
Concurrent Probabilistic Temporal Planning

Mausam and Daniel S. Weld
Dept of Computer Science and Engineering

University of Washington
Seattle, WA-98195

{mausam,weld}@cs.washington.edu

Content areas: Markov Decision Processes, Planning

Abstract

Probabilistic planning problems are often modeled as Markov
decision processes (MDPs), which assume that a single ac-
tion is executed per decision epoch and that actions take unit
time. However, in the real world it is common to execute sev-
eral actions in parallel, and the durations of these actions may
differ. This paper presents efficient methods for solving prob-
abilistic planning problems with concurrent, durative actions.
We adapt the formulation ofConcurrent MDPs, MDPs which
allow multiple instantaneous actions to be executed simulta-
neously. We add explicit action durations into the concurrent
MDP model by encoding the problem as a concurrent MDP in
an augmented state space. We present two novel admissible
heuristics and one inadmissible heuristic to speed up the ba-
sic concurrent MDP algorithm. We also develop a novel no-
tion of hybridizingan optimal and an approximate algorithm
to yield a hybrid algorithm, which quickly generates high-
quality policies. Experiments show that all our heuristics
speedup the policy construction significantly. Furthermore,
our approximate hybrid algorithm runs up to two orders of
magnitude faster than other methods, while producing poli-
cies whose make-spans are typically within 5% of optimal.

1. Introduction
Recent progress has yielded new planning algorithms which
relax, individually, many of the classical assumptions. How-
ever, in order to apply automated planning to many real-
world domains we must eliminate larger groups of the as-
sumptions in concert. For example, (Bresinaet al. 2002)
notes that optimal control for a NASA Mars rover re-
quires reasoning about uncertain, concurrent, durative ac-
tions. While today’s planners can handle large problems
with deterministicconcurrent durative actions (JAIR Special
Issue 2003), and semi-MDPs provide a clear framework for
durative actions in the face of uncertainty (Bertsekas 1995),
few researchers have considered concurrent, uncertain, du-
rative actions — the focus of this paper.

Consider a Mars rover with the goal of gathering data
from different locations with various instruments (color and
infrared cameras, microscopic imager, Mossbauer spectrom-
etersetc.) and transmitting this data back to Earth. Concur-
rent actions are essential to effective execution, since instru-
ments can be turned on, warmed up and calibrated, while

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the rover is moving, using other instruments or transmitting
data. Similarly, uncertainty must be explicitly confronted as
the rover’s movement, arm control and other actions cannot
be accurately predicted.

The framework ofMarkov decision processes(MDPs) is
the dominant model for formulating probabilistic planning
problems. In the traditional case of a single action per deci-
sion epoch, state-space heuristic search and dynamic pro-
gramming have proven quite effective (Bonet & Geffner
2000; Hansen & Zilberstein 2001). However, allowing mul-
tiple concurrent actions at a time point inflicts an exponen-
tial blowup on all of these techniques. Our previous work on
concurrent MDPs (Mausam & Weld 2004) introduced sev-
eral methods to manage this exponential blowup. However,
in their current form concurrent MDPs (CoMDPs) do not
handle explicit action durations. The actions are supposed to
be instantaneous (or unit length), and the agent may not start
a new action while another action is already executing. In-
stead, the agent must wait for all the recently-started actions
to finish before new action(s) can be started. This restriction
is fine if all actions are unit length, but leads to suboptimal
policies when actions have differing lengths. For example,
in order to save execution time, the Mars rover might wish to
execute sequential set up actions (e.g., turning on the cam-
era, warming it up, focusing,etc..) concurrent with naviga-
tion to the next location.

In this paper, we defineconcurrent probabilistic temporal
planning - in short, CPTP. This model extends our previ-
ous CoMDP framework by incorporating explicit action du-
rations. Specifically, we extend the technique ofSampled
real-time dynamic programming(Sampled RTDP) (Barto,
Bradtke, & Singh 1995; Bonet & Geffner 2003; Mausam &
Weld 2004) to generate high-quality CPTP policies. This
paper makes the following contributions:

• We model a CPTP problem as a concurrent MDP in an
augmented state space.

• We present three, novel heuristics that can guide RTDP.

– We prove themaximum concurrency(MC) heuristic is
admissible by bounding the optimal cost of the solution
in terms of the solution of a sequential planning prob-
lem and maximum possible concurrency in the domain.

– The average concurrency(AC) heuristic is more in-
formed, but inadmissible.

1

– The eager effects(EE) heuristic is computed by solv-
ing a relaxed version of the CPTP problem, which as-
sumes that effects of actions are predictable before ac-
tion completion.

• We propose the novel idea ofhybridization, i.e. of com-
bining two policy creation algorithms to yield a single,
fast, approximation algorithm, which has the best of both
worlds. Our hybrid algorithm for CPTP combines par-
tial CPTP and CoMDP policies to focus its optimization
efforts on the most frequent branches.

• We experimentally compare the speed/quality trade-offs
offered by the heuristics on three domains. Our most in-
teresting result is that on large problems our hybrid algo-
rithm may save a factor of 88x in policy-creation time,
with only a small sacrifice in the resulting policy quality.

2. Background
Following (Bonet & Geffner 2003), we define aMarkov de-
cision processas a tuple〈S,A,Pr, C,G, s0, γ〉 in which S
is a finite set of discrete states, andA is a finite set of ac-
tions. An applicability function,Ap : S → P(A), denotes
the set of actions that can be applied in a given state (P rep-
resents the power set).Pr : S × A × S → [0, 1] is the
transition function. We writePr(s′|s, a) to denote the prob-
ability of arriving at states′ after executing actiona in state
s. C : A → <+ is the cost model,G ⊆ S is the set of ab-
sorbing goal states,s0 is the start state, andγ ∈ [0, 1] is the
discount factor.

We assume full observability, and we seek to find an op-
timal, stationary policy —i.e., a functionπ: S → A which
minimizes the expected discounted cost (over an infinite
horizon) incurred to reach a goal state. Note that avalue
function, J : S → <, mapping states to the expected cost of
reaching a goal state defines a policy:

πJ(s) = argmin
a∈Ap(s)

{
C(a) + γ

∑
s′∈S

Pr(s′|s, a)J(s′)

}
The optimal policy can be derived from the value func-

tion, J∗: S → <, which satisfies the following pair ofBell-
man equations:

J∗(s) = 0, if s ∈ G else (1)

J∗(s) = min
a∈Ap(s)

{
C(a) + γ

∑
s′∈S

Pr(s′|s, a)J∗(s′)

}
Value Iteration is a dynamic programming approach

in which the optimal value function is calculated as
the limit of a series of approximations. IfJn(s)
is the value of states in iteration n, then Jn+1(s)
is calculated by aBellman backupas: Jn+1(s) =
mina∈Ap(s)

{
C(a) + γ

∑
s′∈S Pr(s′|s, a)Jn(s′)

}
.

