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Abstract

Most AI representations and algorithms for plan gen-

eration have not included the concept of information-

producing actions (also called diagnostics, or tests,

in the decision making literature). We present a

planning representation and algorithm that models

information-producing actions and constructs plans

that exploit the information produced by those ac-

tions. We extend the buridan (Kushmerick et al.

1994) probabilistic planning algorithm, adapting the

action representation to model the behavior of imper-

fect sensors, and combine it with a framework for con-

tingent action that extends the cnlp algorithm (Peot

and Smith 1992) for conditional execution. The result,

c-buridan, is an implemented planner that builds

plans with probabilistic information-producing actions

and contingent execution.

Introduction

One way of coping with uncertainty in the world is to
build plans that include both information-producing
actions and other actions whose execution is contin-
gent on that information. For example if we wished
to acquire a car, we might plan to ask a mechanic
to examine a particular car and purchase it only if
the report indicates the car is in good working order.
Information-producing actions and contingent plans
are complementary: it makes no sense to improve one's
information about the world if that information can't
be exploited later. Likewise, building a contingent plan
is useless unless the agent can learn more at execution
time than it knows while planning.
This paper presents an implemented algorithm for

probabilistic planning with information-producing ac-
tions and contingent execution. We extend the
buridan (Kushmerick et al. 1994) probabilistic ac-
tion representation to allow actions with both informa-
tional and causal e�ects, combined with a framework
for building contingent plans that builds on the cnlp
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algorithm (Peot and Smith 1992). c-buridan takes
as input a probability distribution over initial world
states, a goal expression, a set of action descriptions,
and a probability threshold, and produces a contin-
gent plan that makes the goal expression true with a
probability no less than the threshold.1

Example

Suppose that a manufacturing robot is given the goal
of having a widget painted (PA), processed (PR), and
then notifying (NO) the supervisor that it is done. Pro-
cessing the widget is accomplished by rejecting (reject)
parts that are 
awed (FL) or shipping (ship) parts that
are not 
awed (FL). The robot also has an action paint
that usually makes PA true, and an action notify that
makes NO true. Initially all 
awed widgets are also
blemished (BL), and vice versa.
Although the robot cannot directly tell if the widget

is 
awed, the action inspect can be used to determine
whether or not it is blemished: executing inspect is
supposed to produce a report of ok if the widget is un-
blemished and a report of bad if a blemish is detected.
The inspect action can be used to decide whether or not
the widget is 
awed because the two are initially per-
fectly correlated. The use of inspect is complicated by
two things, however: (1) inspect is sometimes wrong:
if the widget is blemished then 90% of the time it will
report bad, but 10% of the time it will erroneously
report ok. If the widget is not blemished, however,
inspect will always report ok. (2) Painting the widget
removes a blemish but not a 
aw, so executing inspect
after the widget has been painted no longer conveys
information about whether it is 
awed.
Assume that initially there is a 0.3 chance that

the widget is both 
awed and blemished and a 0.7
chance that it is neither. A planner that cannot use
information-producing actions or contingencies can at
best build a plan with success probability 0.7: it as-
sumes the widget will not be 
awed, and generates a

1
Our problem de�nition is not a general decision-

theoretic one, since we consider only goal satisfaction and

not a general utility model. Our solutions are satis�cing

rather than optimal.
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Figure 1: A contingent plan with rejoining branches.
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Figure 2: A causal and an information-producing action.

plan to paint and ship the widget, then notify the su-
pervisor. A planner that can exploit sensor actions
and contingencies can generate a plan that works with
probability .97 (Figure 1): �rst inspect the widget,
then paint it. Then if the inspection reported ok, ship
the widget, otherwise reject it. Either way, notify the
supervisor of completion. This plan, which c-buridan

generates, fails only in the case that the widget was ini-
tially 
awed but the sensor erroneously reports ok. It
has success probability 1� (0:3)(0:1) = 0:97.

Contributions

c-buridan is an implemented contingent planner, ex-
tending existing planning technology in several ways:

� Informational e�ects: c-buridan can distinguish
between an action that observes whether an object is
blemished (inspect) and one that changes whether an
object is blemished (paint). This distinction is cru-
cial for e�ective planning in realistic domains (Et-
zioni et al. 1992).

