
Concurrent Probabilistic Temporal Planning : Initial Results

Mausam and Daniel S. Weld
Dept of Computer Science and Engineering

University of Washington
Seattle, WA-98195

{mausam,weld}@cs.washington.edu

Content areas: Markov Decision Processes, Planning

Abstract

Probabilistic planning problems are often modeled as Markov
decision problems (MDPs), which assume that a single ac-
tion is executed per decision epoch and that actions take unit
time. However, in the real world it is common to execute
several actions in parallel, and the durations of these actions
may differ. This paper presents our ongoing work on incorpo-
rating concurrent, durative actions in probabilistic planning.
In particular we describeConcurrent MDPs, MDPs which
allow multiple instantaneous actions to be executed simulta-
neously, and present two algorithms which perform orders of
magnitude faster than naive approaches. We then add explicit
action durations into our model and encode them as concur-
rent MDPs in an augmented state space. We present a novel
heuristic and prove it admissible. Initial experimental results
demonstrate the promise of our approach, showing speedup
due to both the heuristic and our sampled RTDP algorithm.

1. Introduction
Recent progress achieved by planning researchers has
yielded new algorithms which relax, individually, many of
the classical assumptions. However, in order to apply auto-
mated planning to many real-world domains we must elim-
inate larger groups of the assumptions in concert. For ex-
ample, (Bresinaet al. 2002) notes that optimal control for a
NASA Mars rover requires reasoning about uncertain, con-
current, durative actions and a mixture of discrete and metric
fluents. While today’s planners can handle large problems
with deterministicconcurrent durative actions, and semi-
MDPs provide a clear framework for durative actions in the
face of uncertainty, few researchers have considered concur-
rent, uncertain actions — the focus of this paper.

For example, a Mars rover has the goal of gathering data
from different locations with various instruments (color and
infrared cameras, microscopic imager, Mossbauer spectrom-
etersetc.) and transmitting this data back to Earth. Con-
current actions are essential since instruments can be turned
on, warmed up and calibrated while the rover is moving,
using other instruments or transmitting data. Similarly, un-
certainty must be explicitly confronted as the rover’s move-
ment, arm control and other actions cannot be accurately
predicted.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We adopt the framework ofMarkov decision processes
(MDPs) and extend it to allow multiple actions per decision
epoch. In the traditional case of a single action per deci-
sion epoch, state-space heuristic search and dynamic pro-
gramming have proven quite effective . However, allowing
multiple concurrent actions at a time point will inflict an ex-
ponential blowup on all of these techniques.

In this paper we summarise our methods (published in
(Mausam & Weld 2004)) to efficiently solve concurrent
MDPs with actions of unit length. The focus of this paper
is our initial results in extending these methods to problems
with durative actions,i.e. concurrent probabilistic temporal
planning - in short,CPTP. Specifically, we extend the tech-
nique of real-time dynamic programming(RTDP) (Barto,
Bradtke, & Singh 1995; Bonet & Geffner 2003) to solve our
problems. We model a CPTP problem as a concurrent MDP
in an augmented state space and propose lower bounds on
value functions which can be used as admissible heuristics
in the heuristic search using RTDP.

2. Background
Following (Bonet & Geffner 2003), we define aMarkov de-
cision processas a tuple〈S,A,Pr, C,G, s0, γ〉1 in which

• S is a finite set of discrete states.

• A is a finite set of actions. An applicability function,Ap :
S → P(A), denotes the set of actions that can be applied
in a given state (P represents the power set).

• Pr : S × A × S → [0, 1] is the transition function. We
write Pr(s′|s, a) to denote the probability of arriving at
states′ after executing actiona in states.

• C : A → <+ is the cost model2.

• G ⊆ S is a set of absorbing goal states.

• s0 is a start state.

• γ ∈ [0, 1] is the discount factor. Ifγ = 1 our problem is
known as thestochastic shortest path problem.

1We believe our elimination and sampling techniques can be
easily extended to handle MDPs with rewards or non-absorbing
goal states, and we plan to test this empirically.

2Indeed, most of our techniques allow costs to be conditioned
on states as well as actions.

1

We assume full observability, and we seek to find an op-
timal, stationary policy —i.e., a functionπ: S → A which
minimises the expected discounted cost (over an infinite
horizon) incurred to reach a goal state. Note that anyvalue
function, J : S → <, mapping states to the expected cost of
reaching a goal state defines a policy.

