1

8 q̂k+1 ← q̂−k+1 +K
(
yk − h(q̂−k+1,uk, 0)

)
9 P k+1 ← (I −KHk)P−

k+1

10 end
11 end

B. Truncate Measurement Model

Let S be the set of m integers representing the in-
dices of the available sensors. In this approach, we trun-
cate the measurement model to include only the elements
for the sensors that are available, i.e, define a vector
z̃ = h(q̂−k+1,uk, 0)[j] ∈ Rm×1, j ∈ S of m rows from
h(qk,uk, 0) which correspond to the available sensors. This
vector has a noise covariance R̃ = diag{Rj,j | j ∈ S} ∈
Rm×m. We similarly truncate the Jacobian Hk to H̃k =
Hk[j , :] and the measurement vector yk to ỹk = yk[j], j ∈
S. We then proceed with the update step similar to that in the
standard discrete-time EKF with these modifications. This
approach is outlined in Algorithm 2.

Algorithm 2: Truncate Measurement Model
Data: q̂k,uk,yk,F k,Hk,P k

1 q̂−k+1 ← f(q̂k,uk, 0)

2 P−
k+1 ← F kP kF

T
k +GQGT

3 R̃← diag{Rj,j | j ∈ S}
4 H̃ ←Hk[j, :], j ∈ S
5 ỹ ← yk[j], j ∈ S
6 z̃ ← h(q̂−k+1,uk, 0)[j], j ∈ S

7 K ← P−
k+1H̃

T
(
H̃P−

k+1H̃
T

+ R̃
)−1

8 q̂k+1 ← q̂−k+1 +K (ỹ − z̃)

9 P k+1 ←
(
I −KH̃

)
P−
k+1

V. COMPUTATIONAL LOAD

Table II lists the number of cycles required for the algo-
rithms to compute the state estimate based on the number of



available sensors, and estimated energy consumption. Each
update step consists of multiple single-cycle operations such
as multiplications, additions and subtractions, and multi-
cycle operations such as divisions, and sine and cosine com-
putations. On an ARM Cortex-M4 based microcontroller like
the STM32F4 (ST Microelectronics), divisions on floating-
point numbers take 14 cycles [27], and fast-approximations
to sine and cosine take around 20 cycles [28]. While the
computation of the h and Hk involves many calls to sine
and cosine functions, in actual implementation we can reduce
these calls by calculating both values once and storing them
in variables which we can re-use wherever required. Thus,
in the calculations presented in table II, we consider only
single calls to both sine and cosine functions, amounting to
approximately 40 cycles in each estimator run.

To get an estimate of power usage of the algorithms,
we start by calculating the number of cycles required by
each algorithm based on the number of sensor measurements
available. Since the accelerometer and gyroscope are polled
simultaneously, and the estimator is called only when a
gyroscope reading is available, we are guaranteed to have
at least two available readings in the measurement vector.
We then calculate the anticipated number of calls to the
estimator in each case. Considering an ideal synchronization
of the sensors, based on the data rates for each sensor,
we can assume that all four measurements are available
roughly every 20 ms (50 occurrences per second); optical
flow is available in addition to the IMU every 10 ms thus,
after removing the former case, we have three measurements
available roughly every 20 ms (50 occurrences per second).
The remaining 900 occurrences in a second only have the
IMU readings available, which corresponds to only two
sensors being available.

0.00
0.25

θ y
 (r

ad
)

MoCap Estimate

0.00
0.25

v x
 (m

/s
)

0.1
0.2

z (
m

)

0 5 10 15 20
Time (s)

−0.2
0.0

v z
 (m

/s
)

Fig. 2: Comparison of estimator performance against motion capture data

An STM32F4 operating at 2V and 89 µA current draws
around 179 µW/MHz. Summing up the total cycles executed
per second, we can compute the energy consumption for each
algorithm. As shown in Table II, the Truncate Measurement
Model approach (Algorithm 2) requires just over one-third
of the power consumed by the Sequential Update approach
(Algorithm 1).

VI. RESULTS

For analyzing the performance of the estimator, we
mounted the sensor suite along with the microcontroller on
a hand-held platform, and collected multiple sets of the
sensors’ data and the motion capture estimates for post-
processing by manually moving the setup in the motion
capture arena. Visual texture below the robot was a printed
checkerboard pattern illuminated by LED light as well as the
illumination from the motion capture cameras’ infrared light
sources. We estimated the sensor noise matrix to be

R = diag(0.0072, 0.1252, 0.52, 0.52).

We estimated the first two quantities by calculating the
standard deviation of the error between ground-truth mo-
tion capture estimates and sensor readings for time-of-flight
rangefinder and optic flow camera, respectively. For the
camera, this was computed while translating the camera
laterally at a constant, known height. The matrices Q and
G, which specify the size of disturbance noise and where
it enters, respectively, are hard to measure. We took the
perspective that these quantities should serve as tuning knobs
to attain desirable performance. For G, we assumed that
the noise enters the system as white noise angular velocity,
which affects θ, and white noise forces, which affect the
translational velocities vx and vz , but not vertical position z.
For the first input, the gyroscope’s reading, we used a number
that is higher than the datasheet (0.004◦s−1Hz

1
2 , equivalent

to a noise standard deviation of 0.007 at 1 kHz) for better
performance.

Q = diag(0.152, 22, 22)

G = ∆t


1 0 0
0 1 0
0 0 0
0 0 1

 .

