
Artificial Intelligence and Collective Intelligence
Daniel S. Weld

University of Washington (CSE)
Seattle, WA

weld@cs.washington.edu

Mausam
Indian Institute of Technology

Delhi, India
mausam@cse.iitd.ac.in

Christopher H. Lin
University of Washington (CSE)

Seattle, WA
chrislin@cs.washington.edu

Jonathan Bragg
University of Washington (CSE)

Seattle, WA
jbragg@cs.washington.edu

The vision of artificial intelligence (AI) is often mani-
fested through an autonomous software module (agent) in
a complex and uncertain environment. The agent is capa-
ble of thinking ahead and acting for long periods of time in
accordance with its goals/objectives. It is also capable of
learning and refining its understanding of the world. The
agent may accomplish this based on its own experience, or
from the feedback provided by humans. Famous recent ex-
amples include self-driving cars (Thrun 2006) and the IBM
Jeopardy player Watson (Ferrucci et al. 2010). This chapter
explores the immense value of AI techniques for collective
intelligence, including ways to make interactions between
large numbers of humans more efficient.

By defining collective intelligence as “groups of individ-
uals acting collectively in an intelligent manner,” one soon
wishes to nail down the meaning of individual. In this chap-
ter, individuals may be software agents and/or people and
the collective may consist of a mixture of both. The rise
of collective intelligence allows novel possibilities of seam-
lessly integrating machine and human intelligence at a large
scale – one of the holy grails of AI (known in the litera-
ture as mixed-initiative systems (Horvitz 2007)). Our chap-
ter focuses on one such integration – the use of machine in-
telligence for the management of crowdsourcing platforms
(Weld, Mausam, and Dai 2011).

Crowdsourcing is a special case of collective intelligence,
where a third party (called the requestor) with some internal
objective solicits a group of individuals (called workers) to
perform a set of inter-related tasks in service of that objec-
tive. The requestor’s objective may be expressed in the form
of a utility function to be maximized. For example, a re-
questor might wish to obtain labels for a large set of images;
in this case, her utility function might be the average quality
of labels subject to a constraint that no more than $ X dollars
be spent paying workers. We assume that the workers act in-
dependently, interacting only through the shared tasks. Each
worker has an individual utility function, which is often dif-
ferent from the collective’s utility function. Furthermore, we
assume that their utility functions are independent of each
other. The AI subfield of multi-agent systems considers even
richer models, in which individual agents may reason about
the objectives of other agents, negotiate, and bargain with
each other (Weiss 2013). We won’t discuss these techniques

Copyright c© 2014, Dan Weld et al. All rights reserved.

here, but the chapter on game theory explores some of these
issues.

There are two natural points of connection between AI
& crowdsourcing: 1) AI for crowdsourcing and 2) crowd-
sourcing for AI. While this chapter centers on the former we
note that in recent years crowdsourcing has had a significant
impact on AI research as well – a great many projects use
crowdsourcing to label training sets as input for data-hungry
supervised learning algorithms (Snow et al. 2008a; Callison-
Burch 2009; Hsueh, Melville, and Sindhwani 2009).

Why does crowdsourcing need AI? Crowdsourcing is an
effective medium for congregating a large set of workers
(usually virtually) who assist with a common goal. This al-
lows for creative new applications that use the wisdom of
crowds or the round-the-clock availability of people (e.g.,
(Bigham et al. 2010)). At the same time, the shear volume
of tasks, and highly varying skills and abilities of workers
typically make it infeasible to manually manage the task al-
location as well as quality control. Moreover, the design of
crowdsourced interfaces and workflows to accomplish a new
task remains cumbersome and expensive. For example, of-
ten a task may get routed to a worker not skilled enough or
interested in it. Different tasks may require slightly different
workflows to achieve high quality. Different task instances
may be individually easier or more difficult, requiring less or
more work (iterations) on them. These and other challenges
necessitate the use of automated techniques for the design
and management of crowdsourcing processes.

A long-term vision of AI for crowdsourcing is to enable
optimal design of workflows and management of task in-
stances, thereby making crowdsourcing platforms highly ef-
ficient, saving thousands of man-hours and millions of dol-
lars, and also making crowdsourcing really easy to use for a
novice requestor. AI is a natural fit for this vision because,
in general, AI algorithms are great at building models, draw-
ing inferences, and detecting outliers from the data. They
are also effective in taking decisions in uncertain environ-
ments towards maximizing an objective. In this chapter, we
discuss several uses of AI in this space – we describe learn-
ing algorithms that model the accuracy of crowd members,
aggregation methods for predicting true answers from error-
prone and disagreeing workers, and AI control algorithms
that choose which tasks to request and which individuals
should work on them.

• requestor - an entity who is assembling a crowd for an objective.

• objective - what the requestor is trying to accomplish
• worker - an entity answering questions or performing tasks.
• task - what a worker is asked to do. Often responding to a mul-

tiple choice question.
• response - what a worker returns when given a question; also

called a label.
• answer - the true, objective answer to a question, when one ex-

ists; ideally a worker’s response will be the answer, but some-
times workers make mistakes.

• workflow - a set of tasks, usually interrelated, which are given
to workers to perform. Some tasks may be performed automati-
cally by programs, but most are given to human workers.

Figure 1: Terminology used in this chapter.

Preliminaries
Because different individuals in a crowdsourced collective
may have differing priorities, it’s important to be clear on
terminology; please refer to Figure 1. We’ll consider a va-
riety of objectives in the chapter, but the most common ob-
jective is to accurately label a set of examples; here the re-
questor needs to choose how many workers should be given
a labeling task and how their responses should be aggregated
to estimate the best answer (i.e., the most likely answer).
Usually, the requestor’s objective includes minimizing the
number of tasks given to workers, either because the work-
ers are paid per task or just to avoid burdening volunteer
workers. Sometimes, however, a requestor is interested in
minimizing latency — i.e., being able to compute an answer
quickly — and this may require additional tasks, as we ex-
plain in the chapter’s final section.

Either way, we focus on algorithms for helping the re-
questor decide what to do. As you’ll see these methods in-
clude different types of machine learning, expectation max-
imization, optimization, policy construction for partially-
observable Markov decision processes (POMDPs), and re-
inforcement learning.

The choice of algorithm depends not just on the re-
questor’s objective but also on the labor market, an eco-
nomic term we’ll use even if the workers are volunteers and
not being paid. In some markets, like Amazon Mechanical
Turk, a requestor can post tasks to the market and work-
ers get to choose which task they wish to attempt. In other
markets, one can directly assign specific tasks to individual
workers. In all cases it turns out to be useful to track work-
ers’ responses in order to construct a model of their accuracy
and maybe which kinds of tasks they enjoy. In theory, a hu-
man worker is capable of performing an arbitrarily complex
task, but we focus on simple jobs known as microtasks. For
example, we consider small tasks like multiple-choice ques-
tions, writing or editing a short text description, or drawing
a bounding box on an image. Often a complex objective can
be achieved by a workflow comprised of these simple tasks.
Finally, as mentioned in the introduction, we assume that in-
dividual workers are largely independent of each other; as
a result, our approaches may not work well if malevolent

workers collude in order to deceive the requestor. Fortu-
nately, such behavior is extremely rare in practice.