πJ(s) = argmin
a∈Ap(s)

{
C(a) + γ

∑
s′∈S

Pr(s′|s, a)J(s′)

}
Theoptimalpolicy derives from a value function,J∗: S

→ <, which satisfies the following pair ofBellman equa-
tions.

J∗(s) = 0, if s ∈ G else

J∗(s) = min
a∈Ap(s)

{
C(a) + γ

∑
s′∈S

Pr(s′|s, a)J∗(s′)

}
(1)

Various algorithms have been developed to solve MDPs.
Please refer to (Bertsekas 1995) for a discussion on Value
iteration and Policy iteration. These tend to be quite slow
due to complete state space search.Reachability Analysisis
a technique employed to speed up this search. In this, the
search is restricted to the part of state space reachable from
the initial states0. Two algorithms exploiting this are LAO*
(Hansen & Zilberstein 2001) and our focus: RTDP (Barto,
Bradtke, & Singh 1995).

RTDP, conceptually, is a lazy version of value iteration in
which the states get updated in proportion to the frequency
with which they are visited by the repeated executions of
the greedy policy. Specifically, RTDP is an anytime algo-
rithm that simulates the greedy policy along a single trace
execution, and updates the values of the states it visits using
Bellman backups. An RTDPtrial is a path starting froms0

and ending when a goal is reached or the number of updates
exceeds a threshold. RTDP repeats these trials until con-
vergence. Note that common states are updated frequently,
while RTDP wastes no time on states that are unreachable,
given the current policy. RTDP’s strength is its ability to
quickly produce a relatively good policy; however, complete
convergence (at every state) is slow because less likely (but
potentially important) states get updated infrequently. Fur-
thermore, RTDP is not guaranteed to terminate.Labeled
RTDP fixes these problems with a clever labeling scheme
that focusses attention on states where the value function has
not yet converged (Bonet & Geffner 2003). Labeled RTDP
is guaranteed to terminate, and is guaranteed to converge to
the optimal value function (for states reachable using the op-
timal policy) if the initial value function is admissible.

3. Concurrent Markov Decision Processes
Extending traditional MDPs toconcurrent MDPs, i.e.allow-
ing multiple parallel actions, each of unit duration, requires
several changes. Clearly, certain actions can’t be executed in
parallel; so we adopt the classical planning notion of mutual
exclusion (Blum & Furst 1995) and apply it to afactoredac-
tion representation:probabilistic STRIPS(Boutilier, Dean,
& Hanks 1999). Two actions aremutex(may not be exe-
cuted concurrently) if in any state 1) they have inconsistent

preconditions3, 2) they have conflicting effects, or 3) the pre-
condition of one conflicts with the (possibly probabilistic)
effect of the other. Thus, non-mutex actions don’t interact
— the effects of executing the sequencea1; a2 equals those
for a2; a1.

An action combination, A, is a set of one or more ac-
tions to be executed in parallel. The cost modelC is now a
function,C : P(A) → <+, i.e. the domain is thepower-set
of actions. Note that unless there exists a combinationA,
such thatC(A) <

∑
a∈A C({a}), the optimal policy from

the single-action MDP would be optimal for the concurrent
case as well. However, we believe that in many domains
most combinations will obey the inequality. Indeed, the in-
equality holds when the cost of a combination includes both
resourceand time components. Here, one can define the
cost model to be comprised of two parts:

• t : Time taken to complete the action.

• r : Amount of resources used for the action.

Assuming additivity, we can think of cost of an action
C(a) = t(a) + r(a), to be sum of its time and resource
usage. Hence, the cost model for a combination of actions
in terms of these components would be defined as:

C({a1, a2, ..., ak}) =
k∑

i=1

r(ai) + max
i=1..k

{t(ai)}

The applicability function,Ap(s), for concurrent MDPs
now has rangeP(P(A)); it is redefined in terms of our
original definition, now denotedAp1. Ap(s) = {A ⊆
A|∀a, a′ ∈ A, a ∈ Ap1(s) ∧ ¬mutex(a, a′)}

Let A = {a1, a2, . . . , ak} be an action combination ap-
plicable ins. Since we only allow concurrent execution of
non-interacting actions, the transition function may be cal-
culated as follows:

Pr(s′|s,A) =
∑

. . .
∑

s1,s2,...sk∈S

Pr(s1|s, a1)Pr(s2|s1, a2) . . .Pr(s′|sk, ak)

