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Abstract

Probabilistic planning problems are often modeled as Markov
decision processes (MDPs), which assume that a single ac-
tion is executed per decision epoch and that actions take unit
time. However, in the real world it is common to execute sev-
eral actions in parallel, and the durations of these actions may
differ. This paper presents efficient methods for solving prob-
abilistic planning problems with concurrent, durative actions.
We adapt the formulation @oncurrent MDPsMDPs which
allow multiple instantaneous actions to be executed simulta-
neously. We add explicit action durations into the concurrent
MDP model by encoding the problem as a concurrent MDP in
an augmented state space. We present two novel admissible
heuristics and one inadmissible heuristic to speed up the ba-
sic concurrent MDP algorithm. We also develop a novel no-
tion of hybridizingan optimal and an approximate algorithm
to yield a hybrid algorithm, which quickly generates high-
quality policies. Experiments show that all our heuristics
speedup the policy construction significantly. Furthermore,
our approximate hybrid algorithm runs up to two orders of
magnitude faster than other methods, while producing poli-
cies whose make-spans are typically within 5% of optimal.

1. Introduction

Recent progress has yielded new planning algorithms which
relax, individually, many of the classical assumptions. How-
ever, in order to apply automated planning to many real-
world domains we must eliminate larger groups of the as-
sumptions in concert. For example, (Bresetaal. 2002)
notes that optimal control for a NASA Mars rover re-
quires reasoning about uncertain, concurrent, durative ac-
tions. While today’s planners can handle large problems
with deterministiacconcurrent durative actions (JAIR Special
Issue 2003), and semi-MDPs provide a clear framework for
durative actions in the face of uncertainty (Bertsekas 1995),

few researchers have considered concurrent, uncertain, du—.

rative actions — the focus of this paper.

Consider a Mars rover with the goal of gathering data
from different locations with various instruments (color and
infrared cameras, microscopic imager, Mossbauer spectrom-
etersetc) and transmitting this data back to Earth. Concur-
rent actions are essential to effective execution, since instru-
ments can be turned on, warmed up and calibrated, while
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the rover is moving, using other instruments or transmitting
data. Similarly, uncertainty must be explicitly confronted as
the rover's movement, arm control and other actions cannot
be accurately predicted.

The framework oMarkov decision processédDPSs) is
the dominant model for formulating probabilistic planning
problems. In the traditional case of a single action per deci-
sion epoch, state-space heuristic search and dynamic pro-
gramming have proven quite effective (Bonet & Geffner
2000; Hansen & Zilberstein 2001). However, allowing mul-
tiple concurrent actions at a time point inflicts an exponen-
tial blowup on all of these techniques. Our previous work on
concurrent MDPs (Mausam & Weld 2004) introduced sev-
eral methods to manage this exponential blowup. However,
in their current form concurrent MDPs (CoMDPs) do not
handle explicit action durations. The actions are supposed to
be instantaneous (or unit length), and the agent may not start
a new action while another action is already executing. In-
stead, the agent must wait for all the recently-started actions
to finish before new action(s) can be started. This restriction
is fine if all actions are unit length, but leads to suboptimal
policies when actions have differing lengths. For example,
in order to save execution time, the Mars rover might wish to
execute sequential set up actioesg( turning on the cam-
era, warming it up, focusinggtc.) concurrent with naviga-
tion to the next location

In this paper, we defineoncurrent probabilistic temporal
planning - in short, CPTP. This model extends our previ-
ous CoMDP framework by incorporating explicit action du-
rations. Specifically, we extend the techniqueSafmpled
real-time dynamic programmin@ampled RTDP) (Barto,
Bradtke, & Singh 1995; Bonet & Geffner 2003; Mausam &
Weld 2004) to generate high-quality CPTP policies. This
paper makes the following contributions:

We model a CPTP problem as a concurrent MDP in an
augmented state space.

We present three, novel heuristics that can guide RTDP.

— We prove themaximum concurrencfMC) heuristic is
admissible by bounding the optimal cost of the solution
in terms of the solution of a sequential planning prob-
lem and maximum possible concurrency in the domain.

— The average concurrencyAC) heuristic is more in-
formed, but inadmissible.



— The eager effect§EE) heuristic is computed by solv-
ing a relaxed version of the CPTP problem, which as-
sumes that effects of actions are predictable before ac-
tion completion.

