
 

  Abstract

 

Planning under uncertainty is a difficult task. If sensory
information is available, it is possible to do 

 

contingency
planning

 

 – that is, develop plans where certain branches are
executed conditionally, based on the outcome of sensory
actions. However, even without sensory information, it is
often possible to develop useful plans that succeed no matter
which of the allowed states the world is actually in. We refer
to this type of planning as 

 

conformant planning

 

.
Few conformant planners have been built, partly because

conformant planning requires the ability to reason about
disjunction. In this paper we describe Conformant
Graphplan (CGP), a Graphplan-based planner that develops
sound (non-contingent) plans when faced with uncertainty in
the initial conditions and in the outcome of actions. The
basic idea is to develop separate plan graphs for each
possible world. This requires some subtle changes to both
the graph expansion and solution extraction phases of
Graphplan. In particular, the solution extraction phase must
consider the unexpected side effects of actions in other
possible worlds, and must confront any undesirable effects. 

We show that CGP performs significantly better than two
previous (probabilistic) conformant planners.

 

Introduction

 

There are two basic approaches to planning when uncertain-
ty is present in the world:

1.

 

Contingency planning

 

 – develop plans where some
branches are executed conditionally, based on the out-
come of sensory actions.

2.

 

Conformant planning

 

 – develop non-conditional plans
that do not rely on sensory information, but still suc-
ceed no matter which of the allowed states the world is
actually in.

When sensory actions are cheap, but effectory actions are
expensive or dangerous, contingency planning makes a great
deal of sense. However, both of these options have their
place. In situations where sensing is difficult or impossible,
conformant planning may be the best (or only) alternative.
As an example, it might be difficult to determine if a partic-
ular work surface is clean, or if an instrument is sterile. Yet
it may be a simple matter to clean the work surface or steril-
ize the instrument, thus resolving the uncertainty. 

In these two examples, conformant planning involves re-
moving some of the uncertainty in the world by forcing

propositions into known states. More generally, conformant
planning involves case analysis to make sure the goals are
achieved in any of several situations. For example, suppose
a patient has one of several diseases, but it cannot be deter-
mined precisely which one. Finding a drug therapy plan that
covers all the cases (without bad drug interactions) is a con-
formant planning problem.

There are a number of planning systems that do contin-
gency planning, including: Warplan-C (Warren 1976),
CNLP (Peot and Smith 1992), SENSP (Etzioni, et al. 1992),
Plinth (Goldman and Boddy 1994), XII (Golden, Etzioni
and Weld 1994), Cassandra (Pryor and Collins 1996), C-
Buridan (Draper, Hanks and Weld 1994), and DTPOP (Peot
1998). However, only Buridan (Kushmerick, Hanks and
Weld 1995), C-Buridan and UDTPOP (Peot 1998) do con-
formant planning. All three of these systems are probabilis-
tic planners and are limited to propositional actions.
Furthermore, these planners are incredibly slow – so slow
that they make planners like UCPOP (Penberthy and Weld
1992) and Prodigy (Veloso et al. 1995) look positively zippy.

Recently, there has been a great deal of interest in Graph-
plan (Blum and Furst 1995, 1997), which seems to have a
significant performance advantage over planners like
UCPOP and Prodigy. As originally described, Graphplan is
limited to simple STRIPS operators. In this paper we de-
scribe Conformant Graphplan (CGP) – a modification of
Graphplan that deals with uncertainty by constructing con-
formant plans. Unlike Buridan, C-Buridan and UDTPOP,
CGP is not probabilistic – the initial conditions may contain
disjunction and actions may have uncertain outcomes, but
the system has no notion of the likelihood of different prop-
ositions.

The basic idea in CGP is to create a different plan graph
for each possible world. Unfortunately, this doesn’t quite
work, because, in the absence of sensing actions, an action
cannot be confined to one possible world. This complicates
the solution extraction phase of Graphplan. In particular,
when CGP selects an action in one possible world, it must
consider what might happen if it is in another possible
world. If the consequences of the action are undesirable in
that other possible world, CGP must 

 

confront

 

 the action in
that other possible world. In some cases it is possible to rec-
ognize problematic interactions between worlds and derive
mutual exclusion relationships between propositions in the
different possible worlds. This results in a considerable effi-
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ciency improvement but complicates the mutual exclusion
rules for CGP.