Finally, instead of equations (1), the following set of equa-
tions represents the solution to a concurrent MDP:

J∗(s) = 0, if s ∈ G else

J∗(s) = min
A∈Ap(s)

{
C(A) + γ

∑
s′∈S

Pr(s′|s,A)J∗(s′)

}
(2)

These equations are the same as in a traditional MDP, ex-
cept that instead of considering single actions for backup
in a state, we need to consider all applicable action com-
binations. Thus, only this small change must be made to
traditional algorithms (e.g., value iteration, LAO*, Labeled
RTDP). However since the number of action combinations
is exponential in|A|, efficiently solving a concurrent MDP
requires new techniques.

3Note that an action’s transition function is typically condi-
tioned on various features of the state (conditional effects). We
consider these features to be part of preconditions for the purpose
of mutex calculation.

2

Pruned RTDP In our AAAI paper, we present two rules
for pruning some action combinations from Bellman back-
ups. The first rule is calledCombo-skippingin which we
can boundQ(s,A) values usingQ(s, a) values fora ∈ A.
Thus, we can skip some combinations that cannot be opti-
mal in the current backup. Unfortunately, combo-skipping
has a weakness — it prunes a combination for only asingle
iteration. In contrast, our second rule,combo-elimination,
prunes irrelevant combinations altogether. We adapt the ac-
tion elimination theorem from traditional MDPs (Bertsekas
1995) to prove a similar theorem for concurrent MDPs. We
use it to eliminate the provably suboptimal combinations
for each state for all subsequent iterations. Since combo-
skipping does not change any step of labeled RTDP and
combo-elimination removes provably sub-optimal combina-
tions, prunedlabeled RTDP maintains convergence, termi-
nation, optimality and efficiency, when used with an admis-
sible heuristic.

Sampled RTDP We now describe our second algorithm
called sampled RTDP, which performs backups on a ran-
dom set of action combinations, choosing from a distribu-
tion which favors “likely combinations.” We generate our
distribution by: 1) using combinations which were previ-
ously discovered to have lowQ-values (recorded bymemo-
izing the best combinations per state, after each iteration); 2)
calculating theQ-values of all applicable single actions (us-
ing current value function) and then biasing the sampling of
combinations to choose the ones which contain actions with
low Q-values.

Since the system doesn’t consider every possible action
combination, sampled RTDP is not guaranteed to choose the
best combination to execute at each state. As a result, even
when started with an admissible heuristic, theJn(s) val-
ues are no longer admissible or monotonic. This is unfor-
tunate, since admissibility and monotonicity are important
properties required for termination and optimality in labeled
RTDP; indeed, sampled RTDP loses these important theo-
retical properties. The good news is that it is extremely use-
ful in practice. In our experiments, sampled RTDP usually
terminates quickly, and returns values which are extremely
close to the optimal. We also investigated several heuris-
tics to improve the quality of solutions and are discussed in
detail in our AAAI paper.

Experiments We tested our algorithms in various domains
like a probabilistic variant of the NASA Rover domain from
the 2002 AIPS Planning Competition, the traditional Machi-
neShop domain etc. Our problems typically had 20-30 state
variables and 15-20 actions with varying degrees of paral-
lelism.

We used Labeled RTDP, as implemented in GPT, as the
base MDP solver and implemented our pruned and sampled
versions over it. We observed that pruning significantly
speeds the algorithm, but sampling yields almost two orders
of magnitude speedups with respect to the pruned versions.
We also compared the qualities of solutions produced by
Sampled-RTDPw.r.t. optimal. We found that solutions
produced by Sampled-RTDP are always nearly optimal (the
maximum error obtained in our runs was less than 1%). We

State variables : x1, x2, x3, x4, p12

Action Duration Precond. Effect Prob.
toggle-x1 3 ¬p12 x1 ← ¬x1 1
toggle-x2 3 p12 x2 ← ¬x2 1
toggle-x3 5 true x3 ← ¬x3 0.9

no change 0.1
toggle-x4 1 true x4 ← ¬x4 0.9

no change 0.1
toggle-p12 4 true p12 ← ¬p12 1
Goal : x1 = 1, x2 = 1, x3 = 1, x4 = 1

Figure 1:Probabilistic STRIPS definition of a simple CPTP prob-
lem

noticed that the speedups obtained increase as concurrency
increases. This is a very encouraging result, and we can ex-
pect Sampled-RTDP to perform well on large problems in-
volving high concurrency, even if the other approaches fail.
Our AAAI paper discusses the experimental methodologies
and results in detail.