� Branching plans that rejoin: c-buridan gen-
erates contingent plans in which di�erent ac-
tions are executed depending on prior observations.
c-buridan builds plans whose execution paths can
diverge then rejoin, unlike previous planners (War-
ren 1976; Peot and Smith 1992) that support diverg-
ing plan branches but do not allow them converge
later in the plan.

� Noisy sensors: c-buridan's probabilistic action
model can represent perfect, noisy, or biased sen-
sors. The accuracy of a sensor can depend on the
prevailing world state.

� Informational dependencies: c-buridan can
make use of correlated information, such as plan-
ning to sense BL when it needs information about
FL.

Representation: Actions & Contexts

Our representation and semantics are based on the
buridan planner (Kushmerick et al. 1994); here
we provide a brief summary, and refer the reader
to (Draper et al. 1993) for more detail. A state

is a complete description of the world at a point in
time. Uncertainty about the world is represented
by a random variable over states. An expression is a
set (conjunction) of literals which represents a set of
states. In our example, the world is initially in one
of two possible states: s1 = fFL;BL;PR;PA;NOg and
s2 = fFL;BL;PR;PA;NOg, and the distribution of ~sI
over these states is P[~sI = s1] = 0:3, P[~sI = s2] = 0:7.
In other words, both states agree that the widget is
not PAinted or PRocessed and that the supervisor has
not been NOti�ed. In the most probable state, s2, the
widget is not FLawed and not BLemished.

Actions

Our action representation distinguishes between
changes an action makes to the state of the world
and changes it makes to the agent's state of knowledge
about the world. The paint action shown in Figure 2
changes the state of the world: if the widget has not yet
been PRocessed, with probability 0.95 it will become
PAinted and all BLemishes removed, otherwise the ac-
tion will not change the state of the world at all. The
leaves in the �gure are called consequences; they repre-
sent the e�ect of the action under di�erent conditions
in the world.
The inspect action, in contrast, doesn't change

whether BL is true or not, but it does provide the
agent with information about BL's state. To model
the information conveyed by executing an action, we
associate a set of observation labels with each action|
when an action is executed, it will report exactly one
of its observation labels to the agent. We identify



the conditions that produce an observation label by
partitioning the action's consequences into sets called
discernible equivalence classes, or DECs (indicated in
the �gures by heavy double ovals), and assign a la-
bel to each one. The inspect action has two obser-
vation labels, ok and bad, and two corresponding
DECs. If an agent executes inspect and receives the
report bad, it is certain that BL was true when inspect
was executed. A report of ok would tend to indicate
that BL was false, though the agent could not be cer-
tain. The information conveyed by inspect is charac-
terized by the conditional probabilities P[bad jBL] = 1,
P
�
bad jBL

�
= 0, P

�
ok jBL

�
= 0:9, and P[ok jBL] = 0:1,

which is a standard probabilistic representation for an
evidence source. The agent's state of belief about BL

after receiving a report|P[BL jok] or P[BL jbad]|can
be computed using Bayes' rule, and depends both on
these conditional probabilities and also on the prior
probability that BL is true when inspect is executed.
Formally, an action is a set of consequences, a set of

observation labels, and their corresponding discernible
equivalence classes. Each consequence is a tuple of the
form hT�; ��; E�i, where T� is a conjunction of literals
known as the consequence's trigger, �� is the condi-
tional probability of this consequence given its trigger,
and E� is the set of e�ects associated with the con-
sequence. Each DEC is a subset of the action's con-
sequences, and together they form a partition of the
consequences. Many actions, such as paint, will have
a single DEC, in which case executing the action pro-
vides no information to the agent about which of its
consequences actually occurred (and in this case we do
not indicate the DEC in the pictorial representation
of the action). An action is information-producing if it
has more than one DEC, and causal if it has nonempty
e�ect sets. Actions can be both information-producing
and causal. For example, we might model a pickup
action that both potentially changes the state of the
world|whether a block is being held|and contains
observation labels indicating whether or not the action
was successful. Similarly a test-blood action might de-
tect a disease, but also a�ect the state of the patient.