We propose the novel idea bf/bridization i.e. of com-
bining two policy creation algorithms to yield a single,
fast, approximation algorithm, which has the best of both
worlds. Our hybrid algorithm for CPTP combines par-
tial CPTP and CoMDP policies to focus its optimization
efforts on the most frequent branches.

We experimentally compare the speed/quality trade-offs
offered by the heuristics on three domains. Our most in-
teresting result is that on large problems our hybrid algo-
rithm may save a factor of 88x in policy-creation time,
with only a small sacrifice in the resulting policy quality.

2. Background

Following (Bonet & Geffner 2003), we defineMarkov de-
cision processs a tuple(S, A, Pr,C, G, so,v) in which S
is a finite set of discrete states, apdis a finite set of ac-
tions. An applicability functionAp : S — P(A), denotes
the set of actions that can be applied in a given stateep-
resents the power setpPr : S x A x § — [0,1] is the
transition function. We writér(s’|s, a) to denote the prob-
ability of arriving at state’ after executing action in state
5. C: A — RT isthe cost modelg C S is the set of ab-
sorbing goal states, is the start state, ang € [0, 1] is the
discount factor.

We assume full observability, and we seek to find an op-
timal, stationary policy —.e., a functionz: S — A which
minimizes the expected discounted cost (over an infinite
horizon) incurred to reach a goal state. Note thanhie
function J: § — R, mapping states to the expected cost of
reaching a goal state defines a policy:

{C(a) +7 ) Pr(s']s,a)J(s)
s'eS
The optimal policy can be derived from the value func-
tion, J*: S — R, which satisfies the following pair dell-
man equatiors

J*(s) =0, if s € Gelse

{C(a) +7 Z Pr(s's,a)J*(s")

s'eS

ms(s) = argmin
a€Ap(s)

1)

}

Value lterationis a dynamic programming approach
in which the optimal value function is calculated as
the limit of a series of approximations. 17,,(s)
is the value of states in iteration n, then J,;i(s)
is calculated by aBellman backupas: J,11(s) =
minaEAp(s) {C(a) + ’st’es PT(S/|S7Q)J71/(S/)}'

Value iteration and other similar algorithme.g. Policy
Iteration) tend to be quite slow since they search the entire
state spaceReachability Analysiss a technique employed

J*(s)

= min
a€Ap(s)

2001) and RTDP (Barto, Bradtke, & Singh 1995), which is
our focus.

Conceptually, RTDP is a lazy version of value iteration in
which the states are updated in proportion to the frequency
with which they are visited by the repeated execution of the
greedy policy An RTDPtrial is a path starting frons,
following the greedy policy, and updating the values of the
states visited using Bellman backups; the trial ends when a
goal is reached or the number of updates exceeds a thresh-
old. RTDP repeats these trials until convergence. Note that
common states are updated frequently, while RTDP wastes
no time on states that are unreachable, given the current pol-
icy. RTDP’s strength is its ability to quickly produce a rela-
tively good policy; however, complete convergence (at every
state) is slow because less likely (but potentially important)
states get updated infrequently. Furthermore, RTDP is not
guaranteed to terminateLabeled RTDFfixes these prob-
lems with a clever labeling scheme that focuses attention on
states where the value function has not yet converged (Bonet
& Geffner 2003). Labeled RTDP is guaranteed to terminate,
and is guaranteed to converge to the optimal value function
(for states reachable using the optimal policy) if the initial
value function is admissible.

Concurrent Markov Decision Processes (CoMDP) In

the previous work (Mausam & Weld 2004), we extended
traditional MDPs to allow concurrent actions. Since some
actions interfere with each other, we ban certain combina-
tions adopting the classical planning notion of mutual ex-
clusion (Blum & Furst 1995) and apply it tofactoredac-
tion representationprobabilistic STRIPEBoutilier, Dean,

& Hanks 1999). Two actions amautex(may not be exe-
cuted concurrently) if in any state 1) they have inconsistent
precondition$, 2) they have conflicting effects, or 3) the pre-
condition of one conflicts with the (possibly probabilistic)
effect of the other. Thus, non-mutex actions don't interact
— the effects of executing the sequengea, equals those

of as;aq.