In the next section we briefly review the Graphplan algo-
rithm. In Section 3 we describe the modifications necessary
to make this algorithm handle uncertainty in the initial con-
ditions. In Section 4 we extend the algorithm to handle ac-
tions with uncertain outcomes. Finally, we show that CGP
dramatically outperforms previous conformant planners.

 

Graphplan background

 

Graphplan (Blum and Furst 1995, 1997) accepts action
schemata in the STRIPS representation – preconditions are
conjunctions of positive literals and effects are a conjunction
of positive or negative literals (i.e., composing the add and
delete lists). Graphplan alternates between two phases:

 

graph expansion

 

 and 

 

solution extraction

 

. The graph expan-
sion phase extends a 

 

planning graph

 

 until it has achieved a
necessary (but insufficient) condition for plan existence. The
solution extraction phase performs a backward-chaining
search for an actual solution; if no solution is found, the cy-
cle repeats. 

The planning graph contains two types of nodes, propo-
sition nodes and action nodes, arranged into levels. Even
numbered levels contain proposition nodes, and the zeroth
level consists precisely of the propositions that are true in the
initial state of the planning problem. Nodes in odd-num-
bered levels correspond to action instances; there is an odd-
numbered node for each action instance whose precondi-
tions are present (and are mutually consistent) at the previ-
ous level. Directed edges connect proposition nodes to the
action instances (at the next level) whose preconditions
mention those propositions. Directed edges connect action
nodes to subsequent propositions made true by the action's
effects.

The most interesting aspect of Graphplan is its use of lo-
cal consistency methods during graph creation – this appears
to yield a dramatic speedup during solution extraction.
Graphplan defines a binary mutual exclusion relation (“mu-
tex”) between nodes in the same level as follows:

1. Two action instances at level 

 

i

 

 are mutex if either 

•

 

Interference / Inconsistent Effects

 

: one action de-
letes a precondition or effect of another, or 

•

 

Competing needs

 

: the actions have preconditions
that are mutually exclusive at level 

 

i-1

 

. 

2. Two propositions at level 

 

i

 

 are mutex if all ways of
achieving the propositions (i.e. actions at level 

 

i-1

 

) are
mutex.

Suppose that Graphplan is trying to generate a plan for a
goal with 

 

n

 

 conjuncts, and it has finally extended the plan-
ning graph to an even level, 

 

i

 

, in which all goal propositions
are present and none are pairwise mutex. Graphplan now
searches for a solution plan by considering each of the 

 

n

 

goals in turn. For each such proposition at level 

 

i

 

, Graphplan
chooses an action 

 

a

 

 at level 

 

i-1

 

 that achieves the goal. This is
a backtracking choice – all possible actions must be consid-
ered to guarantee completeness. If 

 

a

 

 is consistent (non-mu-

tex) with all actions that have been chosen so far at this level,
then Graphplan proceeds to the next goal, otherwise if no
such choice is available, Graphplan backtracks. After
Graphplan has found a consistent set of actions at level 

 

i-1

 

 it
recursively tries to find a plan for the set of all the precondi-
tions of those actions at level 

 

i-2

 

. The base case for the recur-
sion is level zero – if the propositions are present there, then
Graphplan has found a solution. If, on the other hand,
Graphplan fails to find a consistent set of actions at some
level and backtracking is unsuccessful, then it continues to
alternate between growing the planning graph and searching
for a solution (until it reaches a set limit or the graph levels
off).

 

Negated Preconditions

 

Although methods for handling negated preconditions were
not presented in (Blum and Furst 1995, 1997), they are both
straightforward and essential prerequisites for handling con-
ditional effects. Clearly proposition 

 

p

 

 and 

 

¬p

 

 are mutually
exclusive in any given level. Whenever an action instance
deletes a proposition (i.e. has a negated literal as an effect),
one must add that negative literal to the subsequent proposi-
tion level in the planning graph.