Value iteration and other similar algorithms (e.g.Policy
Iteration) tend to be quite slow since they search the entire
state space.Reachability Analysisis a technique employed
to speed up this search. In this, the search is restricted to the
part of state space reachable from the initial states0. Two
algorithms exploiting this are LAO* (Hansen & Zilberstein

2001) and RTDP (Barto, Bradtke, & Singh 1995), which is
our focus.

Conceptually, RTDP is a lazy version of value iteration in
which the states are updated in proportion to the frequency
with which they are visited by the repeated execution of the
greedy policy1 An RTDP trial is a path starting froms0,
following the greedy policy, and updating the values of the
states visited using Bellman backups; the trial ends when a
goal is reached or the number of updates exceeds a thresh-
old. RTDP repeats these trials until convergence. Note that
common states are updated frequently, while RTDP wastes
no time on states that are unreachable, given the current pol-
icy. RTDP’s strength is its ability to quickly produce a rela-
tively good policy; however, complete convergence (at every
state) is slow because less likely (but potentially important)
states get updated infrequently. Furthermore, RTDP is not
guaranteed to terminate.Labeled RTDPfixes these prob-
lems with a clever labeling scheme that focuses attention on
states where the value function has not yet converged (Bonet
& Geffner 2003). Labeled RTDP is guaranteed to terminate,
and is guaranteed to converge to the optimal value function
(for states reachable using the optimal policy) if the initial
value function is admissible.

Concurrent Markov Decision Processes (CoMDP) In
the previous work (Mausam & Weld 2004), we extended
traditional MDPs to allow concurrent actions. Since some
actions interfere with each other, we ban certain combina-
tions adopting the classical planning notion of mutual ex-
clusion (Blum & Furst 1995) and apply it to afactoredac-
tion representation:probabilistic STRIPS(Boutilier, Dean,
& Hanks 1999). Two actions aremutex(may not be exe-
cuted concurrently) if in any state 1) they have inconsistent
preconditions2, 2) they have conflicting effects, or 3) the pre-
condition of one conflicts with the (possibly probabilistic)
effect of the other. Thus, non-mutex actions don’t interact
— the effects of executing the sequencea1; a2 equals those
of a2; a1.

An action combination, A, is a set of one or more non-
mutex actions to be executed in parallel. The cost model
for a CoMDP, denotedC‖ : P(A) → <+, returns the
cost of concurrently executing several actions in a state.
In (Mausam & Weld 2004), we considered cost models,
which were a weighted sum of time and resource compo-
nents. For the purposes of this paper, we ignore the resource
component and focus on the expectedmake-spanof a policy
— how long it will take to execute. Thus, we define the cost
of a combination of actions to be:C‖({a1, a2, ..., ak}) =
maxi=1..k{C(ai)}. Note that this way, action durations are
embedded in the cost function, and the model assumes that
a new set of actions may not be executed until all members

1A greedy policy is one that chooses the action with
the best Q-value defined asQn+1(s, a) = C(a) +
γ

∑
s′∈S Pr(s′|s, a)Jn(s′).

2Note that an action’s transition function is typically condi-
tioned on various features of the state (conditional effects). These
features are considered to be a part of conjunctive preconditions for
the purpose of mutex calculation.

2

of the previous set have terminated.3

The applicability function for CoMDPs, denoted asAp‖,
now has rangeP(P(A)); it is defined in terms of the appli-
cability function for MDPs asAp‖(s) = {A ⊆ A|∀a, a′ ∈
A, a, a′ ∈ Ap(s) ∧ ¬mutex(a, a′)}

Let A = {a1, a2, . . . , ak} be an action combination that
is applicable ins. Since CoMDPs only allow concurrent
execution of non-interacting actions, the transition function
may be calculated as follows:

Pr‖(s′|s,A) =
∑

. . .
∑

s1,s2,...sk∈S

Pr(s1|s, a1)Pr(s2|s1, a2) . . .Pr(s′|sk, ak)
Finally, instead of Equations (1), the following set of Bell-

man equations represents the solution to a CoMDP:

J∗‖ (s) = 0, if s ∈ G else (2)

J∗‖ (s) = min
A∈Ap‖(s)

{
C‖(A) + γ

∑
s′∈S

Pr‖(s′|s,A)J∗‖ (s′)

}
These equations are the same as in a traditional MDP, ex-

cept that instead of considering single actions for backup
in a state, we consider all applicable action combinations.
Thus, only this small change needs to be made to traditional
algorithms (e.g., value iteration, LAO*, Labeled RTDP).

Sampled RTDP The number of action combinations in
each Bellman backup is exponential in|A|. To efficiently
handle this blowup, one may refrain from backing up all
combinations when evaluating the “min” in Equation 2.
Sampled RTDPperforms backups on a random set of com-
binations, choosing from a distribution which favors “likely
combinations.” This distribution is generated by: 1) using
combinations that were previously discovered to have low
Q‖-values (recorded bymemoizingbest combinations per
state, after each iteration); 2) calculating theQ‖-values of all
applicable single actions (using the current value function)
and then biasing the sampling of combinations to choose the
ones which contain actions with lowQ‖-values.

Since the system does not consider every possible action
combination, Sampled RTDP is not guaranteed to choose
the best combination to execute at each state. As a result,
even when started with an admissible heuristic, theJ‖(s)
values are neither admissible nor monotonic. As a result,
Sampled RTDP no longer guarantees termination and op-
timality. However, experiments have shown that Sampled
RTDP usually terminates quickly, and returns values that are
extremely close to the optimal (Mausam & Weld 2004).

3. Extending to Durative Actions
We now incorporate action durations in concurrent proba-
bilistic planning problems. As a start we consider the input
model similar to that of concurrent MDPs except that action
costs (C‖(a)) are replaced by their durations (∆(a)). We

3The fact that the start of all new actions must be aligned with
the termination of previous actions explains why we use the‖ sym-
bol to distinguish the cost(C‖) and value functions(J‖) etc.. of this
model.

study the objective of minimizing the expected time (make-
span) of reaching a goal. For now, we assume deterministic
action durations:

Assumption 1 All actions have deterministic durations.