An action combination 4, is a set of one or more non-
mutex actions to be executed in parallel. The cost model
for a CoMDP, denoted’; : P(A) — R*, returns the
cost of concurrently executing several actions in a state.
In (Mausam & Weld 2004), we considered cost models,
which were a weighted sum of time and resource compo-
nents. For the purposes of this paper, we ignore the resource
component and focus on the expecteake-sparmf a policy
— how long it will take to execute. Thus, we define the cost
of a combination of actions to be({a1,az, ...,axr}) =
max;—1.,{C(a;)}. Note that this way, action durations are
embedded in the cost function, and the model assumes that
a new set of actions may not be executed until all members

A greedy policy is one that chooses the action with
the best Q-value defined asQ@,+1(s,a) Cla) +
’st/es Pr(s'|s,a)Jn(s").

2Note that an action’s transition function is typically condi-

to speed up this search. In this, the search is restricted to thetjoned on various features of the staterfditional effects These

part of state space reachable from the initial stgteTwo
algorithms exploiting this are LAO* (Hansen & Zilberstein

features are considered to be a part of conjunctive preconditions for
the purpose of mutex calculation.



of the previous set have terminatéd.

The applicability function for CoMDPs, denoted 4,
now has rang@®(P(A)); itis defined in terms of the appli-
cability function for MDPs asdp(s) = {A C A|Va,d’ €
A, a,a’ € Ap(s) A —mutex(a,a’)}

Let A = {aq,a2,...,a;} be an action combination that
is applicable ins. Since CoMDPs only allow concurrent
execution of non-interacting actions, the transition function
may be calculated as follows:

Pri(s']s, 4) = Y ... )

51,52,...8,ES

study the objective of minimizing the expected tinneake-
span) of reaching a goal. For now, we assume deterministic
action durations:

Assumption 1 All actions have deterministic durations.

Consider the sample domain of the Mars rover in Figure
1. The rover has to accomplish two experiments: sampling
the rock and taking an image. But when extended, the arm
blocks the camera’s field of view. Moreover, the camera
needs to be calibrated before capturing the image, and the
calibrate action succeeds only half the time. Each action
may have a distinct duration as shown in the figure.

Note that a CPTP is distinct from a semi-MDP as a semi-
MDP models actions withuncertain durations, while in
CPTP durations are deterministic. However, a CPTP allows
for concurrent executions of actions whereas a semi-MDP
does not.

Assumption 2 All action durations are integer-valued.

Pr(s1]s,a1)Pr(salsi,az)...Pr(s'|sk, ax)

Finally, instead of Equations (1), the following set of Bell-
man equations represents the solution to a CoMDP:

Jij(s) =0, if s € Gelse )
{C| )+ Z Pry(s'ls, A)Jjj (s )} This assumption has a minimal effect on expressiveness
s'€S because one can convert a problem with rational durations
These equations are the same as in a traditional MDP, ex- into one that abides Assumption 2 by scaling all durations
cept that instead of considering single actions for backup by the g.c.d. of the denominators. In case of irrational dura-
in a state, we consider all applicable action combinations. tions, one can always find an arbitrarily close approximation
Thus, only this small change needs to be made to traditional to the original problem by approximating the irrational du-

min
AGAPH (s)

J‘T(S)

algorithms é.g, value iteration, LAO*, Labeled RTDP).

Sampled RTDP The number of action combinations in
each Bellman backup is exponential |id|. To efficiently
handle this blowup, one may refrain from backing up all
combinations when evaluating the “min” in Equation 2.
Sampled RTDRperforms backups on a random set of com-
binations, choosing from a distribution which favors “likely
combinations.” This distribution is generated by: 1) using
combinations that were previously discovered to have low
Q)-values (recorded bynemoizingbest combinations per
state, after each iteration); 2) calculating pe-values of all
applicable single actions (using the current value function)

and then biasing the sampling of combinations to choose the

ones which contain actions with lo@ -values.

Since the system does not consider every possible action ;
combination, Sampled RTDP is not guaranteed to choose
the best combination to execute at each state. As a result

even when started with an admissible heuristic, f)¢s)
values are neither admissible nor monotonic. As a result,
Sampled RTDP no longer guarantees termination and op-
timality. However, experiments have shown that Sampled
RTDP usually terminates quickly, and returns values that are
extremely close to the optimal (Mausam & Weld 2004).

3. Extending to Durative Actions

We now incorporate action durations in concurrent proba-
bilistic planning problems. As a start we consider the input
model similar to that of concurrent MDPs except that action
costs () (a)) are replaced by their durationa(a)). We

3The fact that the start of all new actions must be aligned with
the termination of previous actions explains why we usd|tbygm-
bol to distinguish the cogC ) and value functionéJ)) etc. of this
model.