 

Conditional effects

 

As originally described, Graphplan supports only simple
STRIPS operators. Recently, several authors have described
methods that allow Graphplan to handle operators with con-
ditional effects (Gazen and Knoblock 1997, Koehler et al.
1997, Anderson, Smith and Weld 1998). For pedagogical
reasons we adopt the simple approach used by Gazen and
Knoblock, which breaks operators with conditional effects
up into a number of separate operators (by considering all
minimal consistent combinations of antecedents in the con-
ditional effects). To illustrate, consider the ADL operator:

 

OP pre: P
eff: (and E   (when  F)

(when  G))

 

This operator would be expanded into the following four
STRIPS operators:

 

OP1 pre: (and P  )
eff: E

OP2 pre: (and P  )
eff: (and E G)

OP3 pre: (and P  )
eff: (and E F)

OP4 pre: (and P  )
eff: (and E F G)

 

We will refer to these four operators as 

 

aspects

 

 of the origi-
nal ADL operator.

 

Conformant Graphplan

 

To begin, we limit consideration to cases where uncertainty
occurs only in the initial conditions (i.e. action effects are
certain), but we relax this restriction in the following sec-

C1
C2

C1¬ C2¬

C1¬ C2

C1 C2¬

C1 C2
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tion. With Graphplan, the initial conditions are specified as
a conjunction of positive and negative literals. We augment
this language to allow the use of disjunction (

 

or

 

) and exclu-
sive or (

 

xor

 

).

 

Plan graph expansion

 

The basic idea behind conformant Graphplan is to express
the uncertainty in the initial conditions as a set of completely
specified 

 

possible worlds

 

, and run the Graphplan expansion
procedure on each of these possible worlds in parallel. To do
this, we first initialize a separate plan graph for each possible
world. The expansion phase of Graphplan is then the same
as for a normal plan graph; we just have to do it for each of
the possible worlds.

To illustrate, consider the simple “bomb in the toilet”
problem from (Mcdermott 1987). There are two packages,
one of which contains a bomb. Dunking the package with
the bomb in it renders the bomb disarmed. We formalize the
initial conditions as 

 

(and armed (xor In(P1) In(P2))). 

 

The goal is

 

¬Armed

 

 and the single operator

 

Dunk (?pkg) pre:
eff: (when In(?pkg) ¬Armed)

 

has only one aspect with non-empty effects:

 

Dunk* (?pkg) pre: In(?pkg)
eff: ¬Armed

 

Figure 1 shows the first level of the possible world plan
graphs (PWPGs) for this example. In world 

 

w

 

1

 

, 

 

Dunk*(P1)

 

 can
be used to achieve 

 

¬Armed

 

, while in world 

 

w

 

2

 

, 

 

Dunk*(P2)

 

 can
be used to achieve 

 

¬Armed

 

. In each of the two graphs there is
a mutex relationship between the 

 

Dunk*

 

 action and the per-
sistence of 

 

Armed,

 

 because a proposition and its negation
cannot both be true. Note that the two plan graphs in Figure
1 are separate – there are no links that cross from one world
to the other. In the solution extraction phase, we have to con-
sider interactions between aspects in different worlds but the
graphs will remain separate. Later on, we introduce explicit
mutual exclusion relationships between propositions in dif-
ferent PWPGs.

For convenience we use the notation 

 

p:w

 

 to refer to the
proposition 

 

p

 

 in world 

 

w

 

. Similarly, we use 

 

a:w

 

 to refer to as-
pect 

 

a

 

 in world 

 

w

 

.

 

Solution extraction

 

Graphplan searches backwards for a plan whenever all the
goal literals occur at the current level of the plan graph, and
none of those literals are mutex with each other. With uncer-
tainty present, we need to guarantee that the goal is satisfied
in all possible worlds. This requires several changes to the
solution extraction phase of Graphplan. First, CGP searches
for a plan at an even level only when the goal literals appear
at that level in each of the possible world plan graphs (and
none of those literals are mutex with each other). Second, the
search proceeds backwards one level at a time, simulta-
neously through all of the possible world plan graphs

 

1

 

.
Third, as is shown later, the search needs to consider inter-
actions across different possible worlds.

Consider the possible world plan graphs in Figure 1 and
recall that the goal is 

 

¬Armed

 

. At level 1, 

 

¬Armed

 

 is present in
both PWPGs, so CGP should search backwards for a plan.
The goal 

 

¬Armed

 

 in world 1 can only be achieved using the
aspect 

 

Dunk*(P1):w

 

1

 

. Likewise,

 

 ¬Armed

 

 in world 2 can only be
achieved using the aspect 

 

Dunk*(P2):w

 

2

 

. These two aspects
are not mutex, and their subgoals at level 0 are achieved by
the initial conditions. Thus, it appears that the plan of dunk-
ing both packages achieves the goal (and in this case it actu-
ally works to dunk both packages).