Consider the sample domain of the Mars rover in Figure
1. The rover has to accomplish two experiments: sampling
the rock and taking an image. But when extended, the arm
blocks the camera’s field of view. Moreover, the camera
needs to be calibrated before capturing the image, and the
calibrate action succeeds only half the time. Each action
may have a distinct duration as shown in the figure.

Note that a CPTP is distinct from a semi-MDP as a semi-
MDP models actions withuncertain durations, while in
CPTP durations are deterministic. However, a CPTP allows
for concurrent executions of actions whereas a semi-MDP
does not.

Assumption 2 All action durations are integer-valued.

This assumption has a minimal effect on expressiveness
because one can convert a problem with rational durations
into one that abides Assumption 2 by scaling all durations
by the g.c.d. of the denominators. In case of irrational dura-
tions, one can always find an arbitrarily close approximation
to the original problem by approximating the irrational du-
rations by rational numbers.

For simplicity, we adopt the temporal action model
of (Smith & Weld 1999), rather than the more complex
PDDL2.1 (Fox & Long 2003). Specifically,

Assumption 3 All actions follow the following model:

• The effects of an action are realized at some unknown
point during action execution, and thus can be used only
once the action has completed.

• The preconditions must hold at the beginning of an action.
• The preconditions and the features on which the action’s

transition function is conditioned must remain unchanged
while the action is being executed, unless the action itself
is modifying them.

These restrictions are consistent with our previous def-
inition of concurrency. Specifically, the mutex definitions
(of CoMDPs) hold and are required under these assump-
tions. As an illustration, consider Figure 2. It describes
a situation in which two actions with interfering precondi-
tions and effects can not be executed concurrently. To see
why not, suppose initiallyarm_out was false and two ac-
tions take_image and extend_arm were started at time
2 and 4, respectively. As¬arm_out is a precondition of
take_image, whose duration is 5, it needs to remain false
until time 7. Butextend_arm may produce its effects any-
time between 4 and 9, which may conflict with the precon-
ditions of the other executing action. Hence,extend_arm
andtake_image cannot be executed concurrently.

Aligned Epoch Search Space A simple way to formu-
late CPTP is to model it as a standard CoMDP, in which
action costs are set to their durations and the cost of a com-
bination is the maximum duration of the constituent actions.
This formulation is distinct from a CPTP in an important
way: Consider the actual executions of these policies. In

3

State variables:calibrated, arm_out, image_taken, sample_taken
Action (a) ∆(a) Preconditions Effects Prob.

extend_arm 5 true arm_out 1
take_sample 1 arm_out sample_taken∧ ¬arm_out 0.9

no change 0.1
calibrate 1 ¬calibrated calibrated 0.5

no change 0.5
take_image 5 calibrated ∧ ¬arm_out image_taken 1
Goal: image_taken ∧ sample_taken

Figure 1:Durative Probabilistic STRIPS definition of a simple CPTP problem

arm_out (effect)

0 108642

take_image

¬arm_out (Precondition)

conflict

extend_arm

Figure 2: A sample execution
demonstrating conflict due to inter-
fering preconditions and effects.

c c c c

c

0

ff

f

f f s
extend_arm

extend_arm

10

s

ts
f f f s

c c c c take_image

s

time5

An Interleaved Epoch policy execution (takes 11 units)

c

ts

take_image

An Aligned Epoch policy execution (takes 14 units)

Figure 3:Comparison of times taken in a sample execution of an
interwoven-epoch policy and an aligned-epoch policy. In both tra-
jectories thecalibrate (c) action fails four times before succeeding.
Because the aligned policy must wait for all actions to complete
before starting any more, it takes more time than the interwoven
policy, which can start more actions in the middle.

the aligned-epoch case, once a combination of actions is
started at a state, the next decision can be taken only when
the effects of all actions have been observed (hence the name
aligned-epochs). In contrast, at a decision epoch in the op-
timal execution for a CPTP problem, many actions may be
midway in their execution. We have to explicitly take into
account these actions and their remaining execution times
when making a subsequent decision. Thus, the state space
of CPTP is substantially different from that of the simple
aligned-epoch model. The difference is illustrated in Figure
3. The figure compares the trajectories in which thecali-
brate (c) actions fails for four consecutive times before suc-
ceeding. In the figure, “f” and “s” denote failure and suc-
cess of uncertain actions, respectively and “ts” denotes the
take_sample action. The vertical dashed lines represent the
time-points when an action is started.

Note: due to Assumption 3, it is sufficient to consider a
new decision epoch only at a time-point when one or more
actions complete. Thus, using Assumption 2 we infer that
these decision epochs will be discrete (integer). Of course,
not all optimal policies will have this property. But it is easy
to see that there exists an optimal policy in which each ac-
tion begins at one such time-point. Hence Assumptions 1- 3
reduce our search space considerably.
Interwoven Epoch Search Space We adapt the search
space representation of (Haslum & Geffner 2001), similar
to (Bacchus & Ady 2001; Do & Kambhampati 2001). Our
original state spaceS in Section 2 is augmented by includ-

ing the set of actions currently executing and the times re-
maining for each. Formally, let the new interwoven state4

s ∈ S -– be an ordered pair〈X, Y 〉 where X ∈ S and
Y = {(a, δ)|a ∈ A, 0 < δ ≤ ∆(a)}. Here X rep-
resents the values of the state variables (i.e. X is a state
in the original state space) andY denotes the set of on-
going actions “a” and their remaining times until comple-
tion “δ”. Thus the overall interwoven-epoch search space is
S -– = S ×

⊗
a∈A

(
{a} × Z∆(a)

)
, whereZ∆(a) represents

the set{0, 1, . . . ,∆(a) − 1} and
⊗

denotes the Cartesian
product over multiple sets.

Also defineAs to be the set of actions already in execu-
tion. In other words,As is a projection ofY :

As = {a|(a, δ) ∈ Y ∧ s = 〈X, Y 〉}
Example:In our domain in Figure 1, a state (says1) has all
state variables false, and the actionextend_arm was started
3 units ago. Such a state would be represented as〈X1, Y1〉
with X1=(F, F, F, F)5 andY1={(extend_arm, 2)}. The set
As1 would be {extend_arm}.

To allow the possibility of simply waiting for some ac-
tion to complete execution, that is, not executing any action
at some decision epochs, we augment the setA with a no-
op action. We allow no-op to be applicable in all statess
= 〈X, Y 〉 whereY 6= ∅ (i.e. states in which some action is
still being executed)6. The no-op will have a variable dura-
tion equal to the time after which another already executing
action completes (δnext(s,A) as defined below).