4. Extending to Durative Actions
We now incorporate action durations in concurrent proba-
bilistic planning problems (CPTP). As a start we consider a
model similar to the model of Section 3, except that action
costs (C(a)) are replaced by their durations (∆(a)). Thus
minimising expected cost to reach a goal translates to min-
imising the expected make-span to reach a goal4. We assume
that actions have fixed durations; relaxing this assumption is
an important extension for the future.

CPTP is distinct from a concurrent MDP in several ways.
In a concurrent MDP the actions are assumed to be instan-
taneous; hence at each decision epoch, the stochastic effects
of the previous actions can be observed. In CPTP, time is
represented as a continuous variable. Hence firstly, the de-
cision epochs can be any point in the continuous time-line.
Secondly, various actions may be in the process of execut-
ing at a decision epoch. We have to explicitly take into ac-
count these actions and their finishing times when making
a subsequent decision. Finally, a semi-MDP allows for a
distribution over transition times while CPTP assumes fixed
durations. Thus, the state space of CPTP is substantially dif-
ferent from that of a concurrent MDP. Without loss of gen-
erality (given fixed durations known in advance), we assume
that the decision epochs are discrete i.e. all action durations
are integer-valued, and the agent can only start an action at
these integer time-points.

For simplicity, we adopt the temporal action model
of (Smith & Weld 1999), rather than the more complex
PDDL2.1 (Fox & Long 2003). Specifically, we assume :

• The effects of an action take place at some point in the
interior of the action execution but can be known to hold
(and hence used) only once the action has completed.

• The preconditions (and features on which the transition
function of the action is conditioned) should remain true
(unchanged) at the beginning of an action and while the
action is being executed, unless the action itself is modi-
fying them.

4We will consider CPTP problems with mixed costs, and non
absorbing goals in the future.

3

toggle x1

¬p12

toggle p12

0 2 4 6 8 10

p12

Figure 2:A sample execution demonstrating that two actions with
interfering preconditions and effects cannot be executed concur-
rently.

These definitions are consistent with our previous defini-
tion of concurrency. Specifically, it is easy to see that our
mutex definitions (from Section 3) hold and are required un-
der these assumptions. As an illustration, consider figure 2.
The figure describes a situation in which two actions with
interfering preconditions and effects can not be executed
concurrently. In our figure, action toggle-p12 and toggle-x1

were started at time 2 units. Lets assume that initiallyp12

was false. As it is a precondition of toggle-x1, p12 needs to
remain false until time 5 units (as toggle-x1 has duration 3).
However toggle-p12 may produce its effects anytime before
6 units, which may conflict with the preconditions of the
other executing action. Therefore, toggle-p12 and toggle-x1

cannot be executed concurrently.
In our model, considering only the time-points when one

or more actions complete, as decision epochs, is sufficient
for optimal policy construction. Of course not all optimal
policies will have this property. But it is easy to see that
there exists an optimal policy in which each action begins
at one such time-point. Hence this assumption reduces our
search space.

Search space We adapt the search space representation of
(Haslum & Geffner 2001), similar to (Bacchus & Ady 2001;
Do & Kambhampati 2001). Our original state spaceS in
section 2 is augmented by including the set of actions cur-
rently executing and the times remaining for each. Formally,
let the new states be an ordered pair(X, Y) whereX ∈ S
andY = {(a, δ)|a ∈ A, 0 < δ ≤ ∆(a)}. HereX repre-
sents the values of the state variables andY represents the
set of actions whose execution hasn’t completed and theδ
associated with each action represents the amount of time
after which the action will complete. DefineAs to be the set
of actions already in execution, i.e.As is a projection ofY :

As = {a|(a, δ) ∈ Y }

Example:In our sample domain in figure 1, a possible state
(says1) is when all state variables are false, and toggle-x1

was started 1 unit ago. Such a state would be represented as
(X1, Y1) with X1=(F, F, F, F, F) andY1={(toggle-x1, 2)}.
The setAs1 would be {toggle-x1}.

To allow the possibility of simply waiting for some ac-
tion to complete executioni.e. not executing any action at

some decision epochs, we increment the setA with a no-
op action. We allow no-op to be applicable in all statess
= (X, Y) whereY 6= ∅ (i.e. states in which some action is
still being executed)5. The no-op will have a variable dura-
tion equal to the time after which another already executing
action completes (δnext(s,A) as defined below).

