
Probabilistic Temporal Planning with Uncertain Durations

Mausam and Daniel S. Weld
Dept of Computer Science and Engineering

University of Washington
Seattle, WA-98195

{mausam,weld}@cs.washington.edu

Content areas: Planning, Markov Decision Processes

Abstract

Few temporal planners handle both concurrency and uncer-
tain durations, but these features commonly co-occur in real-
world domains. In this paper, we discuss the challenges
caused by concurrent, durative actions whose durations are
uncertain. We present five implemented algorithms, includ-
ing ∆DURprun, a planner guaranteed to find the optimal pol-
icy. An empirical comparison reveals that ∆DURexp, our
fastest planner, obtains orders of magnitude speed-up com-
pared to ∆DURprun— with little loss in solution quality. Im-
portantly, our algorithms can handle probabilistic effects in
addition to stochastic durations, and they are effective even
when duration distributions are multi-modal.

1. Introduction
Recent progress in temporal planning raises hopes that this
technology may soon apply to a wide range of real-world
problems, but several problems remain. In particular, con-
current actions with stochastic durations characterize many
real-world domains. While these issues have independently
received some attention, only three systems have addressed
both concurrency and duration uncertainty in concert. These
seminal planners handle extremely expressive languages but
have several limitations.

Tempastic’s Generate & Test approach (Younes & Sim-
mons 2004a) sacrifices completeness and optimality guar-
antees. Generalized Semi MDP’s (GSMDPs) phase-type
approximations (Younes & Simmons 2004b) may contain
many more state variables than the original problem, and
scalability has not been demonstrated. Neither Prottle (Lit-
tle, Aberdeen, & Thiebaux 2005) nor Tempastic account for
varied distributions of possible durations, and Prottle plans
for a finite horizon — and thus for an acyclic state space.

In this paper, we present five novel planning algorithms.
In some respects our planners handle a simpler action repre-
sentation, but our algorithms are complete, scale to problems
with millions of states, exploit the structure of each action’s
duration distribution, and achieve optimal or close to opti-
mal solutions:

• ∆DURprun formulates the problem as a concurrent MDP
(Mausam & Weld 2004) in a modified interwoven epoch

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

search space, solves the problem with pruned Real Time
Dynamic Programming (RTDP) achieving an optimal so-
lution.

• ∆DURsamp substitutes the faster sampled RTDP for
pruned RTDP.

• ∆DURhyb first solves a simpler problem (where actions
overlap less tightly) to find a satisficing solution, then uses
a process like ∆DURsamp to improve the most important
parts of the policy.

• ∆DURarch approximates a multi-modal duration distri-
bution by considering only one representative length for
each mode and re-plans to protect against unexpected
events.

• Our fastest planner, ∆DURexp takes this idea to an ex-
treme by approximating a stochastic duration with its ex-
pected length and using a deterministic-duration planner
for planning and re-planning.

These planners handle concurrent actions, multi-modal
stochastic durations, and probabilistic effects. In addition,
this paper makes two additional contributions:

1. We conduct an empirical evaluation that illuminates the
planning speed vs. solution quality (make-span) trade-
off of our planners. ∆DURexp plans orders of magnitude
faster than ∆DURprun, and yet its policies are rarely more
than 35% longer.

2. We prove several theorems characterizing the challenges
posed by various features of durative planning domain
languages. The results provide insights into deterministic
temporal planners as well as planners handling stochastic
durations.

2. Background
Following (Bonet & Geffner 2003), we define a Markov de-
cision process as a tuple 〈S,A,Pr, C,G, s0〉 in which S is
a finite set of discrete states, and A is a finite set of actions.
An applicability function, Ap : S → P(A), denotes the
set of actions that can be applied in a given state (P rep-
resents the power set). Pr : S × A × S → [0, 1] is the
transition function. We write Pr(s′|s, a) to denote the prob-
ability of arriving at state s′ after executing action a in state
s. C : S × A → <+ is the cost model, G ⊆ S is the set of
absorbing goal states, and s0 is the start state.

We assume full observability, and we seek to find an op-
timal, stationary policy — i.e., a function π: S → A which
minimizes the expected cost (over an indefinite horizon) in-
curred to reach a goal state. A cost function J : S → <,
mapping states to the expected cost of reaching a goal state,
defines a policy as follows:

πJ(s) = argmin
a∈Ap(s)

{
C(s, a) +

∑
s′∈S

Pr(s′|s, a)J(s′)

}
The optimal policy can be derived from the value func-

tion, J∗: S → <, which satisfies the following pair of Bell-
man equations:

J∗(s) = 0, if s ∈ G else (1)

J∗(s) = min
a∈Ap(s)

{
C(s, a) +

∑
s′∈S

Pr(s′|s, a)J∗(s′)

}
Policy Construction Algorithms: Value Iteration is a dy-
namic programming approach in which the optimal value
function is calculated as the limit of a series of approxima-
tions. If Jn(s) is the value of state s in iteration n, then
Jn+1(s) is calculated by a Bellman backup as: Jn+1(s) =
mina∈Ap(s)

{
C(s, a) +

∑
s′∈S Pr(s′|s, a)Jn(s′)

}
.