The rest of this chapter has a simple organization. The
next section discusses how to best interpret the output of
error-prone workers. The final section discusses the control
problem “What’s the best job to do next and who should
work on it?” considering objectives such as minimizing the
amount of labor required or minimizing the time necessary
to perform the task.

Collective Assessment & Prediction
To account for variability in worker skill, crowdsourcing re-
questers often ask multiple workers to perform the same (or
related) tasks and then aggregate responses to infer the cor-
rect answers. In practice, the effectiveness of crowdsourcing
can be highly dependent on the method for aggregating re-
sponses, and numerous strategies have been investigated. In
this section, we describe a set of “post hoc” response aggre-
gation methods that attempt to glean as much information
as possible after task responses have been received. In the
next section we turn to more advanced methods that seek to
assign a given worker the most important task to perform or
the most informative question to answer.

Suppose that an AI system is given a set of multiple-
choice questions, a set of workers, and a set of their re-
sponses such that some questions are answered by more than
one worker. We assume that the questions are objective, i.e.
each has a unique correct answer, but workers may not an-
swer correctly. Finally, we assume that the majority of work-
ers are more likely to be correct than to make a mistake.1
Artificial intelligence systems can work without information
beyond the workers’ proposed answers. The system’s ob-
jective is to infer the correct answers from the noisy worker
responses.

While we can mitigate the negative effects of imperfect
workers in many ways, the techniques we consider in this
section revolve around two common patterns. The first idea
is to exploit redundancy, comparing different workers’ re-
sponses to the same question. Indeed, Snow et al. (Snow
et al. 2008b) found that simple majority voting allowed a
crowd of novices to outperform an expert on natural lan-
guage labeling tasks, like sentiment analysis and judging
word similarity. The second common pattern is to learn and
track the skills of the workers. Rather than a simple major-
ity vote, these approaches weigh worker responses by us-
ing models of workers’ abilities. In the simplest case, such
a model might be a single “accuracy” number, but models
can grow arbitrarily complex. For example, if one knew a
worker was excellent at translating French to English, one
might suspect that her English to French translations would
also be of high quality.

Simple Approachs to Collective Assessment
We first consider algorithms that improve on vanilla major-
ity voting by modeling worker skill. These are the bread

1If the majority of workers are likely to agree on an incorrect an-
swer, then more sophisticated methods, like Bayesian Truth Serum,
are necessary to reveal the right answer (Prelec and Seung 2007).

Given the relative answer
probabilities, compute new

parameter values that maximize
the likelihood of each worker’s

response.

Using the current values of the
worker parameters, Pw(r|a), and

their responses, estimate the
probability of each answer.

Given worker
responses, {r}, to a set

of questions

Initialize worker
parameters, Pw(r|a), to

random values.

Iterate until parameters & answer probabilities
stop changing

Figure 2: Expectation maximization repeats two steps until
convergence, alternately estimating the best answers, then
updating its model of workers.

and butter algorithms. The simplest approach, and one com-
monly used in practice, uses supervised learning, which
gives workers questions for which “gold standard” answers
are already known (Dai, Mausam, and Weld 2011a). Work-
ers who fail to correctly answer gold-standard questions are
dismissed or have their weights lowered. To avoid gaming
behavior (e.g., where a human might answer the first few
questions and then, after convincing the system of his or her
aptitude, unleash a simple bot to answer remaining ques-
tions, likely with greatly reduced accuracy), it is common
to intermix questions with known and unknown answers.
However, even this strategy is foiled by scammers build-
ing bots which utilize databases of known questions, lead-
ing to elaborate strategies for programmatically generating
an unbounded number of gold-answer questions (Oleson et
al. 2011).

Collective Assessment using Expectation
Maximization
More sophisticated approaches eschew gold-answer ques-
tions entirely, instead using unsupervised learning to jointly
estimate worker accuracy and consensus answers together.
As a first example, we consider early work by Dawid and
Skene (Dawid and Skene 1979). Although they originally
pose their approach in terms of medical diagnosis, it clearly
fits the crowdsourcing model presented above. There is a
single question with an unknown correct answer and also
parameters, Pw(r|a), for each worker and each possible re-
sponse, describing the probability that worker w will give
response r when the true answer is a. These probabilities
can be seen as a very simple model of worker abilities —

an expert worker would have Pw(r|a) close to zero for all
r 6= a. Dawid and Skene make an important simplification
— they assume that the worker’s responses are conditionally
independent of each other given the true answer. In other
words, if we already knew the true answer, then our esti-
mate of Pw(r|a) should not be affected regardless of how
other workers answer the question. David and Skene use an
iterative algorithm called expectation-maximization (EM) to
estimate which answers are correct at the same time that the
algorithm learns the model of worker accuracies.

EM embodies the intuition that a good worker is one
whose answers agree with those of other workers. More pre-
cisely, a great worker’s answers agree with those of other
good workers. Unfortunately, this idea yields a chicken-
and-egg dilemma: how can you score one worker with-
out already knowing the quality of her peers? EM solves
this problem by computing better and better estimates until
reaching a fixed point. It starts by taking a majority vote and
using that to determine an initial guess of the correct answer
for each question. EM then scores each worker (Pw) based
on how many answers she got right. In subsequent itera-
tions, EM weights each worker’s votes based on her score,
so better workers (with higher Pw scores) count more. Since
weighted votes likely produce a different set of correct an-
swers, the next step is to recompute each worker’s score.
This process repeats until quiescence. As EM assigns higher
weights to good workers and lower weights to poor workers,
it allows a single strong worker to overrule multiple weak
workers and the predicted answer may no longer be the ma-
jority vote.

More precisely, EM is a general method for learning
maximum-likelihood estimates of hidden parameters. As
shown in Figure 2, it initializes the probability parameters
to random values and then using the worker responses, re-
peats the following steps to convergence:

• Expectation: Given estimates of all the probabilities,
Pw(r|a), compute the probability of each possible answer
using Bayes’ rule and the assumption of conditional inde-
pendence.

• Maximization: Given the posterior probability of each
possible answer, compute new parameters Pw(r|a) that
maximize the likelihood of each worker’s response.

The model of Dawid and Skene is a relatively simple one,
and researchers have created new models to address its vari-
ous weaknesses. Whitehill et al. (Whitehill et al. 2009) note
that worker responses are not really independent unless con-
ditioned on both the correct answer and the question diffi-
culty. To see this, suppose that on average students have
an 80% chance of correctly answering textbook questions.
Then we would expect that Jane, in particular, would have
an 80% chance when confronted with question 13. However,
if we were told that all 25 of the other students in the class
had gotten the problem wrong, then we’d probably suspect
that 13 is especially hard and we’d want to revise our es-
timate of Jane’s chances downwards. Unfortunately, Dawid
and Skene’s model cannot make this inference, but Whitehill
et al.’s uses information about workers’ errors to update its
belief about problem difficulty and hence about other work-

ers’ accuracies. The algorithm still follows the EM pattern
shown in Figure 2, but the probability computations are a bit
more complex.