Unfortunately, there is a problem with this simple-mind-
ed approach. If we choose to perform an action, we must
consider its effects in all worlds, not just the specific world
in which the action was added. This is because (without
sensing) the planner doesn’t know which of the worlds it is
really in and therefore cannot confine the effects of an action
to just one possible world. To compound matters, each world
is different, so performing an action may lead to one aspect
of the action in one possible world and a completely differ-
ent aspect in another possible world.

To illustrate this problem, we augment the bomb in the
toilet problem by adding both a precondition (that the toilet
is not clogged) and an unconditional effect (that the toilet is
clogged afterwards) to the Dunk operation:

 

Dunk (?pkg) pre: ¬Clogged
eff: (and Clogged

(when In(?pkg) ¬Armed)

 

This action has two aspects:

 

Dunk– (?pkg) pre: (and ¬Clogged ¬In(?pkg))
eff: Clogged

Dunk+ (?pkg) pre: (and ¬Clogged In(?pkg))
eff: (and Clogged ¬Armed)

 

We also augment the initial conditions to include the fact
that the toilet is not initially clogged. With these additions
the problem cannot be solved for all possible worlds, be-
cause we will not be able to dunk both packages. Figure 2
shows the first level of the plan graph for this new problem.

 

Figure 1:  

 

Possible world plan graphs for the basic bomb in
toilet problem. Gray arcs indicate no-op steps for persistence of
propositions from one level to the next. Arcs between steps and
arcs between propositions are mutex relationships.

Dunk* P1( )
In P1( )

Armed

In P2( )¬

Armed¬

w1

In P1( )

Armed

In P2( )¬

Dunk* P2( )

In P1( )

Armed

In P2( )¬

Armed¬

w2

In P1( )¬

Armed

In P2( )

 

1. This is not strictly necessary. Other search strategies (like
searching the worlds sequentially) could also be used, but interac-
tions between aspects in different possible worlds would not be
recognized as early.
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At level 1, 

 

¬Armed

 

 is present in both PWPGs, so CGP would
search backwards for a plan. The goal 

 

¬Armed:w

 

1

 

 can only be
achieved using the aspect 

 

Dunk+(P1):w

 

1

 

. Likewise, the goal

 

¬Armed:w

 

2

 

 can only be achieved using the aspect

 

Dunk+(P2):w

 

2

 

.
Next we must consider the consequences of these two as-

pects in the opposite possible world. Consider the aspect

 

Dunk+(P1):w

 

1

 

. To guarantee that aspect in world 1, we must
perform the action 

 

Dunk(P1)

 

, which results in the aspect

 

Dunk+(P1):w

 

1

 

 as well as the aspect 

 

Dunk–(P1):w

 

2

 

. Since 

 

Dunk–
(P1):w

 

2

 

 is mutex with 

 

Dunk+(P2):w

 

2

 

, the plan of dunking both
packages fails. We formalize these intuitions as:

 

Definition 1: 

 

Suppose aspect 

 

a:w

 

 is present at level 

 

i

 

 in a
PWPG and 

 

a’:v

 

 ( ) is another aspect of the 

 

same

 

 action
at level 

 

i

 

 in the PWPG. We say that 

 

a:w 

 

possibly induces 

 

a’:v

 

,
and vice versa.

In the example above, 

 

Dunk+(P1):w

 

1

 

 possibly induces 

 

Dunk–
(P1):w

 

2 and vice versa. Likewise for Dunk–(P2):w1 and
Dunk+(P2):w2.

Sometimes it is possible to prevent an undesirable possi-
bly induced aspect using confrontation2. To prevent or con-
front aspect a’:v, the planner needs to assure that its
precondition is false at level i-1 and remains false during the
execution of the other aspects at level i. (Otherwise, a’:v
might fire if a is executed after its precondition becomes es-
tablished.) Thus if a’:v has preconditions p1, p2, …, pn the
planner must find a precondition pi:v that can be made false
at level i-1 and can be held false until level i+1. One easy way

to implement this is to check that the no-op operation per-
sisting ¬pj:v

1. exists at level i, and

2. is not mutex with any other aspect in the plan at level i.