Value iteration and similar algorithms (e.g. Policy Itera-
tion) tend to be quite slow since they search the entire state
space. Reachability analysis is a technique, exploited by
RTDP (Barto, Bradtke, & Singh 1995) and other methods,
that speeds up this search by restricting it to the part of state
space reachable from the initial state s0.

Conceptually, RTDP is a lazy version of value iteration in
which the states are updated in proportion to the frequency
with which they are visited by the repeated execution of the
greedy policy1. An RTDP trial is a path starting from s0,
following the greedy policy and updating the values of the
states visited using Bellman backups; the trial ends when a
goal is reached or the number of updates exceeds a thresh-
old. RTDP repeats these trials until convergence. Note that
common states are updated frequently, while RTDP wastes
no time on states that are unreachable, given the current pol-
icy. RTDP’s strength is its ability to quickly produce a rel-
atively good policy. An optimization, called Labeled RTDP
(LRTDP), speeds termination and guarantees convergence to
the optimal value function (under mild assumptions) (Bonet
& Geffner 2003).

Probabilistic Planning with Concurrent Actions: Con-
current MDPs allow concurrent action executions by treating
a set of actions, called an action combination (A), as a sin-
gle executable abstract action creating an MDP in this aug-
mented action space (Mausam & Weld 2004). The model
defines the set of applicable combinations in a state and the
probability transition function of executing an action com-
bination.2 Additionally, the cost model for such a CoMDP

1A greedy policy is one that chooses the action with
the best Q-value defined as Qn+1(s, a) = C(s, a) +∑

s′∈S Pr(s′|s, a)Jn(s′).
2While the original formulation is conservative, banning com-

binations which violate mutual exclusion rules similar to those in

returns the cost (typically the time or a weighted sum of time
and resource components) of concurrently executing several
actions in a state.

Since a CoMDP is an MDP in an abstract action space,
MDP algorithms like RTDP can solve a CoMDP. But a
CoMDP has a possibly exponential number of joint actions.
Pruning and sampling are two techniques that speed up the
naive RTDP. Pruned RTDP eliminates some provably sub-
optimal action combinations from a Bellman backup. Sam-
pled RTDP speeds policy construction substantially — with
negligible loss in policy quality — by stochastically back-
ing up a biased subset of possible abstract actions in each
Bellman backup.

One may speed planning even further by hybridizing two
algorithms, one slow but optimal and the other fast but sub-
optimal; the resulting policy is guaranteed to be within an
error-bound (Mausam & Weld 2005). Hybridization runs the
anytime optimal algorithm long enough to generate a policy
which is good on the common states but stops well before
it converges in every state. Then, to ensure that even for
the rarely explored states the policy is guaranteed to reach a
goal with probability 1, it substitutes the sub-optimal policy
on states from thereon, returning this hybrid policy. It evalu-
ates this hybrid policy and compares this evaluated cost with
the current cost of start state in the optimal algorithm. If the
two values are close enough we can prove that the current
hybrid solution is close to optimal, and the planning termi-
nates. Otherwise, the optimal algorithm is resumed for some
more time, thus repeating the process.

Probabilistic Planning with Deterministic Durations:
In the original formulation, a CoMDP does not model ex-
plicit action durations; instead it embeds that information in
the action cost model. By using an augmented (“interwo-
ven”) state space, similar to the representation used by sev-
eral deterministic temporal planners (Bacchus & Ady 2001;
Haslum & Geffner 2001; Do & Kambhampati 2001), one
can use CoMDPs to model explicit action durations and
allow an action to start while other actions are execut-
ing (Mausam & Weld 2005). Unfortunately, this work on
concurrent durative actions assumes deterministic durations,
which is often unrealistic.

3. Challenges for Temporal Planning
This section presents theoretical results, which apply to
planning with both deterministic and uncertain discrete du-
rations, regardless of whether effects are deterministic or
stochastic. Actions of uncertain duration are modeled by
associating a distribution (possibly conditioned on the out-
come of stochastic effects) over execution times. We focus
on problems whose objective is to achieve a goal state while
minimizing total expected time (make-span), but our results
extend to cost functions that combine make-span and re-
source usage. This raises the question of when a goal counts
as achieved. We require that all executing actions terminate
before the goal is considered achieved.

classical planning (Blum & Furst 1995), the model and algorithms
are general — working with any semantics that defines these two
quantities consistently.

:action a
:duration 4
:condition (over all P) (at end Q)
:effect (at end Goal)

:action b
:duration 2
:effect (at start Q) (at end (not P))

Figure 1: A domain to illustrate that an expressive action model
may require arbitrary decision epochs for a solution. In this exam-
ple, b needs to start at 3 units after a’s execution to reach Goal.

We start by asking the question “Is there a restricted set of
time points such that optimality is preserved even if actions
are started only at these points?”
Definition Any time point when a new action is allowed to
start execution is called a decision epoch. A time point is
a pivot if it is either 0 or a time when an executing action
might terminate. A happening is either 0 or a time when an
action actually terminates.