'tions. As an illustration, consider Figure 2.

rations by rational numbers.

For simplicity, we adopt the temporal action model
of (Smith & Weld 1999), rather than the more complex
PDDL2.1 (Fox & Long 2003). Specifically,

Assumption 3 All actions follow the following model:

e The effects of an action are realized at some unknown
point during action execution, and thus can be used only
once the action has completed.

e The preconditions must hold at the beginning of an action.

e The preconditions and the features on which the action’s
transition function is conditioned must remain unchanged
while the action is being executed, unless the action itself
is modifying them.

These restrictions are consistent with our previous def-
inition of concurrency. Specifically, the mutex definitions
(of CoMDPs) hold and are required under these assump-
It describes
a situation in which two actions with interfering precondi-
tions and effects can not be executed concurrently. To see
why not, suppose initiallarm_out was false and two ac-
tions take_image and extend_arm were started at time
2 and 4, respectively. Asarm_out is a precondition of
take_image, whose duration is 5, it needs to remain false
until time 7. Butextend_arm may produce its effects any-
time between 4 and 9, which may conflict with the precon-
ditions of the other executing action. Henesfend_arm
andtake_image cannot be executed concurrently.

Aligned Epoch Search Space A simple way to formu-

late CPTP is to model it as a standard CoMDP, in which
action costs are set to their durations and the cost of a com-
bination is the maximum duration of the constituent actions.
This formulation is distinct from a CPTP in an important
way: Consider the actual executions of these policies. In



State variablescalibrated, arm_out, image_taken, sample_taken
Action (a) A(a) Preconditions Effects Prob. B —
extend_arm 5 true arm_out 1 B S
take_sample 1 arm_out sample_takenA —arm_out 0.9
nO Change o 1 —arm_out (Precondition) ‘
calibrate 1 —calibrated calibrated 05
no Change 0.5 ) B 4 6 g 10
take_image 5 calibrated A —arm_out image_taken 1

Goal:image_taken A sample_taken

Figure 1:Durative Probabilistic STRIPS definition of a simple CPTP problem

/An Interleaved Epoch policy execution (takes 11 units
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An Aligned Epoch policy execution (takes 14 units)
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Figure 3:Comparison of times taken in a sample execution of an
interwoven-epoch policy and an aligned-epoch policy. In both tra-
jectories thecalibrate (c) action fails four times before succeeding.
Because the aligned policy must wait for all actions to complete
before starting any more, it takes more time than the interwoven
policy, which can start more actions in the middle.

the aligned-epoch case, once a combination of actions is
started at a state, the next decision can be taken only wheny;
the effects of all actions have been observed (hence the name

aligned-epochs In contrast, at a decision epoch in the op-
timal execution for a CPTP problem, many actions may be
midway in their execution. We have to explicitly take into

account these actions and their remaining execution times
when making a subsequent decision. Thus, the state spac

of CPTP is substantially different from that of the simple
aligned-epoch model. The difference is illustrated in Figure
3. The figure compares the trajectories in which thé-

brate (c) actions fails for four consecutive times before suc-
ceeding. In the figure, “f” and “s” denote failure and suc-

cess of uncertain actions, respectively and “ts” denotes the Transition Function

take_sample action. The vertical dashed lines represent the
time-points when an action is started.

Note: due to Assumption 3, it is sufficient to consider a
new decision epoch only at a time-point when one or more
actions complete. Thus, using Assumption 2 we infer that

these decision epochs will be discrete (integer). Of course,

not all optimal policies will have this property. But it is easy

to see that there exists an optimal policy in which each ac-
tion begins at one such time-point. Hence Assumptions 1- 3

reduce our search space considerably.

Interwoven Epoch Search Space We adapt the search
space representation of (Haslum & Geffner 2001), similar
to (Bacchus & Ady 2001; Do & Kambhampati 2001). Our
original state spacé§ in Section 2 is augmented by includ-

€,

Figure 2: A sample execution
demonstrating conflict due to inter-
fering preconditions and effects.

ing the set of actions currently executing and the times re-
maining for each. Formally, let the new interwoven state
s € &- be an ordered paitX,Y) where X € S and
Y = {(a,0)]a € A,0 < 0 < A(a)}. HereX rep-
resents the values of the state variablies. (X is a state
in the original state space) arid denotes the set of on-
going actions &" and their remaining times until comple-
tion “4”. Thus the overall interwoven-epoch search space is
8- =8 x Queu ({a} X Za(a)), WhereZ,,) represents
the set{0,1,...,A(a) — 1} and @ denotes the Cartesian
product over multiple sets.