Contexts

We represent contingent execution in a manner nearly
identical to cnlp (Peot and Smith 1992). Each action
Ai in the plan is annotated with a context, denoted
context(Ai), dictating the circumstances under which
the action should be executed. A context is a set (con-
junction) of observation labels from previous steps in
the plan. We say two contexts are compatible if they
do not disagree on any action's label. During execu-
tion, a step will only be executed when its context is
compatible with the actual observations produced by
executing previous steps (called the execution context).
For example, consider this sequence of annotated ac-

tions: (inspectfg, shipfokg, rejectfbadg). An agent
would always execute the �rst step, inspect, since the

empty context is always acceptable. Suppose that
inspect returned the report bad, which would be in-
cluded in the execution context. The agent would then
consider, but decline, to execute ship, since its con-
text is not compatible with the execution context. The
agent would �nally execute reject, since its context is
compatible with the execution context.

Overview of the c-buridan Algorithm

c-buridan takes as input a probability distribu-
tion ~sI over initial states, a set of actions fAig,
a goal expression G, and a probability thresh-
old � . For the problem described in this paper,
~sI is de�ned in the introduction, the set of ac-
tions is finspect; paint; ship; reject; notifyg, the goal is
fPR;PA;NOg, and we will set � = 0:8. c-buridan re-
turns a sequence of annotated actions such that their
execution achieves G with probability at least � .
c-buridan searches a space of plans. Each plan

consists of a set of actions fAig, contexts for each Ai,
a partial temporal ordering relation over fAig, a set
of causal links, and a set of subgoals. A causal link
caches c-buridan's commitment that a particular con-
sequence of a particular action should help make a lit-
eral true later in the plan. For example, the presence of
the link paint�

PA!goal indicates that the planner has
decided that the � consequence of paint is supposed to
make PA true for use by goal. Our causal links are
similar to the causal links or protection intervals used
by many planners, but there are important di�erences
which we will explain below. A subgoal is a pair of
the form hd;Aii, and represents the planner's intent to
make literal d true when action Ai is executed. Threats
play the same role as in other causal-link planners, but
an additional provision is made for contexts: At threat-

ens link Ap�
d!Ac if some consequence of At asserts d,

if At can occur between Ap and Ac, and if context(At)
is compatible with both context(Ap) and context(Ac).

initial state

FL BL PR PA FL BL PR PA

ρ=0.7 ρ=0.3

βα

goal state

“success”α
PR PA NO

Figure 3: A0 and AG encode the initial state distribu-
tion and the goal.

Like buridan, c-buridan begins searching from an
initial null plan (Figure 3), which contains the two
dummy actions A0 and AG (encoding the initial state
distribution and the goal expression respectively), and
the ordering constraint A0 < AG. The initial action A0
has one consequence for each state in the initial proba-
bility distribution with non-zero probability. The goal
action AG has a single SUCCESS consequence triggered
by the goal expression. The null plan's subgoals are all
pairs of the form hg; goali, where g is a literal in the
goal expression.



Starting from the null plan, c-buridan performs
two operations:

1. Plan Assessment: Determine if the probability that
the current plan will achieve the goal exceeds � , ter-
minating successfully if so.2

2. Plan Re�nement: Otherwise, try to increase the
probability of goal satisfaction by nondeterministi-
cally choosing to support a subgoal (by adding a
causal link to a new or existing action) or to pro-
tect a threatened link. Fail if there are no possible
re�nements, otherwise loop.

Re�ning a plan with conditional and probabilistic
actions di�ers from classical plan re�nement (e.g. snlp
(McAllester and Rosenblitt 1991)) in two important
ways. First, where snlp establishes a single causal
link between a producing action and a consuming ac-
tion, c-buridan may require several. Any snlp link
alone assures that the supported literal will be true. In

our representation, a link Ap�
d!Ac ensures that d will

be true at action Ac only if the trigger Tp� holds with
probability one at Ap, and the consequence's probabil-
ity �p� = 1. But when no single link can make the
literal su�ciently likely, several links (representing dif-
ferent situations under which the literal might be made
true) may su�ce. We lose snlp's clean distinction be-
tween an \open condition" and a \supported condi-
tion," in return for the ability to represent cumulative
support from actions with uncertain consequences.
The second di�erence lies in how c-buridan resolves

threats. Like classical planners, c-buridan may pro-

mote or demote a threatening action by ordering it be-
fore the producer or after the consumer of the threat-
ened link. Like buridan or ucpop (Penberthy and
Weld 1992), c-buridan may also confront a threat:
when the threatening action has benign as well as
threatening consequences, c-buridan can adopt the
triggers of one of the benign consequences as subgoals,
which has the e�ect of decreasing the probability of the
threatening consequences.
Finally, c-buridan has an additional threat-

resolution technique, branching, unique to a contin-
gent planner.3 Intuitively, branching ensures that the
threatening step can never be executed in the same