Intuitively, a happening is a point where an action termi-
nation actually “happens.” When execution crosses a pivot
(a possible happening), information is gained by the exec-
utive (i.e., did or didn’t the action terminate) which may
“change the direction” of future action choices. Clearly, if
action durations are deterministic, then the set of pivots is
the same as the set of happenings.

Theorem 1 Restricting decision epochs to pivots causes in-
completeness (i.e., a problem may be incorrectly deemed un-
solvable).

Proof: Consider the deterministic temporal planning do-
main in Figure 1 that uses PDDL2.1 notation (Fox & Long
2003). If the initial state is P=true and Q=false, then the
only way to reach Goal is to start a at time 0, and b at time
3. Clearly, no action could terminate at 3, still it is a neces-
sary decision epoch. 2

Intuitively, two PDDL2.1 actions may require a certain
relative alignment within them to achieve the goal. This
alignment may force one action to start somewhere (possi-
bly at a non-pivot point) in the midst of the other’s execution,
thus requiring many decision epochs to be considered.

Temporal planners may be classified as having one of
two architectures: constraint-posting approaches in which
the times of action execution are gradually constrained dur-
ing planning (e.g., Zeno and LPG (Penberthy & Weld 1994;
Gerevini & Serina 2002)) and extended state-space methods
(e.g., TP4 and SAPA (Haslum & Geffner 2001; Do & Kamb-
hampati 2001)). Theorem 1 holds for both architectures but
has strong computational implications for state-space plan-
ners because limiting attention to a subset of decision epochs
can speed these planners. (The theorem also shows that
planners like SAPA and Prottle are incomplete.) Fortunately,
an assumption restricts the set of decision epochs consider-
ably.
Definition Actions are TGP-style if their preconditions
must be true throughout execution, their effects are guar-
anteed to be true only after termination, and they may not

s0

s0
a1

a1

a0 a2

a0

b0

G

Probability 0.5

Probabillity: 0.5

G

Time
0 4 82 6

Make−span: 9

Make−span: 3

Figure 2: (Adapted from (Mausam & Weld 2006)) Pivot deci-
sion epochs are necessary for optimal planning in face of non-
monotonic continuation. In this domain, Goal can be achieved
by 〈{a0, a1}; a2〉 or 〈b0〉; a0 has duration 2 or 7; and b0 is mutex
with a1. The optimal policy starts a0 and then, if a0 does not finish
at time 2, it starts b0 (otherwise it starts a1).

execute concurrently if they clobber each other’s precondi-
tions or effects (Smith & Weld 1999).
Theorem 2 If all actions are TGP-style, then the set of de-
cision epochs may be restricted to pivots without sacrificing
completeness or optimality.
Proof Sketch: By contradiction. Suppose that no optimal
policy satisfies the theorem; then there must exist a path
through the optimal policy in which one must start an ac-
tion, a, at time t even though there is no action which could
have terminated at t. Since the planner hasn’t gained any
information at t, a case analysis (which requires actions to
be TGP-style) shows that one could have started a earlier in
the execution path without increasing the make-span. 2

When planning with uncertain durations there may be a
huge number of times when actions might terminate; it is
useful to further constrain the range of decision epochs.
Definition An action has independent duration if there is no
correlation between its probabilistic effects and its duration.
An action has monotonic continuation if the expected time
until action termination is nonincreasing during execution.

Actions without probabilistic effects have independent
duration. Actions with monotonic continuations are com-
mon, e.g. those with uniform, exponential, Gaussian, and
many other duration distributions. However, actions with
bimodal or multi-modal distributions don’t have monotonic
continuations (see Section 6).
Conjecture 3 If all actions are TGP-style, have indepen-
dent duration and monotonic continuation, then the set of
decision epochs may be restricted to happenings without
sacrificing completeness or optimality.

To date we have only proven the conjecture for the case in
which all durations are uniformly distributed and the maxi-
mum concurrency in the domain is 2. If an action’s continu-
ation is nonmonotonic then failure to terminate can increase
the expected time remaining and cause another sub-plan to
be preferred (see Figure 2). Similarly, if an action’s dura-
tion isn’t independent then failure to terminate changes the
probability of its eventual effects and this may prompt new
actions to be started.

4. Optimal Planning with Uncertain Durations
As explained in the discussion of Theorem 1, temporal plan-
ners may be classified as using constraint-posting or ex-
tended state-space methods. While the constraint approach
is promising, few (if any) probabilistic planners have been
implemented using this architecture; one exception is BURI-
DAN (Kushmerick, Hanks, & Weld 1995), which performed
poorly. In contrast, the MDP community has proven the
state-space approach successful. Since powerful tempo-
ral planners also use the state-space approach, we adopt it.
We assume TGP-style actions, independent durations, and
monotonic continuations, but Section 6 relaxes the latter, ex-
tending our algorithms to handle multi-modal duration dis-
tributions. Recall that we use a discrete temporal model and
aim to minimize the time required to reach a goal.