The interwoven applicability set can be defined as:

Ap -–(s)=
{

Ap‖(X) if Y = ∅ else{
noop}∪{A|A∪As∈Ap‖(X) andA∩As = ∅}

Transition Function We also need to define the prob-
ability transition function,Pr -–, for the interwoven state
space. At some decision epoch let the agent be in states
= (X, Y). Suppose that the agent decides to execute an ac-
tion combinationA. DefineYnew as the set similar toY
but consisting of the actions just starting. FormallyYnew =
{(a,∆(a))|a ∈ A}. In this system, our next decision epoch
will be the smallest time after which any executing action

4We use the subscript-– to denote theinterwovenstate space
(S -–), value function(J -–), etc..

5The four state variables are listed in the order:calibrated,
arm_out, image_taken, andsample_taken.

6For a states, the no-op action is mutex with all actions inA \
As. In other words, at any decision epoch either a no-op will be
started or any combination not involving no-op.

4

completes. Let us call this timeδnext(s,A). Notice that
δnext(s,A) depends on both executing and newly started ac-
tions. Formally,

δnext(s,A) = min
(a,δ)∈Y ∪Ynew

δ

Moreover, multiple actions may complete simultaneously.
DefineAnext(s,A) ⊆ A ∪ As to be the set of actions that
will complete afterδnext(s,A) time. TheY -component of
the state at the decision epoch afterδnext(s,A) time will be
Ynext(s,A) = {(a, δ− δnext(s,A))|(a, δ) ∈ Y ∪Ynew, δ >
δnext(s,A)} Let s=〈X, Y 〉 and lets′=〈X ′, Y ′〉. The transi-
tion function for CPTP can now be defined as:

Pr -–(s′|s,A)=
{
Pr‖(X ′|X, Anext(s,A)) if Y ′=Ynext(s,A)
0 otherwise

In other words, executing an action combinationA in state
s = 〈X, Y 〉 takes the agent to a decision epochδnext(s,A)
ahead in time, that is, the first time when some combination
Anext(s,A) completes. This lets us calculateYnext(s,A):
the new set of actions still executing with their remaining
times. And the original probability transition function can
be used to decide the new distribution of state variables, as
if the combinationAnext(s,A) were taken in stateX.
Example: Continuing with the previous example, let the
agent in states1 execute the action combinationA = {cali-
brate}. Then δnext(s1, A) = 1, sincecalibrate will finish
the first. Thus,Anext(s1, A)= {calibrate}. Ynext(s1, A) =
{(extend_arm,1)}. Hence, the probability distribution of
states after executing the combinationA in states1 will be a
uniform distribution over:
〈(T, F, F, F), {(extend_arm, 1)}〉
〈(F, F, F, F), {(extend_arm, 1)}〉

Start and Goal States The start state is〈s0, ∅〉 and the
new set of goal states isG -– = {〈X, ∅〉|X ∈ G}.

Thus we have modeled a CPTP problem as a CoMDP
in our interwoven state space. We have redefined the start
and goal states, the applicability function, and the probabil-
ity transition function. Now we can use the techniques of
CoMDPs to solve our problem. In particular, we can use our
Bellman equations as described below.

Bellman Equations The set of equations for the solution
of a CPTP problem can be written as:

J∗-–(s) = 0, if s ∈ G -– else (3)

J∗-–(s) = min
A∈Ap -–

(s)

δnext(s,A) +
∑

s′∈S -–

Pr -–(s′|s,A)J∗-–(s′)


The main bottleneck in inheriting our previous methods
(e.g.Sampled RTDP) naively is the huge size of the inter-
woven state space. In the worst case (when all actions
can be executed concurrently) the size of the state space is
|S| ×

(∏
a∈A ∆(a)

)
. We get this bound by observing that

for each actiona, there are∆(a) number of possibilities :
either a is not executing or it is and has remaining times
1, 2, . . . ,∆(a)− 1.

Thus we need to reduce, abstract or aggregate our state
space to make the problem tractable. We now present sev-
eral heuristics which can be used to speed the search.

4. Admissible Heuristics
We present two admissible heuristics that can be used as the
initial cost function for our Sampled RTDP algorithm. The
first heuristic (maximum concurrency) solves the underlying
MDP and is thus quite efficient to compute. However it is
typically less informative than our second heuristic (eager
effects) which requires the solution of a relaxed CoMDP in
a state space larger than the underlying MDP state space.
We now discuss the details of the two heuristics.

Maximum Concurrency Heuristic
We prove that the optimal expected cost in a traditional (se-
rial) MDP divided by the maximum number of actions that
can be executed in parallel is a lower bound for the expected
make-span of reaching a goal in a CPTP problem. Let
J(X) denote the value of a stateX ∈ S in a traditional
MDP with costs of an action equal to its duration. LetJ -–(s)
be the value for equivalent CPTP problem withs as in our
interwoven-epoch state space. Letconcurrencyof a state
be the maximum number of actions that could be executed
in the state concurrently. We definemaximum concurrency
of a domain(c) as the maximum concurrency of any state
in the domain. Thus,c represents the maximum number of
actions that could possibly execute in parallel at any point.
The following theorem can be used to provide an admissible
heuristic for CPTP problems.

Theorem 1 Lets = 〈X, Y 〉,

J∗-–(s) ≥ J∗(X)
c

for Y = ∅

J∗-–(s) ≥ Q∗(X, As)
c

for Y 6= ∅

Proof Sketch: Consider any trajectory of make-spanL
(from a states = 〈X, ∅〉 to a goal state) in a CPTP prob-
lem using its optimal policy. We can make all concurrent
actions sequential by executing them in the chronological
order of being started. As all concurrent actions are non-
interacting, the outcomes at each stage will have similar
probabilities. The maximum make-span of this sequential
trajectory will becL (assumingc actions executing at all
points in the semi-MDP trajectory). HenceJ(X) using this
(possibly non-stationary) policy would be at mostcJ∗-–

(s).
Thus J∗(X) ≤ cJ∗-–

(s). The second inequality can be
proven in a similar way.

There are cases where these bounds are tight. For ex-
ample, consider a deterministic planning problem in which
the optimal plan is concurrently executingc actions each of
unit duration (make-span = 1). In the sequential version, the
same actions would be taken sequentially (make-span =c).