Welinder et al. (Welinder et al. 2010) take Whitehill’s ap-
proach a step further, designing a model with general multi-
dimensional parameters. Questions have many features, one
of which could be difficulty, and workers are modeled as lin-
ear classifiers who make their responses by weighting those
features. This allows Welinder et al.’s model to account not
only for worker skill and question difficulty, but also arbi-
trary worker and question features. For instance, they can
learn that one worker is particularly good at discerning dif-
ferent types of birds, but only when viewed from the back.
Surprisingly, these question features need not be specified in
the model a priori; their algorithm learns the features! While
this leads to excellent performance at answer assessment, it
does have a drawback — it may be difficult or impossible
for a human to understand the learned model.

All the models we have covered thus far assume that one
knows the set of possible answers before giving tasks to
workers. Lin et al. (Lin, Mausam, and Weld 2012a) address
the case when either requesters cannot enumerate all pos-
sible answers for the worker or when the solution space is
infinitely large. They use a model called the Chinese Restau-
rant Process (Aldous 1985) that often matches distributions
seen in nature. Specifically, they specify a generative proba-
bilistic model where workers answer a question by returning
a previously-seen response with probability proportional to
the number of other workers who have given that response
and returning a novel response with some small fixed proba-
blity. The benefits of this model include 1) the ability to han-
dle open-ended questions, and 2) the capacity to deal with
common mistakes that are repeated by multiple workers.

The AI literature abounds with various approaches to
“post hoc” response aggregation. Kajino et al. (Kajino,
Tsuboi, and Kashima 2012) note that using EM to learn pa-
rameters can lead to local optima. They propose instead to
model the repeated labeling problem as convex optimiza-
tion, so that a globally optimal solution can always be ob-
tained. Prelec et al. (Prelec and Seung 2007) develop an
algorithm that can find correct answers missed by the ma-
jority by asking workers to predict coworker mistakes. Liu
et al. (Liu, Peng, and Ihler 2012) apply belief propagation
and mean field approximation, techniques beyond the scope
of this book, to perform the inference required to learn cor-
rect answers.

While we cannot hope to describe the entirety of the lit-
erature, we note that researchers are now beginning to apply
the full force of state-of-the-art machine learning algorithms
to this problem. To make comparison easier, Sheshadri and
Lease (Sheshadri and Lease 2013) have developed an open-
source shared task framework that allows benchmarking of
response aggregation methods.

Gradually Moving to Fully-Automated Approaches
The next set of approaches seek to do more than simply rec-
oncile multiple answers to a set of questions — they use
machine learning to create an autonomous system that can
answer questions itself. Raykar et al. (Raykar et al. 2010)

propose a model that can not only learn about worker abili-
ties and infer correct answers, but also jointly learn a logistic
regression classifier that predicts future crowd responses or
the answer — obviating the need to consult human workers
in the future. They also use an EM pattern to learn their
model.

Wauthier et al. (Wauthier and Jordan 2011) relax the idea
that repeated labeling tasks must contain a “correct answer.”
Instead, they build a model that describes each worker’s id-
iosyncrasies, which they use to predict each worker’s re-
sponse to a future question, q, as a function of features of
q. Since this model handles subjective questions, it’s quite
powerful. Furthermore, it can be used to answer objective
questions by adding an imaginary, virtual worker to define
the gold standard, desired answers for a subset of the ques-
tions. Now one can simply use Wauthier et al.’s method to
predict how this imaginary “always correct” worker would
answer future questions. However, Wauthier et al.’s method
has drawbacks as well. In contrast to the preceding tech-
niques, which happened to all be unsupervised, it relies on
supervised machine learning, which means that it requires
that one already know the answers to some of the questions
in order to predict the answers to others.

The ultimate objective of Raykar et al. and Wauthier et al.
is to replace human workers rather than derive consensus
from their answers. Their methods assume that there exist
features for the question that would allow a learned classifier
to accurately predict the answer. However, crowdsourcing is
often used precisely to answer questions which are beyond
AI’s state of the art.

Instead of bootstrapping the learning process by us-
ing multiple workers to redundantly answer each question,
Dekel and Shamir (Dekel and Shamir 2009b; 2009a) devise
algorithms to limit the influence of bad workers. Specif-
ically, they use workers’ responses to train a support vec-
tor machine classifier, and they add constraints to the loss
function such that no one worker, and no bad worker, can
overly influence the learned weights. They also introduce a
second technique to completely prune away any bad work-
ers, re-solving the questions with the remaining, high quality
workers.

Workflow Optimization
In the previous section we discussed the AI techniques used
for predicting worker accuracy and determining the correct
answers from a set of error-prone responses. We now shift
our focus to the task of optimizing a given crowdsourcing
process. Specifically, we consider the problem of dynami-
cally controlling the execution of an interrelated set of tasks,
which we call a workflow. A requestor typically has sev-
eral objectives that must be jointly optimized. These of-
ten include the quality of the output, the total cost of the
process (in case of economically motivated crowdsourcing)
and/or other measures of efficiency such as number of work-
ers required, total completion time, etc. Inevitably, there are
tradeoffs between objectives. For example, one can usually
increase output quality by enlisting more workers, but this
increases cost. On the other hand, one can reduce cost by
paying workers less, but this increases latency (Mason and

Watts 2009). In this section we describe various approaches
useful for crowdsourcing optimization. While we focus
on economically-motivated, micro-crowdsourcing platforms
such as Amazon Mechanical Turk, the techniques also apply
to other platforms, such as Zooniverse (Lintott et al. 2008),
where one wishes to get the best quality output from a lim-
ited number of volunteers.

Researchers have taken two broad approaches for such
optimizations. The first is to carefully design an efficient
workflow for a given task such that the overall output is high-
quality, and at the same time does not spend much money.
An example is in sorting of items, such as images. One could
use comparison between items or ask workers to rate an item
on a numerical scale (Marcus et al. 2011). The latter ap-
proach spends less money but may not be as accurate. A hy-
brid scheme that first rates each item independently and later
uses a comparison operator on an intelligently chosen subset
of items to do fine-grained sorting produces a better tradeoff
between cost and quality. There are several other examples
of alternative workflows for a task, which achieve different
cost-quality tradeoffs. These include computing the max
from a set of items (Venetis et al. 2012), multiple-choice
tasks (Sun and Dance 2012), soliciting translations (Sun,
Roy, and Little 2011), writing image descriptions (Little et
al. 2010), and taxonomy generation (Chilton et al. 2013).
Designing an efficient workflow is usually task dependent. It
requires involvement of a domain expert and typically much
trial and error. To our knowledge, there are few general prin-
ciples for this kind of work. The onus is on a human to cre-
atively come up with a good workflow for the task.