The new applicability set can be defined as:

Ap(s) =
{

Ap(X) if Y = ∅ else{
noop} ∪ {A|A ∪As ∈ Ap(X) andA ∩As = ∅}

Transition Function We also need to define the probabil-
ity transition functionPr for the new state space. At some
decision epoch let the agent be in states = (X, Y), with As

as the set of actions currently executing. Suppose that the
agent decides to execute an action combinationA. Define
Ynew as the set equivalent toY for the actions just started,
i.e. Ynew = {(a,∆(a))|a ∈ A}. In this system, our next
decision epoch will be the smallest time after which the any
executing action completes. Let us call this timeδnext(s,A).
Notice thatδnext(s,A) could depend on actions in bothAs

andA. Formally,

δnext(s,A) = min
(a,δ)∈Y ∪Ynew

{δ}

Moreover, multiple actions may complete simultaneously.
Thus, defineAnext(s,A) ⊆ A ∪ As to be the set of actions
that will complete afterδnext(s,A) time. TheY -component
of the state at the decision epoch afterδnext(s,A) time will
be

Ynext(s,A) = {(a, δ − δnext(s,A))|(a, δ) ∈ Y ∪ Ynew,

δ > δnext(s,A)}
Let s=(X, Y) and lets′=(X ′, Y ′). The transition function
(in terms of our original transition function of concurrent
MDPs) can be defined as:

Pr(s′|s,A) =
{
Pr(X ′|X, Anext(s,A)) if Y ′ = Ynext(s,A)
0 otherwise

That is, executing an action combinationA in states
= (X, Y) takes the agent to a decision epochδnext(s,A)
ahead in time,i.e. the first time when some combination
Anext(s,A) completes. This lets us calculate the new
set of actions still executing and their remaining times
(Ynext(s,A)). And the original probability transition func-
tion can be used to decide the new distribution of state vari-
ables, as if the combinationAnext(s,A) were taken in state
X.
Example: Continuing with the previous example, let the
agent in states1 execute the action combinationA = {toggle-
x3, toggle-x4}. Then δnext(s1, A) = 1, since toggle-
x4 will finish the first. Thus,Anext(s1, A)= {toggle-x4}.
Ynext(s1, A) = {(toggle-x1,1),(toggle-x3,4)}. Hence, the
probability distribution of states after executing the combi-
nationA in states1 will be
• ((F, F, F, T, F), Ynext(s1, A)) probability = 0.9

• ((F, F, F, F, F), Ynext(s1, A)) probability = 0.1

5For a states, the no-op action is mutex with all actions inA \
As. In other words, at any decision epoch either a no-op will be
started or any combination not involving no-op.

4

Start and Goal states The start state for our model is
(s0, ∅) and the new set of goal states isG′ = {(X, ∅)|X ∈
G}. Thus we have modeled a CPTP problem as a concurrent
MDP in our new state space. We have redefined the start
and goal states, the applicability function, and the probabil-
ity transition function. Now we can use the techniques of
concurrent MDPs to solve our problem. In particular, we
can use our Bellman equations as described below.

Bellman equations The set of equations for the solution
of a CPTP problem can be written as:

J∗(s) = 0, if s ∈ G′ else (3)

J∗(s) = min
A∈Ap(s)

{
δnext(s,A) +

∑
s′

Pr(s′|s,A)J∗(s′)

}
The main bottleneck in inheriting our previous methods

naively is the huge size of the new state space. The fact that
all the executing actions with their remaining times appear in
the state space blows up the whole state space exponentially.
Thus we need to reduce, abstract or aggregate our state space
in order to make the problem tractable. In the following
subsection, we present an admissible heuristic which can be
used to speed the heuristic search.

An admissible heuristic (H) Let JMDP (X) denote the
value of a stateX ∈ S in a traditional MDP with costs of an
action equal to its duration. LetJ(s) be the value for equiv-
alent CPTP problem withs as in our augmented state space.
Defineconcurrencyas the number of actions executing in
parallel. The following theorem can be used to provide an
admissible heuristic for CPTP problems.