Following this theorem, the maximum concurrency (MC)
heuristic for a states = 〈X, Y 〉 is defined as follows:

if Y = ∅ HMC(s) =
J∗(X)

c
elseHMC(s) =

Q∗(X, As)
c

The maximum concurrencyc can be calculated by a static
analysis of the domain. Thus the time taken for each heuris-
tic is the time required for solving the MDP. In our imple-
mentation, we do this calculation on demand, as more states

5

are visited, by starting the MDP from the current state. Each
RTDP run can be seeded by the previous value function, thus
no computation is thrown away and only the relevant part of
the state space is explored.
Average Concurrency Heuristic Instead of using maxi-
mum concurrencyc in the above heuristic we use the average
concurrency in the domain (ca) to get the average concur-
rency (AC) heuristic. TheACheuristic is not admissible, but
in our experiments it is typically a more informed heuristic.

Eager Effects Heuristic
Given the CPTP problem, we can generate a relaxed
CoMDP by making the effects of actions, which would oth-
erwise be visible only in the future, be known right away
— thus the name eager effects (EE). A state for this relaxed
CoMDP is〈X, δ〉 whereX is an MDP state andδ is an in-
teger. Intuitively,〈X, δ〉 signifies that the agent willreach
stateX after timeδ units. Thus, we have discarded the in-
formation about which actions are executing and when they
will individually end; we only record that all of them will
have ended after timeδ units and that the agent will reach
the stateX (possibly with some probability).

The applicable set of a relaxed state is defined as
ApEE(〈X, δ〉) = Ap‖(X). Note that this new problem re-
ally is a relaxation because certain actions are applicable that
would be mutex to the currently executing actions (in the
original problem). We explain this in detail in the discussion
of Theorem 2. The goal states in the relaxed problem are
{〈X, 0〉|X ∈ G}, i.e. all states that are goals in the underly-
ing MDP and no action is executing.

Finally, the transition probabilities are redefined. The
state-component of the resulting relaxed states denotes that
the effects of the combination currently started have been
realized. Whereas, the time component does not advance to
the end of all actions, rather it advances to the completion
of the shortest action, generating a new decision epoch for
starting new actions.

Formally, suppose that we execute a combinationA in
states = 〈X, δ〉. LetδEE

last be the length of the longest action
in A. Let δEE

first be the the length of the shortest action inA.
DefineδEE

next as

δEE
next = δEE

last − δEE
first if δ = 0

= δEE
last − δ if 0 < δ ≤ δEE

first

= δEE
last − δEE

first if δEE
first < δ ≤ δEE

last

= δ − δEE
first if δ > δEE

last

The transition function can now be defined using the above
definition ofδEE

next.

PrEE(〈X ′, δ′〉|〈X, δ〉, A) = 0 if δ′ 6= δEE
next

= Pr‖(X ′|X, A) if δ′ = δEE
next

The cost of executing a combination in the relaxed state rep-
resents the duration by which the current time moves for-
ward. It is equal tomax(δ, δEE

last)− δEE
next.

Based on the solution of the relaxed CoMDP we can com-
pute a heuristic value for our original CPTP problem. Let

s = 〈X, Y 〉 be a state in the interwoven-epoch space. Let
J∗EE be the optimal cost function for the relaxed CoMDP.
Then, theEEheuristic function is computed as follows:

HEE(s) =
∑

X′∈S
Pr‖(X ′|X, As)J∗EE(〈X ′, δEE

last〉)

Theorem 2 TheEE heuristic value is non-overestimating,
thus admissible.

The admissibility stems from the fact that, in the relaxed
problem, we have eased two essential features. First, we
have assumed that the present state contains the results of
actions that would actually complete in the future. So, there
is actually more information in the relaxed problem, than
in the original problem; thus the decisions taken are more
informed and lead to a goal in less time. Secondly, since we
lose the information of which actions were executing in the
domain, we have to allow for all applicable combinations in
the MDP state. That is, all the actions that were mutex with
the actions executing (in the real problem) are also allowed.
Thus, this is a relaxation of the original problem, and the
time taken to reach the goal will be shorter. Hence, overall
the heuristic value is admissible.

We further speed the convergence of the relaxed problems
by initializing its value function with simple heuristics. It is
easy to show that the following inequalities hold:

J∗EE(〈X, δ〉) ≥ δ

J∗EE(〈X, δ〉) ≥ J∗EE(〈X, δ′〉) if δ′ ≤ δ

J∗EE(〈X, δ〉) ≥ J∗EE(〈X, δ′〉)− (δ′ − δ) if δ′ > δ

So for any state〈X, δ〉we can set the initial value function
to δ or max it with other values computed using the above
equations for the states〈X, δ′〉 that have already been vis-
ited. We can use the current values of these states instead of
J∗EE to compute these seed values.

Comparing the Two Heuristics
Theorem 3 Neither of the two heuristics (eager effects or
maximum concurrency) dominates the other.

Proof: Consider a deterministic problem in which two par-
allel sets of actions in the ordera1, a2, a3 andb1, b2, b3 need
to be executed to achieve the goal. Leta1, a3, b2, andb3 be
of durationn and the rest be unit duration. If the maximum
concurrency in the domain is 2, thenHMC value of start
state is(4n + 2)/2 which is also the optimal value (2n + 1).
TheHEE value of the start state calculates ton + 2. This is
an example of a problem in which theMC heuristic is more
informative. If however in a similar problem, the only ac-
tions that could be executed concurrently area3 andb3 then
the maximum concurrency remains 2. So theHMC does not
change, although the optimal plan is now longer. But the
HEE value calculates to3n + 2 which is optimal.

In spite of the theorem, in practiceEE is consistently more
informative thanMC on the domains we tried. But, the com-
putation times required for the two heuristics are quite dif-
ferent.MC requires the computation of the underlying MDP
which is a relatively easy problem to solve. Whereas,EE
requires the computation of a problem which has a larger

6

search space than even the underlying CoMDP. Thus the
computation ofEEheuristic can take a long time, at times to
the extent that the advantage of the more informative heuris-
tic is lost in the complex heuristic computation.

5. Hybrid Algorithm

In this section we present an approximate method to solve
CPTP problems. While there are many possible approxima-
tion methods, our technique exploits the intuition that it is
best to focus computation on the most probable branches in
the current policy’s reachable space. The danger of this ap-
proach is the chance that, during execution, the agent might
end up in an unlikely branch, which has been poorly ex-
plored; indeed it might blunder into a dead-end in such a
case. This is undesirable, because such an apparently attrac-
tive policy might have a true expected make-span of infinity.
Since, we wish to avoid this case, we explore the desirable
notion ofpropriety.