A second approach to crowdsourcing process-
optimization is more computational. It assumes a given
workflow (e.g., developed using the first approach) that
has some parameters or decision points. It then uses AI to
optimize the workflow by learning the best values of the
parameters and controlling the workflow to route a task
through various decision points. Since these methods can
get somewhat complex, we start with the simplest possible
example.

Control of a Binary Vote Workflow
One of the simplest forms of control problem arises in
crowdsourcing of a single binary choice question, where
workers provide either a ‘yes’ or a ‘no’ response. Because
worker responses are noisy, a common solution for qual-
ity control is to ask multiple workers and aggregate the re-
sponses using majority vote or the EM approaches described
previously. But how many workers should be asked for each
question? Choosing the optimal number requires making a
trade-off between cost and the desired quality. We now fo-
cus on this control problem.

Typically, a requestor either decides this number based on
the available budget or does some initial performance analy-
sis to understand the average ability of the workers and then
picks a number to achieve a desired accuracy. These ap-
proaches miss an extremely important insight: not all ques-
tions (nor workers) are equal. A fixed policy sacrifices the
ability to shift effort away from easy problems to improve
accuracy on hard tasks. A superior solution is to perform

Send judgment task
to another worker

Is expected
gain in confidence from asking

a worker worth
the cost?

Inputs:
 1) Prior probability of answers
 2) Worker parameters, Pw(r|a)
 3) Utility function trading $ for confidence

Yes

No

Update belief in
answers

Return most likely
answer to
requestor

Crowd

Figure 3: The POMDP model for a binary vote workflow
repeatedly decides if it is cost effective to ask another worker
or whether the incremental reduction of uncertainty doesn’t
justify the cost.

dynamic control, i.e., decide for each question whether to
take another judgment, based on the exact history of work
so far; see Figure 3.

As a case study we discuss the work of (Dai, Mausam,
and Weld 2010; Dai et al. 2013), which models the problem
of deciding whether to ask for another vote as a partially
observable Markov decision process (POMDP), which is a
popular technique for decision-theoretic optimization. De-
scribing the POMDP representation and solution algorithms
in detail is out of the scope of this chapter (see (Kaelbling,
Littman, and Cassandra 1998; Poupart 2011)), but at a high
level, a POMDP is a sequential decision making problem
where all the actions (in our case, whether to ask for an-
other worker’s judgment or simply submit the answer) are
known, the set of possible states is known but the exact state
is not observable. For example, the true answer is not ob-
servable. The POMDP model defines system dynamics in
terms of probability distributions for state transitions and
observations. It also defines a reward that the agent tries
to maximize.

The first step in defining the POMDP is specifying the
state space as a pair (a, d), where a denotes the correct an-
swer for the question (“yes” or ‘no”) and d is the question’s
difficulty (a number between zero and one). Since neither a
nor d change over time, the POMDP transition probability
is simply the identity function, making it a relatively simple
problem to solve. However, the values of neither a nor d can
be observed directly; at best, one can maintain a probabil-
ity distribution (called a “belief”) over the possible values
of (a, d). We must now specify the POMDP observation
model, which encodes the probability of various observa-
tions as a function of the (hidden) state. For example, what
is the probability of a worker answering “yes” when the true
answer is “no,” etc.This is just another name for the worker
models discussed previously, and we can use the methods of

Whitehill et al. (Whitehill et al. 2009).
A final input to the POMDP is a reward model, which

in our case means the utility (or money equivalent) of ob-
taining the correct answer. For example, the requestor may
specify that a correct answer is worth $1.00 while an incor-
rect result (e.g. answering ‘no’ when the true hidden answer
is ‘yes’) is equivalent to a −$1.00 penalty. This utility is
important, since it allows the controller to trade off between
cost and quality. If a correct answer is very important to
the requestor, the controller should enlist more workers. In
essence, the POMDP controller can compare the cost of ask-
ing additional worker(s) and the expected utility gain due to
increased likelihood of a correct answer, and only ask an-
other worker when the net marginal utility is positive.

The literature describes numerous algorithms for solv-
ing POMDPs (Kaelbling, Littman, and Cassandra 1998;
Poupart 2011), and many can be adapted for this problem.
Dai et al. try lookahead search, discretized dynamic pro-
gramming and UCT. The exact choice of algorithm is not
important. Most algorithms will perform better than a static
fixed number of instances per question or even a hand-coded
policy like “ask two workers; if they agree, return that an-
swer, otherwise break the tie with a third vote.” Dynamic
control is superior because it automatically adapts to ques-
tion difficulty and worker accuracy, capturing some very
valuable insights. First, if a question is easy (workers agree
on its answer), the controller will not ask for many more
judgments. On the other hand, if workers disagree the ques-
tion may benefit from more judgments. Second, if a worker
who is known to be excellent answers a question, the con-
troller may not ask for more judgments. Finally, if a question
is deemed very difficult (e.g., good workers disagree on its
answer), the system might decide that it is not worth find-
ing the correct answer for this question as it might be too
expensive. In such cases, the controller will quit early even
if it is not very sure about the answer. These kinds of intel-
ligent decisions make it quite valuable for requestors to use
AI techniques for workflow optimization.

Other researchers have also studied this problem
in slightly different settings. Parameswaran et al.
(Parameswaran et al. 2010) investigate other budgeted op-
timization problems and their theoretical properties. Water-
house (Waterhouse 2013) investigates information-theoretic
measures and uses information content of a judgment as its
value. Lin et al. (Lin, Mausam, and Weld 2012a) study
controllers for data filling questions, where a worker must
choose from an unbounded number of possible answers to a
question instead of picking among two or a small number of
known choices.

Kamar et al. (Kamar, Hacker, and Horvitz 2012) study
the interesting problem of mixed initiative systems where
there is a machine model, which provides its own judgment
for each question (and possibly an associated confidence).
Asking the workers can validate or challenge the machine
answer. However, not all questions may need a worker re-
sponse. If the machine is very confident then the controller
may choose to ask no or very few human workers. Kamar
et al. develop modifications of the UCT algorithm for creat-
ing their controller that can enhance machine answers with

worker judgments for additional accuracy.
Along the same lines, Lin et al. (Lin, Mausam, and Weld

2012b) use multiple kinds of evidence in the form of differ-
ent workflows (or different ways of asking the same ques-
tion). This exploits the observation that some questions may
be best asked in one form and others in another. Lin et al.’s
system can automatically switch between such workflows to
dramatically improve the output quality without increasing
the cost.

Another important aspect of control algorithms is model
learning. So far we have assumed that the controller knows
1) the prior probability distribution for question difficulty, 2)
ability parameters of workers, and 3) observation probabil-
ities. In some cases, a human designer can estimate these
numbers, but fortunately it is possible for the controller to
learn these values even as it is controlling the workflow. A
powerful formalism for balancing model learning with re-
ward optimization is reinforcement learning (RL) (Sutton
and Barto 1998). In RL-based control, the controller is in
charge from the start; it naturally shifts its focus from model
learning (exploration) in the beginning to reward maximiza-
tion (exploitation) later on. Lin et al. (Lin, Mausam, and
Weld 2012b) have used RL and found to have equivalent
quality results without an explicit learning phase. Kamar
et al. (Kamar, Kapoor, and Horvitz 2013) describe a similar
approach applied to citizen science applications. We expect
RL methods to become increasingly popular, since they dra-
matically reduce the entry barrier for the use of AI technol-
ogy in crowdsourcing.