Since optimal planning decisions may require reason-
ing about the distribution of an action’s remaining ex-
ecution time, we modify the interwoven epoch search
space (Mausam & Weld 2005) for our purposes: augmenting
the world-state space S with the set of actions currently exe-
cuting and the time passed since they were started. Formally,
let the interwoven state3 s ∈ S -– be an ordered pair 〈X, Y 〉
where X ∈ S and Y = {(a, δ)|a ∈ A, 0 < δ ≤ ∆M (a)}.
Here, X represents the values of the state variables (i.e. X
is a state in the original state space) and Y denotes the set
of ongoing actions “a” and the time passed4 since their start
“δ”. ∆M (a) denotes the maximum time within which action
a will complete. Thus the overall interwoven-epoch search
space is S -– = S ×

⊗
a∈A

(
{a} × Z∆M (a)

)
, where Z∆M (a)

represents the set {0, 1, . . . ,∆M (a)−1} and
⊗

denotes the
Cartesian product over multiple sets.

To allow the possibility of simply waiting for the next
decision-epoch, that is, not executing any action at the cur-
rent epochs, we augment the set A with a no-op action. We
allow no-op to be applicable in all states where some action
is executing. The no-op has a variable duration equal to the
time until the next decision epoch.

The Transition Function: Uncertain durations require
significant changes to the probability transition func-
tion (Pr -–) for the interwoven space from the definitions
of (Mausam & Weld 2005). Since our assumptions jus-
tify Conjecture 3, we need only consider happenings when
choosing decision epochs. (Section 6 relaxes this assump-
tion.)

The computation of transition function is described in Al-
gorithm 1. Although the next decision epoch is determined
by a happening, we still need to consider all pivots for the
next state calculations as all these are potential happenings.
This makes the algorithm computationally intensive because

3We use the subscript -– to denote the interwoven state space
(S -–), value function (J -–), etc.

4Our representation is similar to that of (Mausam & Weld
2005), but there is a significant difference: in the previous work,
the states contained the times remaining for executing actions. But
in case of uncertain durations, time remaining is a distribution, so
we instead represent the time elapsed for each action — a strictly
more expressive approach.

Algorithm 1 ComputeTransitionFunc(s=〈X, Y 〉,A)
1: Y ← Y ∪ {(a, 0)} ∀a ∈ A
2: mintime← min(a,δ)∈Y minimum remaining time for a
3: maxtime← min(a,δ)∈Y maximum remaining time for a
4: for all t ∈ [mintime, maxtime] do
5: At ← set of actions that could possibly terminate at t
6: for all non- empty subsets Asubt ⊆ At do
7: pc ← prob. that exactly Asubt terminates at t.
8: W ← {(Xt, pw) | Xt is a world state; pw is the proba-

bility that Asubt terminates yielding Xt}.
9: for all (Xt, pw) ∈ W do

10: Yt ← Yt ∪ {(a, t + δ)} ∀(a, δ) ∈ Y, a /∈ Asubt

11: insert (〈Xt, Yt〉, pw × pc) in output
12: return output

there may be many pivots and many action combinations
could end at each one. In our implementation, we cache the
transition functions so that we do not have to recompute the
information for any state.

Start and Goal States: The start state is 〈s0, ∅〉 and the
new set of goal states is G -– = {〈X, ∅〉|X ∈ G}.

Thus we have modeled our problem as a CoMDP in the
interwoven state space. We have redefined the start and goal
states, and the probability transition function. Now we can
use the techniques of CoMDPs to solve our problem. In
particular, we can use our Bellman equations as below.

Bellman Equations: Define δel(s, s′) as the time elapsed
between two interwoven states s and s′. The set of equations
for the solution of our problem can be written as:

J∗-–(s) = 0, if s ∈ G -– else (2)

J∗-–(s) = min
A∈Ap -–(s)

∑
s′∈S -–

{
δel(s, s′) + Pr -–(s′|s,A)J∗-–(s′)

}
The main bottleneck in solving this problem, besides the size
of the interwoven state space, is the high branching factor.

Policy Construction: RTDP & Hybridization Since we
have modeled our problem as a CoMDP in interwoven
space, we may use pruned RTDP (∆DURprun) and sam-
pled RTDP (∆DURsamp) for policy construction. Further-
more, only small adaptations are necessary to incremen-
tally compute the (admissible) maximum concurrency (MC)
and (more informed, but inadmissible) average concurrency
(AC) heuristics (Mausam & Weld 2005).

Likewise, we can further speed planning by hybridiz-
ing (∆DURhyb) an anytime optimal algorithm with a sub-
optimal (but faster) algorithm to produce a near-optimal
policy in significantly less time (Mausam & Weld 2005;
McMahan, Likhachev, & Gordon 2005). We use RTDP in
the interwoven space as the optimal algorithm. For a fast
solution we solve a simpler problem that allows for a new
set of actions to be started only when all other executing ac-
tions finish (i.e., essentially solving the CoMDP in the orig-
inal state space). The novel twist stems from the fact that
uncertain durations require computing the cost of an action
combination as the mean of the max of the possible duration

outcomes.5

5. Expected-Duration Planner
When modeled as a CoMDP in the full-blown interwoven
space, stochastic durations cause a cancerous growth in the
branching factor. In general, if n actions are started each
with m possible durations and each having r probabilistic
effects, then there are (m−1)[(r+1)n−rn−1]+rn potential
successors. Thus, the branching factor is multiplicative in
the duration uncertainty and exponential in the concurrency.