If so, this no-op is added to the plan, and its precondition
¬pj:v is added to the subgoals at level i-1. Note that when do-
ing confrontation, there may be a choice of which precondi-
tion pj:v to confront. This provides an additional backtrack
point during the solution extraction process.

With the notions of possibly induced aspects and con-
frontation, we can now describe the solution extraction
phase of CGP more precisely. Let i+1 be the newest proposi-
tion level in the graph and let Si+1 (the set of subgoals to be
achieved at level i+1) be initialized to the set of goals G
tagged with each possible world: .

1. Initialize Ai (the set of aspect-world pairs chosen at
level i) to the empty set.

2. For each subgoal  choose (backtrack point)
an aspect a:w at level i that achieves g:w, and is consis-
tent (not mutex) with every other aspect in Ai. Unless
a:w is already in Ai:

• Add a:w to the set Ai.

• For each precondition p:w of a:w, unless p:w is al-
ready in Si-1, add p:w to Si-1.

3. Let Di refer to the set of all aspects possibly induced by
aspects in Ai. For each aspect a:w in Ai, confront (back-
track point) each possibly induced aspect in Di that is
mutex with a:w.

4. If i=1, return the completed plan A1, A3, …, An-1, other-
wise reduce i by 2 and repeat.

Note that in doing the confrontation in step 3, a new no-op
may get added to the set Ai. This no-op must also be made
safe from all aspects in Di. As a result, step 3 continues as
long as Ai keeps growing. (Di does not grow during this pro-
cess because no-ops don’t induce other aspects.)

Induced mutex
In the example in Figure 2, we had to commit to the aspect
Dunk+(P1):w1 during solution extraction before we discov-
ered that the possibly induced aspect Dunk–(P1):w2 could not
be prevented. Since Dunk–(P1):w2 was mutex with the desired
aspect Dunk+(P2):w2, the plan failed. In fact, we can discover
this problem much earlier. The key is to recognize that
Dunk+(P1):w1 always induces the aspect Dunk–(P1):w2 at that
level. Since Dunk–(P1):w2 is mutex with Dunk+(P2):w2 this
means that Dunk+(P1):w1 should also be labelled as mutex
with Dunk+(P2):w2. We formalize this notion with the follow-
ing definition:

Definition 2: Suppose aspect a:w is present at level i of a
PWPG, and a’:v ( ) is another aspect of the same action
at level i in the PWPG. We say that a:w necessarily induces
a’:v at level i if for every precondition pj of a’:v either:

¬pj:v is not present at level i-1, or

¬pj:v is mutex with some precondition of a:w at level i-1.

Figure 2:  A Possible worlds plan graph when the dunk
operation clogs the toilet.

2. In UCPOP, confrontation is used to prevent undesirable condi-
tional effects of a chosen action within a single world (no uncer-
tainty). Here we do not need to do this within a given possible
world because we expanded conditional effects out into aspects
that are mutually exclusive. However, even with this expansion
into aspects, we still need to prevent possibly induced aspects
from occurring in other possible worlds.
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These conditions guarantee that a’:v cannot be confronted at
level i.

In the example above, we note that Dunk–(P1):w2 cannot be
confronted at level 1, because none of the negations of its
preconditions are present at level 0. As a result, Dunk+(P1):w1
necessarily induces Dunk–(P1):w2. (The converse also holds
in this case, as do similar relationships for the aspects of
Dunk(P2).)

Given the definition for necessarily induces, we can now
state the induced mutex rule:

Induced mutex: If aspect a:w necessarily induces a’:v at
level i and a’:v is mutex with another aspect b:u at level i,
then a:w is also mutex with b:u.

This rule is illustrated in Figure 3. Figure 4 illustrates just a
few of the resulting induced mutex relationships for the ex-
ample of Figure 2. The most important of these is that
Dunk+(P1):w1 and Dunk+(P2):w2 are mutex. This means that,
according to the usual mutex rules, ¬Armed:w1 and ¬Armed:w2
are mutex. As a result, no backward search will take place
for this problem at level 2.

Note that deriving induced mutex relationships is strictly
an efficiency measure. Without it CGP still discovers con-
flicts due to induced aspects by virtue of the confrontation
mechanism (during solution extraction). However, as we
will illustrate in the results section, deriving induced mutex

relationships substantially improves the performance of
CGP. 