Propriety: A policy is proper at a state if it is guaranteed
to lead, eventually, to the goal state (i.e., it avoids all dead
ends and cycles) (Barto, Bradtke, & Singh 1995). We
define a planning algorithmproper if it always produces
a proper policy (when one exists) for the initial state.

We now describe an anytime approximation algorithm,
which quickly generates a proper policy and uses any ad-
ditional available computation time to improve the policy,
focusing on the most likely trajectories.

Hybridization Our algorithm is created byhybridizing
two other policy creation algorithms. Indeed, our novel no-
tion of hybridization is both general and powerful, apply-
ing to many MDP-like problems; however, in this paper we
focus on the use of hybridization for CPTP. Hybridization
uses an anytime algorithm like RTDP to create a policy for
frequently visited states, and uses a faster (and presumably
suboptimal) algorithm for the infrequent states.

For the case of CPTP, our algorithm hybridizes the RTDP
algorithms for interwoven-epoch and aligned-epoch models.
With aligned-epochs, RTDP converges relatively quickly,
because the state space is smaller, but the resulting policy
is suboptimalfor the CPTP problem, because the policy
waits forall currently executing actions to terminate before
starting any new actions. In contrast, RTDP for interwoven-
epochs generates the optimal policy, but it takes much longer
to converge. Our insight is to run RTDP on the interwoven
space long enough to generate a policy which is good on the
common states, but stop well before it converges in every
state. Then, to ensure that the rarely explored states have a
proper policy, we substitute the aligned policy, returning this
hybridpolicy.

Thus the key question is how to decide which states are
well explored and which are not. We define thefamiliarity
of a states to be the number of times it has been visited in
previous RTDP trials. Any reachable state whose familiarity
is less than a constant,k, has an aligned policy created for it.
Furthermore, if a dead-end state is reached using the greedy
interwoven policy, then we create an aligned policy for the

Algorithm Hybrid(r, k, m) {
∀s ∈ S -– initialize J -–(s) with an admissible heuristic;
Repeat {

Performm RTDP trials;
Compute Hybrid policy (π) using interwoven-epoch policy

for k-familiar states and aligned-epoch policy otherwise;
Cleanπ by removing all dead-ends and cycles;
Jπ-–
〈s0, ∅〉 ← Evaluation ofπ from the start state;

} Until

(
Jπ-–

(〈s0,∅〉)−J -–
(〈s0,∅〉)

J -–
(〈s0,∅〉) < r

)
Return hybrid policyπ;

}
Figure 4:Pseudo-code for the hybrid algorithm

immediate precursors of that state. If a cycle is detected7,
then we compute an aligned policy for all the states which
are part of the cycle.

We have not yet said how the hybrid algorithm terminates.
Use of RTDP helps us in defining a very simple termina-
tion condition with a parameter that can be varied to achieve
the desiredclosenessto optimality as well. The intuition
is very simple. Consider first, optimal Labeled RTDP. This
starts with an admissible heuristic and guarantees that the
value of the start state,J -–(〈s0, ∅〉), remains admissible (thus
less than or equal to optimal). In contrast, the hybrid pol-
icy’s make-span is always longer than or equal to optimal.
Thus as time progresses, these values approach the optimal
make-span from opposite sides. Whenever the two values
are within anoptimality ratio (r), we know that the algo-
rithm has found a solution, which is close to the optimal.

Finally, evaluation of the hybrid policy is done using sim-
ulation, which we perform after a fixed number ofm RTDP
trials. The algorithm is summarized in Figure 4. One can
see that this combined policy is proper for two reasons: 1)
if the policy at a state is from the aligned policy, then it is
proper because the RTDP for aligned-epoch model was run
to convergence, and 2) for the rest of the states we have ex-
plicitly ensured that there are no cycles or dead-ends.

6. Experiments
In this section, we compare the computation time and so-
lution quality of six methods: interwoven Sampled RTDP
with no heuristic (0), with the maximum concurrency (MC),
average concurrency (AC), and eager effects (EE) heuristics,
the hybrid (H) algorithm and Sampled RTDP on the aligned-
epoch (AE) model. We also use an artificial domain to see
if the relative performance of the techniques varies with the
amount of concurrency in the domain.

Experimental Setup We test our algorithms on problems
in three domains. The first domain is a probabilistic, du-
rative variant of NASA Rover domain from the 2002 AIPS
Planning Competition, in which there are multiple objects
to be photographed and various rocks to be tested with re-
sulting data to be communicated back to the base station.
Cameras need to be focused, and arms need to be positioned
before usage. Since the rover has multiple arms and multiple
cameras, the domain is highly parallel. We generate prob-

7In our implementation cycles are detected using simulation.

7

Figure 5:(a,b,c): Running times (on a log scale) for the Rover, Machineshop and Artificial domain, respectively. For each problem the six
bars represent the times taken by the algorithms: S-RTDP with no (0) heuristic, withMC, AC, EE heuristics, hybrid algorithm and aligned-
epoch RTDP, respectively. The white bar onEE denotes the portion of time taken by heuristic computation and onH denotes the portion of
time taken by aligned-epoch RTDP.

Figure 6:(a,b,c): Comparison of make-spans of the solution found with the optimal (plotted as1 on the y-axes) for Rover, Machineshop and
Artificial domains, respectively. All algorithms exceptAEproduce solutions, which are quite close to the optimal.

lems with 17-21 state variables and 12-18 actions, whose
duration range between 1 and 20. The problems have be-
tween 15,000-700,000 reachable states in the interwoven-
epoch state space,S -–.

We also test on a probabilistic temporal version of Ma-
chineshop domain with multiple subtasks (e.g., shape, paint,
polishetc.), which need to be performed on different objects
using different machines. Machines can perform in parallel,
but not all are capable of every task and they cannot perform
on the same object concurrently. Different pieces need to be
transported from one machine to another for different sub-
tasks. We test on problems with 18-26 variables and up to
500,000 reachable states with action durations being 1-10.

Finally, we test on an artificial domain. In this domain,
some Boolean variables need to be toggled; however, tog-
gling is probabilistic in nature. Moreover, certain pairs of
actions have conflicting preconditions and thus, by varying
the number of mutex actions we may control the domain’s
degree of parallelism. All the problems in this domain have
14 state variables and 17,000-40,000 reachable states and
durations of actions between 1 and 3.