To manage this computational tumor we must curb the
branching factor. One method is to ignore duration distribu-
tions. We can assign each action a constant duration equal
to the mean of its distribution, then apply a deterministic-
duration planner such as that of (Mausam & Weld 2005).
However, when executing the deterministic-duration policy
in a setting where durations are actually stochastic, an action
will likely terminate at a time different than its mean, ex-
pected duration. The ∆DURexp planner addresses this prob-
lem by augmenting the deterministic-duration policy created
to account for these unexpected outcomes. The procedure
is easiest to understand in its online version (Algorithm 2):
wait until the unexpected happens, pause execution, and re-
plan. If the original estimate of an action’s duration is im-
plausible, we compute a revised deterministic estimate in
terms of Ea(min,max) — the expected value of a’s dura-
tion distribution restricted between times min and max. Re-
call that ∆M denotes the max duration of an action. Thus,
Ea(0,∆M (a)) will compute the expected duration of a.

Algorithm 2 Online ∆DURexp

1: build a deterministic-duration policy from the start state s0

2: repeat
3: execute action combination specified by policy
4: wait for interrupt
5: case: action a terminated as expected {//do nothing}
6: case: action a terminates early
7: extend policy from current state
8: case: action a didn’t terminate as expected
9: extend policy from current state revising

a’s duration as follows:
10: δ ← time elapsed since a started executing
11: nextexp← dEa(0, ∆M (a))e
12: while nextexp < δ do
13: nextexp← dEa(nextexp, ∆M (a))e
14: endwhile
15: a’s revised duration← nextexp− δ
16: endwait
17: until goal is reached

This algorithm also has an offline version in which re-
planning for all contingencies is done ahead of time and we
used this version in the experiments for fairness. Although
the offline algorithm plans for all possible action durations,

5For example, suppose two actions both with uniform duration
distributions between 1 to 3 are started concurrently. The probabil-
ities that both actions will finish by time 1, 2 and 3 are 1/9, 3/9, and
5/9 respectively. Thus the expected duration of completion of the
combination is 1×1/9 + 2×3/9 + 3×5/9 = 2.44.

it is still much faster than the other algorithms. The reason
is that each of the planning problems solved is now signifi-
cantly smaller (less branching factor, smaller reachable state
space), and all the previous computation can be succinctly
stored in the form of the 〈interwoven state, value〉 pairs and
thus reused.

A B

C D

2 2

2 G

G

Problem

Optimal Solution (Trajectory 1, pr =0.5, make−span 9)

GA 2 B 2

C 2

Optimal Solution (Trajectory 2, pr =0.5, make−span 5)

A 2

C 2 D G

exp

GA 2 B 2

DUR Solution (make−span 8)

0 4 8 12Time

Figure 3: An example of a domain where the ∆DURexp algorithm
does not compute an optimal solution.

Unfortunately, our ∆DURexp algorithm is not guaranteed
to produce an optimal policy. How bad are the policies gen-
erated by the expected-duration planner? The experiments
show that ∆DURexp typically generates policies which are
extremely close to optimal. Even the worst-case patholog-
ical domain we are able to construct leads to an expected
make-span which is 50% longer than optimal (in the limit).
The example is illustrated below.
Example: We consider a domain which has actions
A2:n, B2:n, C2:n and D. Each Ai and Bi takes time 2i.
Each Ci has a probabilistic duration: with probability 0.5,
Ci takes 1 unit of time, and with the remaining probabil-
ity, it takes 2i+1 + 1 time. Thus, the expected duration of
Ci is 2i + 1. D takes 4 units. In sub-problem SPi, the
goal may be reached by executing Ai followed by Bi. Al-
ternatively, the goal may be reached by first executing Ci

and then recursively solving the sub-problem SPi−1. In
this domain, the ∆DURexp algorithm will always compute
〈Ai;Bi〉 as the best solution. However, the optimal policy
starts both {Ai, Ci}. If Ci terminates at 1, the policy exe-
cutes the solution for SPi−1; otherwise, it waits until Ai ter-
minates and then executes Bi. Figure 3 illustrates the sub-
problem SP2 in which the optimal policy has an expected
make-span of 7 (vs. ∆DURexp’s make-span of 8). In gen-
eral, the expected make-span of the optimal policy on SPn

is 1
3 [2n+2 + 24−n] + 22−n + 2. Thus, limn→∞

exp
opt = 3

2 .2

6. Multi-modal Duration Distributions
The planners of the previous two sections benefited by con-
sidering the small set of happenings instead of pivots, an
approach licensed by Conjecture 3. Unfortunately, this sim-
plification is not warranted in the case of actions with multi-
modal duration distributions, which can be common in com-
plex domains where all factors can’t be modeled explic-
itly. For example, the amount of time for a Mars rover

to transmit data might have a bimodal distribution — nor-
mally it would take little time, but if a dust storm were in
progress (unmodeled) it could take much longer. To han-
dle these cases we model durations to be specified with a
mixture of Gaussians parameterized with a set of triples:
〈amplitude,mean, variance〉.
CoMDP Formulation: Although we cannot restrict deci-
sion epochs to happenings, we need not consider all pivots;
they are required only for actions with multi-modal distri-
butions. In fact, it suffices to consider pivots in regions of
the distribution where the expected-time-to-completion in-
creases. We need consider only happenings in other cases.