2
(Kushmerick et al. 1994) and (Draper et al. 1993)

discuss plan assessment in detail. Here we will point out

only the relationship between assessment and the planner's

use of correlated information. The assessor generates al-

ternative execution pro�les, and it notes, for example, that

sequences in which FL is initially true are likely to cause

inspect to generate an observation of bad, and that subse-

quently executing reject is likely to succeed, and conversely

for FL, ok, and ship. As a result, the assessor reports that

a plan in which reject is executed when bad is received

and ship is executed when ok is received has a high prob-

ability of success. The correlation between FL and BL is

thus detected by assessment, although an explicit connec-

tion between the two propositions is never made.

3
(Peot and Smith 1992) call this technique \condition-

execution trace as the producer or consumer of the
threatened link. We will explain the branching tech-
nique in detail in Section , but �rst let us examine what
progress the planner could make without it:
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Figure 4: ship and reject threaten each other (indicated
by grey links).

If (non-contingent) buridan was applied to our ex-
ample, it would add a paint action to support PAinted,
a ship action to support PRoccessed, and a notify ac-
tion to support NOti�ed. Assessment would show that
the plan has probability of only 0:665, since ship only
achieves the desired PRoccessed outcome when the part
is not FLawed. If buridan tried to provide additional
support for PR by adding a new reject action and link-
ing it to the goal, it would produce the plan shown in
Figure 4. The problem with this plan is that it has
a pair of irreconcilable threats (shown in grey): reject
makes PR true, which threatens the link from initial
to ship, and likewise ship makes PR true, threatening
a link from initial to reject. Adding orderings can re-
solve only one of these two threats, and confronting the
threat would mean that the planner would be trying to
achieve two mutually exclusive consequences at once.
The predicament becomes apparent: the planner needs
to be able to execute either ship or reject but not both,
and needs some way to decide under which conditions
each step should be executed.

Threat resolution by branching

\Branching" works by introducing branches|a new
kind of plan element|into a plan. A branch connects
an information-producing action to a subsequent ac-
tion, indicating which observation labels of the �rst

ing." We adopt an alternative term to avoid confusion with

\conditional e�ects" in the action representation.
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Figure 5: A successful plan

permit execution of the second. In Figure 5, for ex-
ample, there are two branches: inspect=ok)ship and
inspect=bad)reject. The �rst means that ship should
be executed only if the execution of inspect generates
an observation label of ok, the second means that reject
should be executed only if the execution of inspect gen-
erates bad.
We will use our example to illustrate the branching

procedure, attempting to resolve the threat posed by

reject� to the link initial�
PR!ship.

1. We can separate the context of the threatening step
At = reject from the context of either the link's con-
sumer or its producer, so �rst choose a step As to
separate. We will choose As = ship.4

2. Choose some new or existing information-producing
action Ai that can be ordered before both As and
At, and has a context compatible with context(As)
and context(At). We choose to add a new inspect
action to the plan, ordering it before ship and reject.
All three actions have empty contexts, so inspect is
compatible with both.

3. Choose two observation labels c and c0 from Ai.
5 We

choose c = bad; c0 = ok.

4. Add the branches Ai=c)At and Ai=c
0)As to

the plan. Thus we add inspect=ok)ship and
inspect=bad)reject.

4
All choices are nondeterministic|as a practical matter

the planner must be prepared to backtrack. For the sake

of brevity we will illustrate one correct series of choices.

5
More precisely we choose any partition of Ai's obser-

vation labels; technically, this requires the more complex

de�nition of context presented in (Draper et al. 1993).

5. Update the contexts of As and At to include the new
observation labels: context(At) := context(At) ^ c,
and context(As) := context(As) ^ c0. Speci�-
cally, context(reject) := fbadg and context(ship) :=
fokg.