We set the initial state of the estimator to be the state
recorded by the motion capture system near that time instant,
perturbed by +0.1 units in all four states to show the
dynamics of estimator convergence. Figure 2 shows the
comparison between the state estimates from the estimator
using the Truncate Measurement Model approach against that
of the motion capture system. Sequential Update provides a
nearly identical estimate. It is evident from the comparison
that the estimator is able to correct its tracking within 0.5 s.
We further calculate the root-mean-squared error (RMSE)
for each of the estimated states, tabulated in Table III.
Since the comparison is drawn against the motion capture
system, its accuracy also influences the RMSE values. We
further observe that the estimator is able to maintain tracking
performance well beyond 20 s, thus avoiding the gradual
drift that affects estimates from dead-reckoning of IMU
sensors. These results indicate the proposed sensor suite and
the estimator design are capable of providing reliable state
feedback for on-board control.



Algorithm # Available
sensors)

Occurrences
per second

# Single-cycle
operations
per update

# Divisions
per update
(14 cycles)

# sin or cos
operations per

update (20 cycles)

Total
cycles

per update

Total
cycles

per second
(MHz)

Power
usage
(µW)

Sequential
update

2 900 1935 41 2 2549
5.394 965.383 50 2695 57 2 3533

4 50 3455 73 2 4517
Truncate

measurement
model

2 900 773 13 2 995
2.072 370.943 50 956 18 2 1248

4 50 1175 25 2 1565

TABLE II: Estimate of computational resources and power consumed by the algorithms on an STM32F4 microcontroller. For both the algorithms, we
estimated the total number of cycles in each update by adding the number of single cycle operations, the number of divisions, and one call each to sine and
cosine functions, and multiplying by the respective estimated number of cycles required. The last column shows estimated power usage per EKF (update
in both x-z and y-z planes).

State Exp 1 Exp 2 Exp 3 Exp 4
θ (rad) 0.027 0.042 0.068 0.031
vx (m/s) 0.03 0.03 0.039 0.033
z (m) 0.007 0.007 0.01 0.01
vz (m/s) 0.035 0.035 0.058 0.043

TABLE III: RMSE for the estimated states w.r.t to the motion capture
estimates in four separate experiments

VII. CONCLUSIONS

In this work we presented a framework for on-board state
estimation on sub-gram flying robots. We proposed a suite of
sensors comprising of an optical flow sensor, a rangefinder,
and a MEMS IMU. Using this sensor data we are able to
formulate a model of the system that guarantees observability
of attitude, altitude, and lateral and vertical velocities. The
sensor-suite as a whole weighs less than 200 mg. Even
with the addition of a microcontroller, it comes within the
estimated 252 mg payload capacity of the 143 mg robot
described in [18]. We also explored modifications to the
standard EKF that are capable of handling varying sensor
availability. We demonstrate satisfactory performance on data
collected from physical sensors. The estimator is able to
converge to the true state within 0.5 s, does not drift, and
was able to maintain close tracking for over 20 s.

We also estimated the computational and power resources
required by our sensing package. We estimate that sensor
power usage is approximately 21 mW (Table I). Anticipated
power usage by the microcontroller for EKF computation,
using the more efficient Truncate Measurement Update, is
negligible in comparison at 370 µW. We anticipate the
power required to fly for an enlarged Robofly capable of
carrying a 100 mg power system [29], 100 mg battery [30],
200 mg flapping mechanism, and our 200 mg sensor suite
will be approximately 1.2 W after accounting for a 50%
boost converter efficiency [31], [32]. A reasonable target for
sensor suite efficiency is 10% of flight power: flight time
is impacted as sensing power increases. Important examples
of autonomous drones, e.g. the 1.5 kg system in [33] and
the 30 g system in [34] hold to this. Our proposed avionics
package power therefore falls well within this target.

It is worth remarking that our sensor suite does not provide
estimates for x, y, or θz (the position and heading angle of
the robot). In practice this means that these three quantities
will slowly drift. For many applications, velocity control is
sufficient. One important example is source seeking. In [35]
our group showed that it is possible to use passive fins

to steer into the wind during plume source seeking. The
cast-and-surge algorithm is entirely specified in terms of
velocities in the wind-aligned coordinate frame. If needed,
drift could be mitigated by using the optic flow camera to
intermittently take snapshot images. By computing the direc-
tion of deviations from an “initial condition” image, the robot
can be brought into registration (“visual servoing” [36]).
Because drift rate is low, this could be performed very
intermittently, perhaps at 10 Hz, and still maintain reasonable
performance without much more computational load.

The results presented in this paper are an important step to-
ward on-board feedback control. By implementing a wireless
connection using a tiny microcontroller, we have paved the
way for future work in which state estimation is performed
on-board the robot and then either transmitted wirelessly
to an off-board computer for control. While the proposed
system dynamics work well for a hand-held platform, to
have a similarly robust estimation in free flight may require
a slightly different dynamics model that accounts for the
disturbance due to aerodynamic drag. An additional element
is to include the effect that lateral velocities are influenced
by gravity due a coupling with the attitude. Future work will
validate our estimator on a freely-flying aerial platform by
explicitly introducing these effects in the system model. We
will also address any unexpected sensor non-idealities that
occur in flight, such as distortion from vibration induced by
flapping wings. Though initial results for the rangefinder [15]
and gyroscope [13] suggest that such effects are likely to be
minimal. Eventually, both estimation and control will happen
on-board, with the wireless link used only for telemetry.

All of the components reported here have undergone mass
reductions of 25–50% in the past few years due to minia-
turization pressure from the consumer electronics industry,
and we anticipate that this trend will continue. We used a
100 mg optic flow camera for simplicity, but much lighter
cameras weighing 24 mg or less are possible [9], [10]. In the
longer term, we foresee eventual mass production of robot
flies in which avionics and power systems, including custom
application-specific logic (ASIC) [37], are combined into just
a few silicon parts. This will facilitate substantial further
reductions in mass and power.
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