Selecting the Best Question to Ask
So far we have focused on the control of a single ques-
tion where the agent’s goal is to obtain a correct answer
for a given question in a cost-efficient manner. However,
requestors typically turn to crowdsourcing only when they
have a large number of questions. An interesting decision
problem arises in question selection in the context of un-
reliable workers. Given a fixed budget, should one divide
resources equally, asking the same number of workers to
tackle each question? Alternatively, it may be better to dy-
namically allocate workers to questions based on their an-
swer uncertainty. The best policy is a function of how the
answers will be used.

One common scenario is to use crowdsourced responses
as a set of labeled examples for training a machine learn-
ing classifier. One can formalize the decision problem as
follows. Suppose we have a large number of unlabeled
questions, u1, . . . , un. Moreover, suppose that we have al-
ready asked workers for judgments to some of the questions
q1, . . . , qk. For each question qi we may have asked mul-
tiple workers and hence we may have an aggregate answer
(and associated confidence) for use in training the classifier.
The decision problem is “Which question do we pick next
for (re)-labeling?”

There are two competing sources of evidence for this de-
cision: 1) an existing aggregate answer (labeled example)
for a question may be inaccurate and may in fact hurt the
classifier, suggesting we may want to ask for another judg-
ment (relabeling), or 2) the classifier may be uncertain in

some part of the hypothesis space and we may want to pick
a question based on the classifier’s uncertainty on the unla-
beled data (active learning).

Active learning, the problem of choosing which unlabeled
example should next be given to the oracle, has been widely
studied in the AI and ML literature (Settles 2012). However,
before the advent of crowdsourcing little work had consid-
ered active learning with noisy labels and hence the possi-
bility of relabeling. Recently, several strategies have been
explored for this problem. Sheng et al. (Sheng, Provost, and
Ipeirotis 2008; Ipeirotis et al. 2013) focus on how best to
relabel already-labeled questions, comparing multiple ques-
tion selection strategies such as repeated round robin, an-
swer entropy-based selection and others. Donmez et al.
(Donmez and Carbonell 2008) focus on various two-worker
scenarios. For instance, they develop an algorithm to de-
termine the best examples to label and by whom if one
worker is perfect but costly and the other worker is fallible
but cheap. Wauthier and Jordan (Wauthier and Jordan 2011)
propose a general utility-theoretic formulation to evaluate
expected utility gain for each question and pick one with
maximum gain.

Lin et al. (Lin, Mausam, and Weld 2014) approach under-
standing the tradeoff from a different direction, and instead
consider conditions under which relabeling a small number
of examples is better than labeling a large number of exam-
ples once. They find that properties like the inductive bias
of the classifier and the accuracy of workers have profound
effects on which strategy results in higher accuracies. We
expect increasing attention to this area in coming years.

Selecting the Best Worker for a Task
Since some workers are more skilled or less error prone than
others, it can be useful to match workers and tasks. Amazon
Mechanical Turk is not an ideal platform for worker alloca-
tion, since it resembles a ‘pull’ model where the workers
choose their next tasks themselves. However, other plat-
forms (e.g., Zooniverse (Lintott et al. 2008)) implement a
‘push’ model where the system decides which tasks to send
to a worker.

There are various competing desiderata for such an allo-
cation. The total budget or available time may be limited, so
assigning every question to the best worker isn’t typically
feasible. More generally, one usually wishes to allocate
tasks so as to achieve a high-quality result while ensuring
worker satisfaction, which is especially important in citizen
science or other applications with volunteer labor. This may
imply an even distribution of tasks across workers and task
diversity for any given worker. Parameters governing these
distributions represent additional learning problems.

Various attempts have been made to study this problem in
restricted scenarios. For example, Karger et al. (Karger, Oh,
and Shah 2011a; 2011b; 2013) provide performance guar-
antees for a global worker assignment, but disallow adaptive
task assignment, which would enable learning about worker
skills over time to better utilize quality workers. On the other
hand, Chen et al. (Chen, Lin, and Zhou 2013) learn worker
skills and adaptively select promising workers, but do not

bound the total number of tasks allowed per worker to en-
sure that no worker is overburdened.

Ho et al. (Ho and Vaughan 2012; Ho, Jabbari, and
Vaughan 2013) and Tran-Thanh et al. (Tran-Thanh et al.
2012) assume constraints on the number of tasks that may be
assigned to any single worker, and divide the control prob-
lem into two explicit phases of exploration and exploitation.
Ho et al. study the scenario where there are multiple types of
tasks and each worker has a hidden skill level for each task.
Their model assumes that workers arrive randomly, one at a
time. Tran-Thanh et al. allow the system to select workers,
but assume that tasks are uniform and that a single worker
completes each task, after which the controller is informed
of the quality of the job performed. In most crowdsourcing
settings, multiple workers are needed to ensure quality, and
quality is not directly observable.

Others consider the worker selection problem in the con-
text of active learning. Yan et al. (Yan et al. 2011) assume
worker skills are known and adaptively select the most con-
fident worker for a given question (using a model based
on question features). Donmez et al. (Donmez, Carbonell,
and Schneider 2009) facilitate a gradual transition from ex-
ploration (learning about worker parameters) to exploita-
tion (selecting the best worker for a question) by model-
ing worker reliability using upper confidence intervals. Both
Yan et al. and Donmez et al. first select the question and then
choose the appropriate worker. By contrast, Wauthier and
Jordan (Wauthier and Jordan 2011) design a joint question-
worker selection algorithm geared towards learning about
(latent) parameters.

The majority of question-worker selection methods seek
to discover the best workers and use them exclusively, but
in settings like volunteer crowdsourcing it is crucial to as-
sign appropriate tasks to all workers regardless of their skill.
Bragg et al. (Bragg et al. 2014) study the problem of rout-
ing questions in parallel to all available workers where tasks
have varying difficulty and workers have varying skill, and
develop adaptive algorithms that provide maximal benefit
when workers and questions are diverse.

Finally, Shahaf and Horvitz (Shahaf and Horvitz 2010)
study generalized task markets where the abilities of various
workers are known, but workers charge different rates for
their services. They study worker selection given a task and
desired utility so that the workers with appropriate skill lev-
els and payment profiles are chosen for a given task. Zhang
et al. (Zhang et al. 2012) take a different approach entirely
and shift the burden of finding the appropriate worker from
the system to the workers, noting that workers themselves
may be best equipped to locate another worker with the ap-
propriate skills for completing a task. Overall, worker-task
allocation is an exciting problem, for which there does not
yet exist a satisfactory solution. We expect considerable
progress in the next few years, given the problem’s impor-
tance.