We use our implementation of Sampled RTDP8, which is
implemented on top of Labeled RTDP in GPT, as the base
CoMDP solver. We implement all heuristics: maximum
concurrency (HMC), average concurrency (HAC), and ea-
ger effects (HEE) for the initialization of the value func-
tion. We calculate these heuristics on demand for the states
visited, instead of computing the complete heuristic for the
whole state space at once. We also implement the hybrid (H)
algorithm in which the initial value function was set to the

8Note that policies returned by Sampled RTDP are not guar-
anteed to be optimal. Thus all the implemented algorithms are
approximate. We can replace Sampled RTDP by pruned RTDP
(Mausam & Weld 2004) if optimality is desired.

HMC heuristic. The parametersr, k, andm are kept at0.05,
100 and500, respectively. We test each of these algorithms
on a number of problem instances from the three domains,
which we generate by varying the number of objects, de-
grees of parallelism, durations of the actions and distances
to the goal.

Comparison of Running Times Figures 5(a, b, and c)
show the variations in the running times for the algorithms
on different problems in Rover, Machineshop and Artifi-
cial domains, respectively. The first four bars represent the
base Sampled RTDP without any heuristic, withHMC , with
HAC , and with HEE , respectively. The fifth bar repre-
sents the hybrid algorithm (using theHMC heuristic) and
the sixth bar is computation of the aligned-epoch Sampled
RTDP with costs set to the maximum action duration. The
white region in the fourth bar represents the time required
for theHEE computation. The white region in the fifth bar
represents the time taken for the aligned-epoch RTDP com-
putations in the hybrid algorithm. The error bars represent
95% confidence intervals on the running times. Note that the
plots are on a log scale.

We notice thatAEsolves the problems extremely quickly;
this is natural since the aligned-epoch space is smaller. Use
of both HMC and HAC always speeds search in theS -–
model. UsingHEE speeds up the solutions for most prob-
lems, but sometimes the heuristic computation takes a huge
amount of time and the overall running time is not competi-
tive. Comparing the heuristics amongst themselves, we find
thatHAC mostly performs faster thanHMC — presumably
becauseHAC is a more informed heuristic in practice, al-
though at the cost of being inadmissible. We find a couple
of cases in whichHAC doesn’t perform better; this could
be because it is focusing the search in the incorrect region,
given its inadmissible nature. For the the Rover domain

8

HEE does not perform as well asHMC whereas for Machi-
neshop domain for most problemsHEE outperforms even
HAC . For the Artificial domain, the performance typically
lies in betweenHMC andHAC .

For the Rover domain, the hybrid algorithm performs
fastest. In fact, the speedups are dramatic compared to other
methods. In other domains, the results are more comparable
for small problems. However, for large problems in these
two domains, hybrid outperforms the others by a huge mar-
gin. In fact for the largest problem in Artificial domain, none
of the heuristics are able to converge (within a day) and only
the hybrid algorithm (andAE) converge to a solution.

Figure 7 shows the speedups obtained by various algo-
rithms compared to the basic Sampled RTDP inS -–. In the
Rover and Artificial domains the speedups obtained byH
andAE are much more prominent than in the Machineshop
domain. Averaging over all domains,H produces a 10x
speedup andAEproduces more than a 100x speedup.

Algos Speedup compared w/ heuristic-free S-RTDP inS -–
Rover Machineshop Artificial Average

MC 3.016764 1.545418 1.071645 1.877942
AC 3.585993 2.173809 1.950643 2.570148
EE 2.99117 1.700167 2.447969 2.379769
H 10.53418 2.154863 16.53159 9.74021
AE 135.2841 16.42708 241.8623 131.1911

Figure 7: The time taken by each algorithm divided by the time
taken byS -– S-RTDP with no heuristics. Our heuristics produce 2-
3 times speedups. The hybrid algo produces about a 10x speedup.
AEproduces 100x speedup, but sacrifices solution quality.

Comparison of Solution Quality Figures 6(a, b, and c)
show the quality of the policies obtained by the same six
methods on the same domains. We measure quality by sim-
ulating the generated policy across multiple trials, and re-
porting the average time taken to reach the goal. We plot the
ratio of the so-measured expected make-span to the optimal
expected make-span9. Figure 8 presents solution qualities
for each method, averaged over all problems in a domain.
We note that the aligned-epoch (AE) policies usually yield
significantly longer make-spans (e.g.,25% longer); thus one
must make a quality sacrifice for their speedy policy con-
struction. In contrast, the hybrid algorithm extorts only a
small sacrifice in quality in exchange for its speed.

Variation with Concurrency Figure 5(c) represents our
attempt to see if the relative performance of the algorithms
changed with increasing concurrency. Along the top of the
figure, by the problem names, are numbers in brackets; these
list the average number of applicable combinations in each
MDP state,Avgs∈S -–

|Ap(s)|, and range from 68 to 1023

concurrent actions. Note that for the difficult problems with
a lot of parallelism, S-RTDP inS -– slows dramatically, re-
gardless of heuristic. In contrast, the hybrid algorithm is
still able to quickly produce a policy, and at almost no loss
in quality (Figure 6(c)).

9In some large problems, the optimal algorithm did not con-
verge. For those, we take as optimal, the best policy found in our
runs.

Algos Average Quality
Rover Machineshop Artificial Average

0 1.059625 1.065078 1.042561 1.055704
MC 1.018405 1.062564 1.013465 1.031478
AC 1.017141 1.046391 1.020523 1.028019
EE 1.021806 1.027887 1.012897 1.020863
H 1.059349 1.075534 1.059201 1.064691
AE 1.257205 1.244862 1.254407 1.252158

Figure 8: Overall solution quality produced by all algorithms.
Note that all algorithms except aligned-epoch (AE) produce poli-
cies whose quality is quite close to optimal. On averageAE pro-
duces make-spans that are about125% of the optimal.

7. Related Work
Younes and Simmons (2004) handle a formalism with many
desirable featurese.g.continuous time, more expressive goal
language, and uncertain action durations. Their planner
solves a deterministic version of the problem and uses the
resulting plan as a candidate policy which can then be re-
paired if failure points are identified. While apparently fast,
this method does not guarantee convergence, proximity to
the optimal, or propriety.

NASA researchers propose ajust-in-casescheduling al-
gorithm, which incrementally adds branches to a straight-
line plan (Bresinaet al. 2002; Deardenet al. 2003). While
they handle continuous variables and uncertain continuous
effects, their solution is heuristic and the quality of their
policies is unknown. Also, since they consider only limited
contingencies, their solutions are improper.