Conversely, deriving induced mutex relationships, does
not eliminate the need for confrontation during solution ex-
traction. Induced mutex relationships only eliminate con-
flicts do to necessarily induced aspects. They do not
eliminate potential conflicts due to possibly induced aspects.

Actions with uncertain outcomes
So far we have assumed that all uncertainty results from un-
certainty in the initial conditions. We now expand our treat-
ment to include actions with uncertain outcomes. In keeping
with the representation used in Buridan (Kushmerick, Hanks
and Weld 1995), we specify uncertain outcomes for an ac-
tion by replacing the effects by a list of disjoint outcomes,
each element of which is a traditional effects list. (An ordi-
nary STRIPS action would therefore have only a single ele-
ment in its outcomes list.)

For example, suppose that after performing a Dunk oper-
ation it is uncertain whether the toilet will be clogged or not.
Thus, the Dunk operator becomes:

Dunk (?pkg) pre: ¬Clogged
outcomes: (when In(?pkg) ¬Armed)

(and Clogged
(when In(?pkg) ¬Armed))

As before, we break this action into two aspects:

Dunk– (?pkg) pre: (and ¬Clogged ¬In(?pkg))
outcomes: Ø

Clogged

Dunk+ (?pkg) pre: (and ¬Clogged In(?pkg))
outcomes: ¬Armed

(and Clogged ¬Armed)

where Ø signifies the empty effect. (Note that we need to in-
clude the empty outcome for aspect Dunk–, to indicate that
the aspect may have no effect.)

Plan graph expansion
When uncertainty is confined to the initial conditions, ex-
pansion of each PWPG was essentially the same as for an or-
dinary plan graph. For actions with uncertain outcomes, this
is no longer the case – each time such an action occurs in the
plan graph, the number of possible worlds is multiplied by
the number of possible outcomes of the action. Consider the
aspect Dunk+(P1) in the plan graph shown in Figure 5. The

world w is split into two possibilities, w1 and w2 correspond-

Figure 3:  Induced mutex relationships.

Figure 4:  Two of the induced mutex relationships for the bomb
in the toilet problem. For clarity, the static preconditions In(P1)
and In(P2), and some of the other mutex relationships have been
omitted from the PWPG. For this problem, there are many more
induced mutex relationships between the dunk operations and
persistence actions. For example, Dunk+(P1):w1 is mutex with the
persistence of Armed in w1, so Dunk–(P1):w2 will be mutex with
the persistence of Armed in w1.
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ing to the two outcomes of Dunk+(P1). When a world is split,
the outcomes of other actions must be split as well. For ex-
ample, the persistence action for In(P1) supports the proposi-
tion In(P1) in both of the new possible worlds.

In our example, suppose that the aspect Dunk–(P2) also oc-
curs at this level of the plan graph. It too has an uncertain
outcome, so world w really must be split into four possibili-
ties, as shown in Figure 6.

The splitting operation requires changes to the expansion
phase of CGP. As before we add each of the new aspects to
the plan graph for a possible world. However, we delay add-
ing the propositions to the next proposition level until all the
aspects are added (so that we know how many ways the pos-
sible world must be split.)

Consider one particular world w at the current level of the
plan graph. Let U={u1,…, un} be the aspects in that world with
uncertain outcomes and let oj be the number of different out-
comes for aspect uj. World w will be split into

new worlds. We label these new possible worlds with a se-
quence of subscripts, s1…sn, one subscript for each of the n
aspects with uncertain outcomes. The total set of possible
worlds derived from w will be:

If a is an aspect with no uncertainty, then its effects get added
to each of the above possible worlds, and links are added
from a to those effects. However, if a is an uncertain aspect
um, the effects of outcome k of a will only get added to the
subset of the worlds corresponding to outcome k, namely,
the subset where sm=k:

As before, these effects get linked to the aspect a.
If aspects with uncertain outcomes appear frequently in

the plan graph, this can lead to an explosion in the number

of possible worlds. One trick for cutting down the number of
possible worlds is to take advantage of mutex relationships
between aspects. In particular, if two mutex aspects have un-
certain outcomes, they can share possible worlds, so the
number of possible worlds required is the maximum (rather
than the product) of the number of outcomes for the two as-
pects. In general, sharing worlds between three or more as-
pects requires that they all be pairwise mutually exclusive.
This leads to the interesting side problem of partitioning the
uncertain aspects into mutex cliques in order to minimize the
total number of worlds created.