Controlling Workflows for Complex Objectives
Most AI research on workflow control has focused on sim-
ple multiple choice questions, as a natural first step. But
the true power of crowdsourcing will be realized when we

vote
vote

create
initial

artifact
improve vote

Figure 4: Control flow for an interative improvement work-
flow (adapted from (Little et al. 2010)).

optimize workflows for more complex tasks. A wide va-
riety of complex tasks have already been explored within
this framework. Examples include computing a max from
a set of items (Guo, Parameswaran, and Garcia-Molina
2012), multi-label classification and generating a taxonomy
of items (Bragg, Mausam, and Weld 2013), iterative im-
provement workflow for writing image descriptions (Dai,
Mausam, and Weld 2010; 2011b), creating plans for achiev-
ing a goal (Kaplan et al. 2013), and selecting between mul-
tiple alternative workflows for a given task (Lin, Mausam,
and Weld 2012b). In most of these settings the general ab-
straction includes defining a state space that encapsulates the
agent’s current belief about progress towards the requestor’s
objective, estimating the value of each possible worker task,
issuing the best task, and repeating the process based on the
expected outcome and any new information observed.

The exact mechanism for computing the value of human
actions depends on the high-level objective. In cases where
the exact POMDP can be solved, the POMDP policy is used
to select the worker tasks. In other cases simpler strategies
have been used to reduce the computation involved. For ex-
ample, greedy action selection was used to guide multi-label
classification (Bragg, Mausam, and Weld 2013), and limited
lookahead search was used to control iterative improvement.

As a case study we briefly discuss the iterative improve-
ment workflow (Figure 4), introduced by Little et al. (Little
et al. 2010) and optimized by Dai et al. (Dai, Mausam, and
Weld 2010; 2011b; Dai et al. 2013). Iterative improvement
has been used to accomplish a wide range of objectives, such
as deciphering human handwriting (Little et al. 2010), but
for concreteness we discuss the case where the objective is
to generate high-quality English captions for images. The
workflow starts by asking a worker to write an initial caption
for the picture. Then, at each iteration a worker is shown the
image and current caption and is asked to improve the cap-
tion by smoothing the writing or adding details. Another set
of workers is shown the two descriptions (original and “im-
provement”) and is asked to select the best caption. These
votes are aggregated and the best description is adopted for
the next iteration.

From the point of view of AI control, there are three ac-
tions that can be performed during execution of this work-
flow: (1) issue a human task asking for another improve-
ment, (2) issue a ballot task, requesting another comparison
vote, or (3) submit the current description. To pose the con-
trol problem as a POMDP we first define the world state:

the qualities of the two image descriptions. Let’s use q1 to
denote the quality of the base description and q2 to denote
the quality of the newly “improved” description. If no im-
provement has yet been requested, then q2 is undefined. We
can constrain the qualities to be real numbers in [0, 1], where
one represents an idealized perfect description of the image
and zero denotes the worst imaginable description.

Next, we define the POMDP actions corresponding to
asking a worker to improve a description or compare two
descriptions. The improvement model computes a probabil-
ity distribution for possible values of q2 ∈ [0, 1] given that
a worker with ability γimp tried to improve a description of
quality q1. Similarly, the voting model computes the prob-
ability that a worker of ability γvote will respond that the
description number one is better when shown descriptions
whose qualities are q1 and q2. Naturally, the probability of
a mistake (saying “description one is better” when q2 > q1)
increases if |q1 − q2| is small and is inversely related to the
worker’s skill, γvote.

So far we have defined the dynamics of a POMDP. The
final step is defining the utility function for the system to
maximize, which will have two parts — the benefit due to
returning a good description and the cost paid to workers.
Clearly, the utility of returning a description with quality q
should be a monotonically increasing function of q, though
different requestors will assign different values to differ-
ent qualities. Most people find it hard to articulate their
precise utility function, and this has led to techniques for
preference elicitation, which usually try to induce a gen-
eral utility function from a small set of concrete judge-
ments that are easier for people to answer (Boutilier 2002;
Gajos and Weld 2005).

The definition of the POMDP is complete; now we need
to solve it to produce a policy that says which action to ex-
ecute as a function of the agent’s beliefs. Because the state
space of this POMDP is continuous (qualities are contin-
uous variables), it is difficult to solve exactly. Dai et al.
implemented this model and tried several approximate so-
lution techniques, using supervised learning to induce the
probabilistic transition functions from labeled training data.
They found that POMDP-based control produced descrip-
tions with the same quality as the original hand-coded pol-
icy, using 30% less labor.

An even more interesting observation is the manner in
which the AI policy achieved its savings — by issuing voting
jobs in a dramatically asymmetrical fashion. Little et al.’s
hand-coded policy always asked two workers to compare
the original and “improved” descriptions. If the assessments
agreed, they adopted the consensus description for the next
iteration. If the two workers disagreed, then the policy asked
a third worker to break the tie. Thus on the average, the
hand-coded policy issued about 2.5 voting tasks per itera-
tion. In contrast, the POMDP policy, shown in Figure 5,
issues no voting tasks in the early iterations, allowing it to
issue five or more in later iterations. In hindsight, this allo-
cation makes sense — since it is relatively easy for workers
to improve a description early on, there is little reason to
waste worker time verifying the improvement’s quality. Af-
ter a few cycles of improvement, however, the description

POMDP
Hand Coded

Figure 5: The POMDP controller for an iterative improve-
ment workflow allocates resources differently than the hand-
engineered policy, issuing more vote tasks (ballots) in later
iterations, when the comparisons are harder to make and ad-
ditional opinions are needed for accurate decisions (Dai et
al. 2013).

has become increasing good and therefore harder and harder
to improve. Now the POMDP chooses to spend additional
resources issuing comparison votes, since it wants to be sure
about which description to adopt for the next iteration.

This example points to the value of using AI control tech-
nology for complex tasks. For such tasks, often a human
designer is unable to think through all possibilities, and
hand-engineering a control policy that consistently exhibits
optimal behavior can be difficult. Data-driven control ap-
proaches prove much more robust to corner cases and often
end up saving large amounts of money. In other work, Bragg
et al. (Bragg, Mausam, and Weld 2013) show that they can
categorize a large number of items into multiple categories
with the same accuracy as hand-engineered policies while
using less than 10% of the labor.

A key limitation of this technology is its dependence on
AI practitioners. The AI models and algorithms change
somewhat based on the task at hand. They require a level
of mathematical sophistication that is often too great a bar-
rier for typical requestors considering crowdsourcing. Weld
et al. (Weld, Mausam, and Dai 2011) sketch the architecture
of a general purpose system, which will take a new work-
flow written in a high-level description language and auto-
matically optimize it to control the workflow intelligently. If
researchers can implement systems of this form and make
them easy to use, then AI methods may transform crowd-
sourcing practice in the years to come.