6. Adopt each of Ai's triggers as subgoals|we adopt
hBL; inspecti and hBL; inspecti.

Now ship and reject are restricted to mutually ex-
clusive execution contexts, but as yet there is no or-
dering constraint between inspect and paint. If paint is
executed �rst, however, it will destroy the correlation
between BLemishes and FLaws. c-buridan discovers
this problem when it supports the subgoal hBL; inspecti
with a link from the initial step's � consequence, and
�nds that paint� threatens this link. c-buridan can
promote the threat, yielding the plan shown in Fig-
ure 5. The assessment algorithm determines that the
success probability of this plan is 0:9215 > � , and re-
turns it as a solution. (The plan fails only if paint fails
to make PA true or if the widget was initially blem-
ished and inspect incorrectly reports ok.) Note that
notify will be executed regardless of what inspect re-
ports, even though both ship and reject are subject to
contingent execution. This illustrates how c-buridan

allows execution sequences to diverge and later rejoin.

Context propagation

Branching restricts steps to di�erent contexts only
when one threatens another. This policy results in
plans that are correct, but possibly ine�cient: the
agent may end up executing actions which are not ac-
tually useful, even though they do not interfere with
other steps in the plan. Suppose, for example, that the
ship action had an additional precondition|to have



a box|produced by an action get-box. c-buridan

would produce the plan fragment in the left of Fig-
ure 6, in which the get-box action is always executed,
whether or not ship is executed. We would prefer to
restrict the context of get-box so it is executed only
under the same circumstances as ship, as in the right
half of Figure 6. The contexts in which an action is

ship

inspect

get-box

{ok}{ }

{ }
ok

ship

inspect

get-box

{ok} {ok}

{ }
ok

Figure 6: Using propagation to constrain an action's
context.

useful depend on the contexts of the actions to which
it is connected by causal links. Thus we can determine
when an action will be useful by propagating contexts
along causal links, and we can restrict an action's con-
text based on the propagated information. (Draper et
al. 1993) de�nes precisely when an action is \useful" in
a plan, and develops a propagation algorithm that re-
stricts an action's context accordingly. The algorithm
is similar to to the way cnlp propagates context labels,
but is adapted to our more general plan structure.

Summary and Related Work

c-buridan is an implemented probabilistic contingent
planner, combining probabilistic reasoning about ac-
tions and information with symbolic least-commitment
planning techniques. Causal and informational e�ects
can be freely mixed, and the planner correctly distin-
guishes between them. The action representation mod-
els noisy and context-dependent information sources,
and allows reasoning about correlated information.
c-buridan generates contingent plans in which dif-
ferent actions are executed depending on the result of
prior observations, and the representation allows exe-
cution sequences to diverge and rejoin.
Related work in conditional planning includes work

in decision analysis as well as previous AI planning
systems. c-buridan uses a standard Bayesian frame-
work for assessing the value of information and rea-
soning about sequential decisions (Winkler 1972), but
our emphasis is on automated plan construction from
schematic action descriptions and an input problem,
whereas work in the decision sciences emphasizes mod-
eling issues.
Our approach to contingent planning borrows much

from the cnlp algorithm of (Peot and Smith 1992).
In particular, branching derives from cnlp's method
of conditioning. cnlp does not represent uncertainty
numerically; it uses an action model based on 3-valued
logic, and cannot represent an action that behaves dif-
ferently depending on the prevailing world state or on
chance factors. cnlp therefore cannot model noisy

sensing actions such as inspect. We also treat
contingencies di�erently: in cnlp, every time a new
execution context is introduced into the plan (by con-
ditioning or branching) a new instance of the goal step
is also added with that context|cnlp's plans are thus
completely tree-structured.
Cassandra (Pryor and Collins 1993) is another de-

terministic causal-link contingency planner. It manip-
ulates a more expressive action representation than
cnlp, but uses similar mechanisms for generating
branching (contingent) plans.
Future work is oriented toward in-

creasing c-buridan's expressive power (extending the
action representation and allowing plans to be evalu-
ated using explicit utility models) and toward building
e�ective applications (developing heuristic methods for
controlling the plan-generation and assessment process
that allow the solution of larger problems).
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