More recently, Prottle (Little 2004) solves problems with
more expressive domain description language, but for a fi-
nite horizon — thus for an acyclic state space. Prottle uses
an RTDP type search guided by heuristics computed using
probabilistic variants of planning graph. It would be excit-
ing to combine their method with ours, perhaps by using
their heuristics to guide our search.

(Aberdeen, Thiebaux & Zhang 2004) develop a CoMDP-
like formalism and apply it to military operations planning.
The search is guided by domain-specific heuristics.

Rohanimanesh and Mahadevan (2001) investigate a spe-
cial class of semi-MDPs in which the action space can be
partitioned by (possibly concurrent)Markov options. They
propose an algorithm based on value-iteration, but their fo-
cus is calculating joint termination conditions and rewards
received, rather than speeding policy construction.

Fast generation of parallel plans has also been investi-
gated in deterministic settings, and (Jensen & Veloso 2000)
extend it to disjunctive uncertainty. Morris and Muscettola
(1999) study dynamic control of plans with temporal uncer-
tainty.

8. Conclusions and Future Work
This paper summarizes our techniques for incorporating
concurrency with durative actions in the probabilistic plan-
ning models. We formally define the concurrent proba-
bilistic temporal planning problem, and develop two mod-
ified state spaces (aligned-epoch (S‖) and interwoven-epoch
(S -–)), which allow us search for an optimal policy, using
Sampled RTDP or other means (e.g., Labeled RTDP, LAO*,

9

value iteration, etc.) Our experiments show that, while we
can search the aligned space faster, the interwoven model
usually yields a much better policy, one which generates a
much lower make-span.

We define two new heuristics (maximum concurrency
(MC) and eager effects (EE)), and prove that they are admis-
sible. MC is quite fast to compute and consistently speeds
up the policy construction.EE, however, requires more time
to compute and thus speeds up the convergence only in some
domains. We also describe an inadmissible but quite infor-
mative heuristic (average concurrency (AC); this heuristic
speeds the RTDP search even more, and with practically no
loss in the solution quality.

We also develop the general technique of hybridizing
two MDP algorithms. Hybridizing interwoven-epoch and
aligned-epoch policy creation yields a much more efficient
algorithm, one which is still proper (i.e., its policies guaran-
tee that the goal will be reached whenever possible). Also,
our hybrid algorithm has a parameter, which can be varied
to trade-off speed against optimality. In our experiments, the
hybrid algorithm quickly produces near-optimal solutions.
For larger problems, the speedups over other algorithms are
quite significant. The hybrid algorithm can also be used in
an anytime fashion thus producing good qualityproperpoli-
cies within a desired time. Thus, we expect that the algo-
rithm would be very effective in solving large problems.

Future Work Scaling to significantly larger problems will
require new techniques for reducing the huge search space.
We are currently looking into approximate search space
compression and aggregation techniques.

In order to model actions that temporarily provide re-
sources, we plan to extend our action representation to a
probabilistic version of PDDL2.1; this shouldn’t be difficult,
but will require revisions in our mutex rules.

We also wish to extend our algorithms to richer models
like rewards, non-absorbing goals, mixed costs, stochastic
action durationsetc.Our techniques are general enough to
be applicable in all these scenarios. For example consider
the mixed cost optimization problem, in which the objec-
tive function is the sum (or a linear combination) of time
and resource costs. Here, an equivalentMC heuristic can
be computed by solving another MDP, which minimizes re-
source costs, and then adding the converged value to the
MC heuristic reported herein. A hybrid algorithm can be
easily developed in the same manner.

More generally, we believe that our hybridization tech-
nique is very general and applicable to a wide range of
problems. For instance, we could create a proper, anytime
approximation algorithm for Concurrent MDPs (CoMDPs)
by hybridizing one of the RTDP algorithms of (Mausam &
Weld 2004) with a traditional MDP algorithm. Similarly, a
hybrid POMDP algorithm can be constructed by hybridizing
RTDP for POMDPs with the policy for the equivalent MDP.
We wish to explore these further.

Acknowledgments
We thank Blai Bonet for providing the source code of
GPT. We also thank Ronen Brafman, Krzysztof Gajos,

Subbarao Kambhampati, Daniel Lowd, Nicolas Meuleau,
Parag, Sumit Sanghai, Pradeep Shenoy, David Smith, and
all anonymous reviewers for giving useful comments on an
earlier draft of the paper. We thank Puneet Khanduri for
lending his laptop in the time of need. The work was sup-
ported by NSF grant IIS-0307906 and ONR grant N00014-
02-1-0932.

References
Aberdeen, D.; Thiebaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning.ICAPS’04.
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach.IJCAI’01, p417.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming.Artificial Intelligence72, p81.
Bertsekas, D. 1995.Dynamic Programming and Optimal Control.
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis.IJCAI’95, p1636.
Bonet, B., and Geffner, H. 2000. Planning with incomplete infor-
mation as heuristic search in belief space.AIPS’00, p52.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming.ICAPS’03, p12.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision theo-
retic planning: Structural assumptions and computational lever-
age.JAIR11, p1.
Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and Washing-
ton, R. 2002. Planning under continuous time and resource un-
certainty : A challenge for AI.UAI’02.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D. E.;
and Washington, R. 2003. Incremental Contingency Planning.
ICAPS’03 Workshop on Planning under Uncertainty and Incom-
plete Information.
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner.ECP’01.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains.JAIR20, p61.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops.Artificial Intelligence
129, p35.
Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources.ECP’01.
2003. Special Issue on the 3rd International Planning Competi-
tion, JAIR, Volume 20.
Jensen, R. M., and Veloso, M. 2000. OBDD-based universal
planning for synchronized agents in non-deterministic domains.
JAIR13, p189.
Little, I. 2004. Probabilistic temporal planning.Honours thesis,
Australian National Univesity.
Mausam, and Weld, D. 2004. Solving concurrent Markov deci-
sion processes.AAAI’04, p716.
Morris, P. H., and Muscettola, N. 1999. Managing temporal
uncertainty through waypoint controllability.IJCAI’99, p1253.
Rohanimanesh, K., and Mahadevan, S. 2001. Decision-Theoretic
planning with concurrent temporally extended actions.UAI’01,
p472.
Smith, D., and Weld, D. 1999. Temporal graphplan with mutual
exclusion reasoning.IJCAI’99, p326.
Younes, H. L. S., and Simmons, R. G. 2004. Policy generation for
continuous-time stochastic domains with concurrency.ICAPS’04.

10