Two changes are required to the transition function of Al-
gorithm 1. In line 3, the maxnext computation now involves
time until the next pivot in the increasing remaining time
region for all actions with multi-modal distributions (thus
forcing us to take a decision at those points, even when no
action terminates). Another change (in line 6) allows a non-
empty subset Asubt for t = maxnext . That is, next state
is computed even without any action termination. By mak-
ing these changes in the transition function we reformulate
our problem as a CoMDP in the interwoven space and thus
solve, using our previous methods of pruned/sampled RTDP,
hybrid algorithm or expected-duration algorithm.

Archetypal-Duration Planner: We also develop a multi-
modal variation of the expected-duration planner, called
∆DURarch. Instead of assigning an action a determinis-
tic duration equal to the expected value, this planner as-
signs it a probabilistic duration with various outcomes be-
ing the means of the different modes in the distribution and
the probabilities being the probability mass in each mode.
This enhancement reflects our intuitive understanding for
multi-modal distributions and the experiments confirm that
∆DURarch produces solutions having shorter make-spans
than those of ∆DURexp.

7. Experiments

Planning Time for Rover and Machine-Shop

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 Problems

Pl
an

ni
ng

 T
im

e
(in

 s
ec

)

Pruned
Sampled
Hybrid
Exp-Dur

Rover Machine-Shop

∆∆∆∆DURprun

∆∆∆∆DURsamp

∆∆∆∆DURhyb

∆∆∆∆DURexp

Figure 4: Planning time comparisons: Variation along algorithms
when all initialized by the average concurrency (AC) heuristic;
∆DURexp performs the best.

In this section we compare the computation time and so-
lution quality (make-span) of our five planners for domains

with and without multi-modal duration distributions. We
also tested on the effectiveness of the maximum- (MC) and
average-concurrency (AC) heuristics.

Experimental Setup: We test our algorithms on problems
in three domains, in each case generating problem instances
by varying the number of objects, amount of parallelism,
action durations, and distances to the goal. The first domain
is a probabilistic, durative variant of NASA Rover domain
from the 2002 AIPS Planning Competition, the second is
a probabilistic temporal version of the Machine-Shop do-
main, and the third is an artificial domain, which lets us
independently control the domain size and degree of par-
allelism. Our largest problem had 4 million world states of
which 65536 were reachable. Our algorithms explored up to
1,000,000 distinct states in the interwoven state space dur-
ing planning. The domains contained as many as 18 actions,
and some actions had as many as 13 possible durations.

Our implementation is in C++ and built on top of GPT’s
Labeled RTDP (Bonet & Geffner 2003). The heuristics
(maximum- and average-concurrency) are calculated on de-
mand as states are visited. We ran experiments on a 2.8 GHz
Pentium 4 with 2 GB memory running Linux.

Comparing Running Times: We compare all algorithms
with and without heuristics and find that the heuristics sig-
nificantly speed up the computation on all problems; indeed,
some problems are too large to be solved without heuristics.
Comparing them amongst themselves we find that AC beats
MC — regardless of the planning algorithm; this isn’t sur-
prising since AC sacrifices admissibility.

In Figure 4 we report the running times of various algo-
rithms on the Rover and Machine-Shop domains when all
durations are unimodal. We report the results for algorithms
initialized with the AC heuristic. ∆DURexp out-performs
the other planners by substantial margins. As this algorithm
is solving a comparatively simpler problem, fewer states are
expanded and thus the approximation scales better than oth-
ers — solving, for example, two Machine-Shop problems,
which were too large for most other planners. In most cases
hybridization speeds planning by significant amounts. It per-
forms better than ∆DURexp only for the artificial domain.

Comparing Solution Quality: We measure quality by
simulating the generated policy across multiple trials. We
report the ratio of average expected make-span and the opti-
mal expected make-span for domains with all unimodal dis-
tributions in Figure 5. We find that the make-spans of the in-
admissible heuristic AC are at par with those of the admis-
sible heuristic MC. The hybrid algorithm is approximate
with a user-defined bound. In our experiments, we set the
bound to 5% and find that the make-spans returned by the
algorithm are quite close to the optimal and do not always
differ by 5%. ∆DURexp has no quality guarantees, still the
solutions returned on the problems we tested upon are not
much worse than other algorithms. Thus, we believe that
this approximation will be quite useful in scaling to larger
problems without losing solution quality.