Theorem 1 Let c be the maximum possible concurrency in
the domain. Then fors = (X, Y),

J∗(s) ≥ J∗
MDP (X)

c
for Y = ∅

J∗(s) ≥ Q∗
MDP (X, As)

c
for Y 6= ∅

Proof Sketch: Consider any trajectory of make-spanL (from
a states = (X, ∅) to a goal state) in a CPTP problem us-
ing its optimal policy. We can make all concurrent actions
sequential by executing them in the chronological order of
being started. As all concurrent actions are non-interacting,
the outcomes at each stage will have similar probabilities.
The maximum make-span of this sequential trajectory will
be cL (assumingc actions executing at all points in the
semi-MDP trajectory). HenceJMDP (X) using this (pos-
sibly non-stationary) policy would be at mostcJ∗(s). Thus
J∗

MDP (X) ≤ cJ∗(s). The second inequality can be proven
in a similar way.

It can be shown that there are cases where these bounds
are tight. For e.g., consider a deterministic planning problem
in which in the optimal plan a goal is reached by concur-
rently takingc actions of unit duration each at the start state
(make-span = 1). In the sequential version, same actions
would be taken sequentially (make-span =c) — obtaining
the desired ratio of the make-spans.

We use these bounds as an admissible starting heuristic
for Labeled RTDP.

Implementation and Experiments We have extended our
implementation of concurrent MDPs to handle CPTP prob-
lems. We have implemented our modified algorithm and as
well as our heuristic (H). We present our preliminary results
on some problems from a version of the NASA domain, and
the Artificial domain (introduced in our AAAI paper) that
have actions with durations. The NASA Rover problems had
17 state variables, 21 actions and 19-33 average applicable
combinations per state (Avg(Ap(s))). The Artificial domain
had 14 state variables, 11 actions andAvg(Ap(s)) was 146.
Figure 3 shows the results. We tested four algorithms on our
problems –Opt-RTDP: RTDP considering all combinations
in each backup,S-RTDP: RTDP using sampled combina-
tions in each Bellman backup,SH -RTDP andOptH -RTDP:
Sampled RTDP andOpt-RTDP respectively, guided by our
heuristic H. We observe that Sampled RTDP performs much
better thanOpt-RTDP, and adding our heuristic guidance
speeds the solution in both the cases.

5. Related Work
(Meuleauet al. 1998) and (Singh & Cohn 1998) deal with
a special type of MDP (called a factorial MDP)6 that can
be represented as a set of smaller weakly coupled MDPs
— the separate MDPs are completely independent except
for some common resource constraints, and the reward and
cost models are purely additive. They describe solutions
in which these sub-MDPs are independently solved and the
sub-policies are merged to create a global policy. Thus, con-
currency of actions of different sub-MDPs is a by-product
of their work. All of the work in Factorial MDPs assumes
that a weak coupling exists and has been identified, but fac-
toring an MDP is a hard problem in itself. In contrast, our
algorithm can handle strongly coupled MDPs and does not
require any sub-task decomposition as input.

(Rohanimanesh & Mahadevan 2001) investigate a spe-
cial class of semi-MDPs in which the action space can be
partitioned by (possibly concurrent)Markov options. They
propose an algorithm based on value-iteration, but their fo-
cus is calculating joint termination conditions and rewards
received, rather than speeding policy construction. Hence,
they considerall possible Markov option combinations in a
backup. They only experiment on a single, small problem
with 400 states.

NASA researchers have developed techniques for solv-
ing a harder version of the Rover domain (e.g., with un-
certain continuous effects). They propose ajust-in-case
scheduling algorithm, which incrementally adds branches to
a straight-line plan. While their work is more general than
ours, their solution is heuristic and it is unclear how closely
their policies approximate optimality (Bresinaet al. 2002;
Deardenet al. 2003). It would be exciting to combine their
methods with ours, perhaps by using their heuristic to guide
S-RTDP.

6Guestrin, Koller and Parr (2001) have investigated similar rep-
resentations in the context of multiagent planning.

5

Problem Reach(|S|) Avg(Ap(s)) Opt-RTDP OptH -RTDP S-RTDP SH -RTDP
Rover1 ∼40,000 25 177 153 134 107
Rover2 ∼17,500 19 311 273 218 138
Rover3 ∼100,000 33 364 251 220 137
Art1 ∼65,000 146 428 379 190 97

Figure 3:Preliminary experiment:S-RTDP (RTDP with sampled Bellman backups) performs better thanOpt-RTDP (RTDP considering all
applicable combinations per backup). Our heuristic (H) speeds up bothS-RTDP andOpt-RTDP significantly. All times are in seconds.
(Reach(|S|) denotes number of states explored by RTDP, andAvg(Ap(s)) denotes the average number of applicable combinations per state)

Recently, Younes and Simmons (2004) have developed a
generic test and debug approach which converts a continu-
ous time MDP into a deterministic planning problem. The
optimal plan of the deterministic problem is converted back
into a policy which can then be repaired if any failure points
are identified.