Mutual exclusion
Remarkably enough, world splitting does not require any
changes to the solution extraction algorithm we gave in the
previous section. However, actions with uncertain outcomes
do mandate a slight change in the definition of mutex rela-
tionships. Since we cannot predict which outcome of an un-
certain aspect will actually occur, we must be conservative
and allow for the worst. In particular, if any outcome of an
aspect deletes a precondition or possible effect of another as-
pect, the two aspects are mutex. To fix this, we modify one
of Graphplan’s basic mutex rules as follows:

• Interference / Inconsistent Effects: Two aspects at level
i are mutex if one action can possibly delete a precon-
dition or possible effect of another.

Results
CGP is implemented in Common Lisp and accepts domains
in the PDDL format, augmented to allow disjunction in the
initial conditions and operators with uncertain outcomes.
The implementation generates a single plan graph in which
each proposition at each level is labelled with the possible
world that it is in.

Table 1 shows the performance of Buridan (Kushmerick,
Hanks and Weld 1995), UDTPOP (Peot 1998), CGP, and
CGPx (CGP without induced mutex relationships) on a se-
ries of increasingly complicated “bomb in the toilet” prob-
lems. The domain contains two operator schemas, Dunk and
Flush. Dunk clogs the toilet unconditionally and disarms the
bomb if it is present in the dunked package. Flush clears a
clogged toilet. The problems vary the number of toilets
available (from 1 to 3) and the number of packages that the
bomb can be in (from 2 to 6). 

Both Buridan and UDTPOP are propositional, so we cre-
ated propositional versions of the domains and problems for
these systems. These planners are also probabilistic; so for
the initial conditions, we divided the probability mass equal-
ly among each one of the initial possible worlds. As with
CGP, the operators for these test problems all had certain
(probability 1) outcomes. 

As can be seen in the table, Buridan’s performance was
abysmal; it was only able to solve the three tiniest (two pack-
age) problems. On all other problems, progress was halted
after the generation of 100,000 nodes (which corresponded
to somewhere between 5 and 7 minutes of CPU time). UDT-

 

Figure 6:  World splitting from two uncertain outcomes.
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POP performed much better, but still had difficulty with
larger numbers of packages.

CGPx (CGP without induced mutex) outperformed
UDTPOP slightly on the single toilet problems. However, as
the number of toilets was increased, the gulf widened con-
siderably. In fact, for three toilets and four or more packages
CGPx is more than two orders of magnitude faster than
UDTPOP. We speculate that this advantage is due to Graph-
plan’s ability to deal with actions in parallel. For example, in
the three toilet problems, three dunk operations can be done
in parallel at level 1, three flush operations can be done in
parallel at level three, and so on. As a result, the depth of
search required to find a plan is significantly lower than for
more traditional partial-order planners.

Although CGPx performs better than UDTPOP, full CGP
with induced mutex relationships is far superior. In fact CGP
is one to two orders of magnitude faster than CGPx on the
hardest problems. CGP is two to three orders of magnitude
faster than UDTPOP on the harder problems.

Despite this impressive improvement, even CGP slows
down significantly as the number of packages grows beyond
seven. The reason is that, although this problem is conceptu-
ally trivial, it is combinatorially quite hard. As the number of
packages grows, the solutions consist of progressively long-
er sequences of dunking and flushing operations. For exam-
ple, with one toilet and seven packages, 13 steps are
required. The trouble is, the packages can be dunked in any
of 7! possible orders. So CGP spends all of its time generat-
ing and investigating these different possible orderings.

One obvious concern is how CGP performs as the amount
of uncertainty increases. If there are k independent uncertain

propositions in the initial conditions, there will be  possi-
ble worlds. To see what effect this has on CGP, we added be-
tween one and five irrelevant uncertain propositions to the
initial conditions for the single toilet problems. The results
are shown in Table 2. The additional uncertainty significant-
ly degrades performance, more so for the problems that re-
quire a deeper plan graph. It is certainly possible to use
preprocessing to eliminate irrelevant propositions, and
hence control the growth in number of possible worlds, but
this will not be enough to allow CGP to solve real problems
with many real sources of uncertainty.