Minimizing Latency
Although most research has focused on minimizing cost,
there are a number of important situations where latency,
the time to complete a task or workflow, is especially im-
portant. For example, when crowdsourced workers are used
to interpret a smartphone photo of a street sign for visually-
challenged users (Lasecki et al. 2013), a quick response is
essential. Other low-latency applications include text edit-
ing (Bernstein et al. 2011), the selection of key frames from
video, and captioning (Lasecki et al. 2012).

We may able to obtain near instantaneous work if we pre-
employ several workers so that, as work arrives, they are al-
ready waiting to work on it (Bigham et al. 2010). This tech-

nique, termed the retainer model, has been studied analyti-
cally to determine the minimum number of retained workers
required to achieve a quick response and the effect of delay
on worker attentiveness. Queueing theory may be used to
model the probable arrival times for user requests and thus
the expected wait times for workers. We can then choose
the number of workers to optimize the total cost subject to
a constraint on expected delays or probability of missing a
request (Bernstein et al. 2012). If there are several tasks re-
quiring retainers then these can share the waiting workers
thus amortizing the wait costs across tasks.

Conclusion
In summary, crowdsourcing, a popular form of collective
intelligence, has close connections to artificial intelligence.
An increasing number of machine-learning applications are
trained with data produced by crowd annotation. Further-
more, many AI methods can be used to improve crowdsourc-
ing. In particular, expectation maximization may be used to
aggregate the results of multiple imprecise workers, learn-
ing worker accuracies at the same time. Partially-observable
Markov decision processes (POMDPs) and related decision-
theoretic approaches may be used to optimize the types and
number of tasks given to workers. Since these AI methods
are a very active area of research, we expect to see even more
powerful methods in the coming years.
Acknowledgements: We appreciate many helpful conver-
sations with Lydia Chilton, Peng Dai, Shih-Wen Huang,
Stephen Jonany, and Andrey Kolobov. This work was sup-
ported by the WRF / TJ Cable Professorship, Office of Naval
Research grant N00014-12-1-0211, and National Science
Foundation grants IIS 1016713 and IIS 1016465.

References
Aldous, D. J. 1985. Exchangeability and related topics. In
École d’Été de Probabilités de Saint-Flour XIII 1983, vol-
ume 1117 of Lecture Notes in Mathematics. Springer Berlin
/ Heidelberg. 1–198. 10.1007/BFb0099421.
Bernstein, M. S.; Brandt, J.; Miller, R. C.; and Karger, D. R.
2011. Crowds in two seconds: Enabling realtime crowd-
powered interfaces. In UIST.
Bernstein, M.; Karger, D.; Miller, R.; and Brandt, J. 2012.
Analytic methods for optimizing realtime crowdsourcing. In
Collective Intelligence.
Bigham, J. P.; Jayant, C.; Ji, H.; Little, G.; Miller, A.; Miller,
R. C.; Miller, R.; Tatarowicz, A.; White, B.; White, S.; and
Yeh, T. 2010. Vizwiz: nearly real-time answers to visual
questions. In UIST, 333–342.
Boutilier, C. 2002. A POMDP formulation of preference
elicitation problems. 239–246.
Bragg, J.; Kolobov, A.; Mausam; and Weld, D. S. 2014.
Parallel task routing for crowdsourcing. In HCOMP.
Bragg, J.; Mausam; and Weld, D. S. 2013. Crowdsourc-
ing multi-label classification for taxonomy creation. In
HCOMP.
Callison-Burch, C. 2009. Fast, cheap, and creative: eval-
uating translation quality using amazon’s mechanical turk.

In Proceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1-Volume 1,
286–295. Association for Computational Linguistics.
Chen, X.; Lin, Q.; and Zhou, D. 2013. Optimistic knowl-
edge gradient policy for optimal budget allocation in crowd-
sourcing. In ICML.
Chilton, L. B.; Little, G.; Edge, D.; Weld, D. S.; and Landay,
J. A. 2013. Cascade: crowdsourcing taxonomy creation. In
CHI, 1999–2008.
Dai, P.; Lin, C. H.; Mausam; and Weld, D. S. 2013. Pomdp-
based control of workflows for crowdsourcing. Artificial In-
telligence 202:52–85.
Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic
control of crowd-sourced workflows. In AAAI.
Dai, P.; Mausam; and Weld, D. S. 2011a. Artificial intelli-
gence for artificial, artificial intelligence. In AAAI.
Dai, P.; Mausam; and Weld, D. S. 2011b. Artificial intelli-
gence for artificial intelligence. In AAAI.
Dawid, A., and Skene, A. M. 1979. Maximum likelihood
estimation of observer error-rates using the em algorithm.
Applied Statistics 28(1):20–28.
Dekel, O., and Shamir, O. 2009a. Good learners for evil
tecahers. In ICML.
Dekel, O., and Shamir, O. 2009b. Vox populi: Collecting
high-quality labels from a crowd. In COLT.
Donmez, P., and Carbonell, J. G. 2008. Proactive learn-
ing: cost-sensitive active learning with multiple imperfect
oracles. In CIKM, 619–628.
Donmez, P.; Carbonell, J. G.; and Schneider, J. 2009. Ef-
ficiently learning the accuracy of labeling sources for selec-
tive sampling. In KDD.
Ferrucci, D. A.; Brown, E. W.; Chu-Carroll, J.; Fan, J.;
Gondek, D.; Kalyanpur, A.; Lally, A.; Murdock, J. W.; Ny-
berg, E.; Prager, J. M.; Schlaefer, N.; and Welty, C. A. 2010.
Building watson: An overview of the deepqa project. AI
Magazine 31(3):59–79.
Gajos, K., and Weld, D. S. 2005. Preference elicitation
for interface optimization. In UIST ’05: Proceedings of
the 18th annual ACM symposium on User interface soft-
ware and technology, 173–182. New York, NY, USA: ACM
Press.
Guo, S.; Parameswaran, A. G.; and Garcia-Molina, H. 2012.
So who won?: dynamic max discovery with the crowd. In
SIGMOD Conference, 385–396.
Ho, C.-J., and Vaughan, J. W. 2012. Online task assignment
in crowdsourcing markets. In AAAI.
Ho, C.-J.; Jabbari, S.; and Vaughan, J. W. 2013. Adaptive
task assignment for crowdsourced classification. In ICML,
534–542.
Horvitz, E. 2007. Reflections on challenges and promises
of mixed-initiative interaction. AI Magazine 28(2):13–22.
Hsueh, P.-Y.; Melville, P.; and Sindhwani, V. 2009. Data
quality from crowdsourcing: A study of annotation selection
criteria. In Proceedings of the NAACL HLT 2009 Workshop
on Active Learning for Natural Language Processing, HLT