Multi-modal Domains: We develop multi-modal variants
of our domains; e.g., in the Machine-Shop domain, time for

Algos Average Quality of Make-Span
Rover Machine-Shop Artificial

∆DURsamp 1.001 1.000 1.001
∆DURhyb 1.022 1.011 1.019
∆DURexp 1.008 1.015 1.046

Figure 5: All three planners produce near-optimal policies as
shown by this table of ratios to the optimal make-span.

fetching paint was bimodal (if in stock, paint can be fetched
fast, else it needs to be ordered). There was an alternative
but costly paint action that doesn’t require fetching of paint.
Solutions produced by ∆DURsamp made use of pivots as
decision epochs by starting the costly paint action in case
the fetch action didn’t terminate within the first mode of the
bimodal distribution (i.e. paint was out of stock).

The running time comparisons are shown in Figure 6(a)
on a log-scale. We find that ∆DURexp performs super-fast
and ∆DURarch is not far behind. However, the make-span
comparisons in Figure 6(b) clearly illustrate the approxima-
tions made by these methods in order to achieve planning
time. ∆DURarch seems to have a good balance of planning
time and solution quality.

8. Related Work
Tempastic (Younes & Simmons 2004a) uses a rich formal-
ism (e.g. continuous time, exogenous events, and expressive
goal language) to generate concurrent plans with stochas-
tic durative actions. Tempastic uses a completely non-
probabilistic planner to generate a plan which is treated as a
candidate policy and repaired as failure points are identified.
This method does not guarantee completeness or proxim-
ity to the optimal. Moreover, no attention was paid towards
heuristics or search control making the implementation im-
practical.

GSMDPs (Younes & Simmons 2004b) extend
continuous-time MDPs and semi-Markov MDPs, mod-
eling asynchronous events and processes. Younes and
Simmons solve GSMDPs by approximation with a standard
MDP using phase-type distributions. The approach is
elegant, but its scalability to realistic problems is yet to
be demonstrated. In particular, the approximate, discrete
MDP model can require many states yet still behave very
differently than the continuous original.

Prottle (Little, Aberdeen, & Thiebaux 2005) also solves
problems with an expressive action language: effects can
occur in the middle of action execution and dependent du-
rations are supported. Prottle uses an RTDP-type search
guided by heuristics computed from a probabilistic planning
graph; however, it plans for a finite horizon — and thus for
an acyclic state space. It is difficult to compare Prottle with
our approach because Prottle optimizes a different objective
function (probability of reaching a goal), outputs a finite-
length conditional plan as opposed to a cyclic plan or policy,
and is not guaranteed to reach the goal.

We know of no other planners that address both concur-
rency and uncertain durations in a probabilistic context but
there has been past research in planning with uncertain dura-
tions where each action is associated with an unweighted set

of durations, e.g., CIRCA (Musliner, Murphy, & Shin 1991).
Aberdeen et al. (2004) use domain-specific heuristics

to plan with concurrent but non-durative actions. Lit-
tle et al. (2006) extend the classical Graphplan to propose
an alternative solution to a concurrent MDP. Many re-
searchers have studied planning with stochastic, durative ac-
tions in absence of concurrency. For example, Foss and On-
der (2005) use simple temporal networks to generate plans
in which the objective function has no time component.
Boyan and Littman (2000) propose Time-dependent MDPs
to model problems with (non-concurrent) actions having
time-dependent, stochastic durations; their solution gener-
ates piece-wise linear value functions. NASA researchers
have developed techniques for generating non-concurrent
plans with uncertain continuous durations using a greedy al-
gorithm which incrementally adds branches to a straight-line
plan (Bresina et al. 2002; Dearden et al. 2003). IxTeT is a
temporal planner that uses constraint based reasoning within
partial order planning (Laborie & Ghallab 1995). It embeds
temporal properties of actions as constraints and does not
optimize make-span.

9. Conclusions
Although concurrent actions and uncertain durations char-
acterize many real-world domains, few planners can handle
both challenges in concert. This paper considers state-space
based solutions which are popular both in deterministic tem-
poral planning and in probabilistic planning. We find that
this architecture must cope with 1) large state spaces, 2) high
branching factors, and 3) an explosion in number of decision
epochs. We bound the space of decision epochs in terms
of pivots (times when actions may potentially terminate)
and conjecture further restrictions, thus making the problem
tractable. We model our problem as a concurrent MDP in
an augmented space and are able to solve it optimally using
our ∆DURprun algorithm; ∆DURsamp and ∆DURhyb are
much faster and also produce close-to-optimal solutions.

Of our five algorithms ∆DURexp is the fastest — it solves
multiple planning problems, each with low branching factor
and smaller reachable state space. These small problems ap-
proximate an action’s stochastic duration with its expected
value. Although the offline ∆DURexp must consider action
terminations at each of its pivots (i.e., when the expecta-
tion is violated), for each planning subproblem all durations
are treated deterministic; this shrinks the problem size enor-
mously, quickly producing near-optimal solutions for many
problems.

We also show how to extend each planner to domains in
which actions have multi-modal duration distributions. We
create one planner, ∆DURarch, specifically for these prob-
lems. ∆DURarch creates policies whose make-span is better
than those of ∆DURexp, yet runs faster than ∆DURprun,
∆DURsamp or ∆DURhyb — an interesting point on the
planning time vs. solution-quality trade-off.

Overall, our paper takes an important step in exposing
the issues related to concurrent actions with duration uncer-
tainty. Indeed, our theorems provide insights into determin-
istic temporal planners as well as those handling stochastic
durations.