Conclusions
CGP is a Graphplan-based planner that does conformant
planning; it attempts to construct non-contingent plans that
succeed no matter which of the allowed states the world is
actually in. The central idea behind CGP is to create separate
plan graphs for each possible world. The expansion phase of
Graphplan is changed so that it 1) adds aspects to the plan
graph for each possible world separately, and 2) further
splits the possible worlds when aspects with uncertain out-
comes are added to a graph.

The solution extraction phase of Graphplan tries to
achieve the goal in all possible worlds. To preserve sound-
ness, it must consider interactions between aspects chosen in
the different possible worlds. More precisely, it must use
confrontation whenever an aspect chosen in one world in-
duces an undesirable aspect in another.

Finally, additional mutex relationships can sometimes be
inferred between aspects in different possible worlds (which
leads to mutex relationships between propositions in differ-
ent possible worlds). As shown in the results section, these
induced mutex relationships significantly improve the per-
formance of the solution extraction process.

Our objective in developing CGP was to see if the im-
pressive performance of Graphplan on STRIPS planning
problems would extend to planning problems involving un-
certainty. Our experiments indicate that the answer is yes.
CGP performs significantly better than previous conformant
planners. However, there are some drawbacks and limita-
tions to our approach.

First of all, although the possible worlds mechanism is
conceptually clear, it is also cumbersome. As the amount of

Toilets Pkgs Steps Buridan UDTPOP CGPx CGP

1 2 3 .44 .072 .010 .009

3 5 * .70 .073 .021

4 7 * 8.4 3.24 .057

5 9 * 149 119 .21

6 11 * * * .94

2 2 2 .57 .15 .007 .006

3 4 * 3.0 .024 .022

4 6 * 99 .071 .04

5 8 * * 156 1.2

6 10 * * * 2.7

3 2 2 1.0 .26 .008 .007

3 3 * 5.2 .011 .011

4 5 * * .15 .070

5 7 * * .92 .15

6 9 * * 6.4 .27

Table 1: Mean CPU times for various instances of the bomb clogs
toilet example. All times are in seconds on a Macintosh 8600/300
using MCL 4.2. A * indicates that no solution was found in 5 CPU
minutes. All tests were run 10 times. The largest variation (σ = 7%)
was on the smallest (first) problem.

Pkgs
Irrelevant uncertain propositions

0 1 2 3 4 5

2 .009 .018 .065 .46 3.4 29

3 .021 .070 .53 13.3 * *

4 .057 .33 9.1 * * *

5 .21 3.2 * * * *

6 .94 38 * * * *

Table 2: Mean CPU times for varying number of packages (one
toilet) with additional irrelevant uncertain propositions in the
initial conditions. Note that five additional irrelevant propositions
corresponds to multiplying the number of possible worlds by .

2
k

2
5



April 8, 1998 8

uncertainty grows, the number of possible worlds grows ex-
ponentially and performance deteriorates. To fix this, we
would like to confine the representation of uncertainty to
only those propositions that we are uncertain about. In the
bomb in the toilet problem, if Dunk clogs the toilet uncondi-
tionally, there should never be any uncertainty about wheth-
er the toilet is clogged or not. We would therefore like to
avoid duplicating clogged and ¬clogged in all the possible
worlds. Second, we would like to be able to treat indepen-
dent sources of uncertainty independently, without generat-
ing the cross product of the possible worlds. Although we
have experimented with some ways of doing this, we have
not yet found a completely satisfactory solution. There ap-
pear to be difficult trade-offs here; if we use a more compact
representation, we loose the ability to capture some of the
mutual exclusion relationships, which degrades perfor-
mance of the solution extraction phase.

A second limitation of CGP is that it does not take prob-
ability information into account. We believe that this is not
an inherent limitation. Optimistic probabilities could be cal-
culated and stored with each proposition at a level during the
expansion phase. Solution extraction should not be attempt-
ed at a level unless all the goal propositions appear at that
level with probabilities above the desired thresholds. The ac-
tual probabilities for a plan could be computed during the
solution extraction phase. The Graphplan framework also
seems natural for multiple support (Kushmerick, Hanks and
Weld 1995), since all ways of achieving a proposition are
represented at a level.

Finally, the possible worlds approach taken here can also
be used to do sensory and contingent planning. We have
done this, and the technique and results are described in
(Weld, Anderson and Smith, 1998).
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