’09, 27–35. Stroudsburg, PA, USA: Association for Compu-
tational Linguistics.
Ipeirotis, P. G.; Provost, F.; Sheng, V. S.; and Wang, J. 2013.
Repeated labeling using multiple noisy labelers. Data Min-
ing and Knowledge Discovery.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.
Kajino, H.; Tsuboi, Y.; and Kashima, H. 2012. A convex
formulation for learning from crowds. In AAAI.
Kamar, E.; Hacker, S.; and Horvitz, E. 2012. Combining hu-
man and machine intelligence in large-scale crowdsourcing.
In AAMAS.
Kamar, E.; Kapoor, A.; and Horvitz, E. 2013. Lifelong
learning for acquiring the wisdom of the crowd. In IJCAI
2013, Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, Beijing, China, August 3-9,
2013.
Kaplan, H.; Lotosh, I.; Milo, T.; and Novgorodov, S. 2013.
Answering planning queries with the crowd. In VLDB.
Karger, D. R.; Oh, S.; and Shah, D. 2011a. Budget-optimal
crowdsourcing using low-rank matrix approximations. In
Conference on Communication, Control, and Computing.
Karger, D. R.; Oh, S.; and Shah, D. 2011b. Iterative learning
for reliable crowd-sourcing systems. In NIPS.
Karger, D. R.; Oh, S.; and Shah, D. 2013. Efficient crowd-
sourcing for multi-class labeling. In Proceedings of the
ACM SIGMETRICS/International Conference on Measure-
ment and Modeling of Computer Systems, 81–92.
Lasecki, W. S.; Miller, C. D.; Sadilek, A.; Abumoussa, A.;
Borrello, D.; Kushalnagar, R. S.; and Bigham, J. P. 2012.
Real-time captioning by groups of non-experts. In The 25th
Annual ACM Symposium on User Interface Software and
Technology, UIST ’12, Cambridge, MA, USA, October 7-10,
2012, 23–34.
Lasecki, W. S.; Thiha, P.; Zhong, Y.; Brady, E. L.; and
Bigham, J. P. 2013. Answering visual questions with con-
versational crowd assistants. In The 15th International ACM
SIGACCESS Conference on Computers and Accessibility,
ASSETS ’13, Bellevue, WA, USA, October 21-23, 2013, 18.
Lin, C. H.; Mausam; and Weld, D. S. 2012a. Crowdsourcing
control: Moving beyond multiple choice. In UAI.
Lin, C. H.; Mausam; and Weld, D. S. 2012b. Dynami-
cally switching between synergistic workflows for crowd-
sourcing. In AAAI.
Lin, C. H.; Mausam; and Weld, D. S. 2014. To re(label), or
not to re(label). In HCOMP.
Lintott, C.; Schawinski, K.; Slosar, A.; Land, K.; Bam-
ford, S.; Thomas, D.; Raddick, M. J.; Nichol, R. C.; Sza-
lay, A.; Andreescu, D.; Murray, P.; and VandenBerg, J.
2008. Galaxy zoo : Morphologies derived from visual in-
spection of galaxies from the sloan digital sky survey. MN-
RAS 389(3):1179–1189.
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.

2010. Turkit: human computation algorithms on mechanical
turk. In UIST, 57–66.
Liu, Q.; Peng, J.; and Ihler, A. 2012. Variational inference
for crowdsourcing. In NIPS.
Marcus, A.; Wu, E.; Karger, D. R.; Madden, S.; and Miller,
R. C. 2011. Human-powered sorts and joins. PVLDB
5(1):13–24.
Mason, W. A., and Watts, D. J. 2009. Financial incentives
and the ”performance of crowds”. SIGKDD Explorations
11(2):100–108.
Oleson, D.; Sorokin, A.; Laughlin, G. P.; Hester, V.; Le,
J.; and Biewald, L. 2011. Programmatic gold: Targeted
and scalable quality assurance in crowdsourcing. In Human
Computation Workshop, 11.
Parameswaran, A.; Garcia-Molina, H.; Park, H.; Polyzotis,
N.; Ramesh, A.; and Widom, J. 2010. Crowdscreen: Algo-
rithms for filtering data with humans. In VLDB.
Poupart, P. 2011. Chapter 3. In Sucar, E.; Morales, E.; and
Hoey, J., eds., Decision Theory Models for Applications in
Artificial Intelligence: Concepts and Solutions, 33–62. IGI
Global.
Prelec, D., and Seung, H. S. 2007. An algo-
rithm that finds truth even if most people are wrong.
http://www.eecs.harvard.edu/cs286r/courses/fall12/papers/Prelec10.pdf.
Raykar, V. C.; Yu, S.; Zhao, L. H.; and Valadez, G. 2010.
Learning from crowds. Journal of Machine Learning Re-
search 11:1297–1322.
Settles, B. 2012. Active Learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers.
Shahaf, D., and Horvitz, E. 2010. Generlized markets for
human and machine computation. In AAAI.
Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining us-
ing multiple, noisy labelers. In Proceedings of the Four-
teenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.
Sheshadri, A., and Lease, M. 2013. Square: A benchmark
for research on computing crowd consensus. In HCOMP.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. 2008a.
Cheap and fast — but is it good? evaluating non-expert an-
notations for natural language tasks. In EMNLP’08.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. Y. 2008b.
Cheap and fast - but is it good? evaluating non-expert anno-
tations for natural language tasks. In EMNLP, 254–263.
Sun, Y.-A., and Dance, C. R. 2012. When majority vot-
ing fails: Comparing quality assurance methods for noisy
human computation environment. CoRR abs/1204.3516.
Sun, Y.-A.; Roy, S.; and Little, G. 2011. Beyond inde-
pendent agreement: A tournament selection approach for
quality assurance of human computation tasks. In Human
Computation.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing. The MIT Press.

Thrun, S. 2006. A personal account of the development of
stanley, the robot that won the darpa grand challenge. AI
Magazine 27(4):69–82.
Tran-Thanh, L.; Stein, S.; Rogers, A.; and Jennings, N. R.
2012. Efficient crowdsourcing of unknown experts using
multi-armed bandits. In ECAI, 768–773.
Venetis, P.; Garcia-Molina, H.; Huang, K.; and Polyzotis, N.
2012. Max algorithms in crowdsourcing environments. In
WWW, 989–998.
Waterhouse, T. P. 2013. Pay by the bit: an information-
theoretic metric for collective human judgment. In CSCW,
623–638.
Wauthier, F. L., and Jordan, M. I. 2011. Bayesian bias miti-
gation for crowdsourcing. In NIPS.
Weiss, G., ed. 2013. Multiagent Systems, second edition.
MIT Press.
Weld, D. S.; Mausam; and Dai, P. 2011. Human intelligence
needs artificial intelligence. In HCOMP.
Welinder, P.; Branson, S.; Belongie, S.; and Perona, P. 2010.
The multidimensional wisdom of crowds. In NIPS.
Whitehill, J.; Ruvolo, P.; Bergsma, J.; Wu, T.; and Movellan,
J. 2009. Whose vote should count more: Optimal integration
of labels from labelers of unknown expertise. In NIPS.
Yan, Y.; Rosales, R.; Fung, G.; and Dy, J. G. 2011. Active
learning from crowds. In ICML.
Zhang, H.; Horvitz, E.; Chen, Y.; and Parkes, D. C. 2012.
Task routing for prediction tasks. In AAMAS, 889–896.