Planning time in
MachineShop (multi-modal)

100

1000

10000

11 12 13 14 15 16 Problems

Pl
an

ni
ng

 ti
m

e
(lo

g
sc

al
e)

Pruned
Sampled
Hybrid
Arch-Dur
Exp-Dur

∆∆∆∆DURsamp

∆∆∆∆DURprun

∆∆∆∆DURhyb

∆∆∆∆DURarch

∆∆∆∆DURexp

Make-span in MachineShop (multi-modal)

14

16

18

20

22

24

26

28

11 12 13 14 15 16 Problems

J*
(s

0)

DUR-prun
DUR-samp
DUR-hyb
DUR-arch
DUR-exp∆∆∆∆DURexp

∆∆∆∆DURarch

∆∆∆∆DURhyb

∆∆∆∆DURprun
∆∆∆∆DURsamp

Figure 6: Comparisons in the Machine-Shop domain with multi-modal distributions. (a) Computation Time comparisons: ∆DURexp and
∆DURarch perform much better than other algos. (b) Make-spans returned by different algos: Solutions returned by ∆DURsamp are almost
optimal. Overall ∆DURarch finds a good balance between running time and solution quality.

In the future we hope to develop algorithms to handle
more expressive action models similar to PDDL2.1 and Prot-
tle’s language. Combining constraint-posting methods with
a probabilistic context may be the key to solve such prob-
lems. We also wish to extend our algorithms to handle con-
tinuous duration distributions.

Acknowledgments
We thank Blai Bonet for providing the source code of GPT. We
thank Sumit Sanghai for theorem proving skills and advice. We
also thank Jiun-Hung Chen, Nilesh Dalvi, Maria Fox, Jeremy
Frank, Subbarao Kambhampati, and Håkan Younes for helpful sug-
gestions. Raphael Hoffman, Daniel Lowd, Tina Loucks, Alicen
Smith, Deepak Verma and the anonymous reviewers gave useful
comments on prior drafts. This work was supported by NSF grant
IIS-0307906, ONR grants N00014-02-1-0932, N00014-06-1-0147
and the WRF / TJ Cable Professorship.

References
Aberdeen, D.; Thiebaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning. In ICAPS’04.
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In IJCAI’01, 417–
424.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming. Artificial Intelligence 72:81–
138.
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. In IJCAI’95, 1636–1642. Morgan Kaufmann.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming. In ICAPS’03,
12–21.
Boyan, J. A., and Littman, M. L. 2000. Exact solutions to time-
dependent MDPs. In NIPS’00, 1026.
Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and Washing-
ton, R. 2002. Planning under continuous time and resource un-
certainty : A challenge for AI. In UAI’02.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D. E.; and
Washington, R. 2003. Incremental Contingency Planning. In
ICAPS’03 Workshop on Planning under Uncertainty and Incom-
plete Information.
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In ECP’01.

Foss, J., and Onder, N. 2005. Generating temporally contingent
plans. In IJCAI’05 Workshop on Planning and Learning in Apri-
ori Unknown or Dynamic Domains.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. JAIR Special Issue on
3rd International Planning Competition 20:61–124.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on local
search for planning graphs with action graphs. In AIPS’02, 281.
Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. In ECP’01.
Kushmerick, N.; Hanks, S.; and Weld, D. 1995. An algorithm for
probabilistic planning. Artificial Intelligence 76(1-2):239–286.
Laborie, P., and Ghallab, M. 1995. Planning with sharable re-
source constraints. In IJCAI’95, 1643.
Little, I., and Thiebaux, S. 2006. Concurrent probabilistic plan-
ning in the graphplan framework. In ICAPS’06.
Little, I.; Aberdeen, D.; and Thiebaux, S. 2005. Prottle: A prob-
abilistic temporal planner. In AAAI’05.
Mausam, and Weld, D. 2004. Solving concurrent Markov deci-
sion processes. In AAAI’04.
Mausam, and Weld, D. 2005. Concurrent probabilistic temporal
planning. In ICAPS’05, 120–129.
Mausam, and Weld, D. 2006. Challenges for temporal planning
with uncertain durations. In ICAPS’06.
McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with monotone
upper bounds and performance guarantees. In ICML’05.
Musliner, D.; Murphy, D.; and Shin, K. 1991. World modeling
for the dynamic construction of real-time control plans. Artificial
Intelligence 74:83–127.
Penberthy, J., and Weld, D. 1994. Temporal planning with con-
tinuous change. In AAAI’94, 1010.
Smith, D., and Weld, D. 1999. Temporal graphplan with mutual
exclusion reasoning. In IJCAI’99, 326–333. Stockholm, Sweden:
San Francisco, CA: Morgan Kaufmann.
Younes, H. L. S., and Simmons, R. G. 2004a. Policy genera-
tion for continuous-time stochastic domains with concurrency. In
ICAPS’04, 325.
Younes, H. L. S., and Simmons, R. G. 2004b. Solving generalized
semi-markov decision processes using continuous phase-type dis-
tributions. In AAAI’04, 742.