6. Conclusions and Future Work

This paper summarises our techniques for incorporating
concurrency in probabilistic planning models. We formally
define the concurrent MDP problem and describe two tech-
niques (pruning and sampling) to solve them which obtain
orders of magnitude speedup over naive methods. We be-
lieve that our sampling techniques will be extremely effec-
tive on very large, concurrent MDP problems. Moreover,
our sampling and pruning techniques are extremely general
and can be applied to other base algorithms like value itera-
tion, LAO* etc.

We have also described our initial progress developing
methods for solving concurrent probabilistic temporal plan-
ning problems. We have presented a solution in terms of
RTDP in a modified state space which exploits our meth-
ods for solving concurrent MDPs. We have proven a lower
bound on the value function which can be used as an admis-
sible heuristic. Initial experiments show that sampled RTDP
performs much better than the optimal RTDP, and adding
our heuristic guidance speeds the solution even more.

We believe that the key to scaling to much larger prob-
lems lies in some intelligent search space compression. We
also wish to find other more informative (perhaps inadmis-
sible) heuristics for improving efficiency. We also plan to
extend our action representation to a probabilistic version
of PDDL2.1, which should not be difficult but will require
revising our mutex rules. Finally, we would like to incorpo-
rate mixed costs, non-absorbing goals, and stochastic action
durations (Concurrent Semi-MDPs).

Acknowledgements

We are thankful to Blai Bonet and Sumit Sanghai for their
inputs at various stages of this research. We also thank
David Smith, Subbarao Kambhampati, Stanley Kok, Julie
Letchner, Benson Limketkai, Jayant Madhavan, and Parag
for giving useful comments on an earlier draft. We thank the
anonymous reviewers for their worthy comments and sug-
gestions on the paper.

References
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. InIJCAI’01, 417–
424.
Barto, A.; Bradtke, S.; Singh, S. 1995. Learning to act using real-
time dynamic programming.Artificial Intelligence72:81–138.
Bertsekas, D. 1995.Dynamic Programming and Optimal Control.
Athena Scientific.
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. InIJCAI’95, 1636–1642. Morgan Kaufmann.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming. InICAPS’03,
12–21. AAAI Press.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision theoretic
planning: Structural assumptions and computational leverage.J.
Artificial Intelligence Research11:1–94.
Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and Washing-
ton, R. 2002. Planning under continuous time and resource un-
certainty : A challenge for AI. InUAI’02.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D. E.; and
Washington, R. 2003. Incremental Contingency Planning. In
ICAPS’03 Workshop on Planning under Uncertainty and Incom-
plete Information.
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. InECP’01.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains.JAIR Special Issue on
3rd International Planning Competition20:61–124.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent planning
with factored MDPs. InNIPS’01, 1523–1530. The MIT Press.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops.Artificial Intelligence
129:35–62.
Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. InECP’01.
Mausam, and Weld, D. 2004. Solving concurrent Markov deci-
sion processes. To appear inAAAI ’04.
Meuleau, N.; Hauskrecht, M.; Kim, K.-E.; Peshkin, L.; Kael-
bling, L.; Dean, T.; Boutilier, C. 1998. Solving very large weakly
coupled Markov Decision Processes. InAAAI’98, 165–172.
Rohanimanesh, K., and Mahadevan, S. 2001. Decision-Theoretic
planning with concurrent temporally extended actions. InUAI’01,
472–479.
Singh, S., and Cohn, D. 1998. How to dynamically merge markov
decision processes. InNIPS’98. The MIT Press.
Smith, D., and Weld, D. 1999. Temporal graphplan with mu-
tual exclusion reasoning. InIJCAI’99. Stockholm, Sweden: San
Francisco, CA: Morgan Kaufmann.
Younes, H. L. S., and Simmons, R. G. 2004. Policy genera-
tion for continuous-time stochastic domains with concurrency. In
ICAPS’04. AAAI Press.

6