Also defineA, to be the set of actions already in execu-
tion. In other wordsA; is a projection ofY” :

As ={a|(a,0) e Y As=(X,Y)}

Example:In our domain in Figure 1, a state (say) has all
state variables false, and the actextend_arm was started
3 units ago. Such a state would be representeXasY?)
with X,=(F, F, F, F')® andY;={(extend_arm, 2)}. The set
As, would be {extend_army.
To allow the possibility of simply waiting for some ac-
n to complete execution, that is, not executing any action
at some decision epochs, we augment theetith a no-
op action. We allow no-op to be applicable in all states
= (X,Y) whereY # () (i.e. states in which some action is
still being executed) The no-op will have a variable dura-
tion equal to the time after which another already executing
action completesi(...(s, A) as defined below).

The interwoven applicability set can be defined as:

p;(S)—{{noop}U{AAuAs € Ap(X)andAnA,= 0}

We also need to define the prob-
ability transition function,Pr-, for the interwoven state
space. At some decision epoch let the agent be in state
= (X,Y). Suppose that the agent decides to execute an ac-
tion combinationA. DefineY,,., as the set similar td”

but consisting of the actions just starting. Formatly.,, =
(a,A(a))|a € A}. In this system, our next decision epoch
will be the smallest time after which any executing action

—

“We use the subscript to denote thénterwovenstate space
(82), value function(.L-), etc.

5The four state variables are listed in the ordealibrated,
arm_out, image_taken, andsample_taken.

®For a states, the no-op action is mutex with all actions.i\
As. In other words, at any decision epoch either a no-op will be
started or any combination not involving no-op.



completes. Let us call this tim&,..:(s, A). Notice that

4. Admissible Heuristics

Onext (s, A) depends on both executing and newly started ac- e present two admissible heuristics that can be used as the

tions. Formally,
571,(33016(57 A) - HliIl (5
(a,0)€Y UYnew

Moreover, multiple actions may complete simultaneously.
Define A,,c.:(s, A) € AU A, to be the set of actions that
will complete afterd,,.:(s, A) time. TheY-component of
the state at the decision epoch afigr.; (s, A) time will be
Yiext(8, A) = {(a, 6 — dpeat (s, A))|(a,6) € YUY, 00,0 >
Oneat(s, A)} Let s=(X,Y) and lets’=(X’, Y”). The transi-
tion function for CPTP can now be defined as:
P’IL;(S/|S, A):{PT” (XX, Apert(s, A)) if Y= Ynem(s’ A)

0 otherwise

In other words, executing an action combinatibm state
s = (X,Y) takes the agent to a decision epdgh, (s, A)
ahead in time, that is, the first time when some combination
Apezt(s, A) completes. This lets us calculatg.. (s, A):
the new set of actions still executing with their remaining
times. And the original probability transition function can

initial cost function for our Sampled RTDP algorithm. The
first heuristic (maximum concurrency) solves the underlying
MDP and is thus quite efficient to compute. However it is
typically less informative than our second heuristic (eager
effects) which requires the solution of a relaxed CoMDP in
a state space larger than the underlying MDP state space.
We now discuss the details of the two heuristics.

Maximum Concurrency Heuristic

We prove that the optimal expected cost in a traditional (se-
rial) MDP divided by the maximum number of actions that
can be executed in parallel is a lower bound for the expected
make-span of reaching a goal in a CPTP problem. Let
J(X) denote the value of a staf€ € S in a traditional
MDP with costs of an action equal to its duration. Liet(s)

be the value for equivalent CPTP problem witlas in our
interwoven-epoch state space. lagincurrencyof a state

be the maximum number of actions that could be executed

be used to decide the new distribution of state VariableS, as in the state Concurrent|y_ We defimeaximum concurrency

if the combinationA,, ..+ (s, A) were taken in stat&’.
Example: Continuing with the previous example, let the
agent in state; execute the action combinatioh= {cali-
brate}. Then d,,c.+(s1, A) = 1, sincecalibrate will finish
the first. ThusA,,c.+(s1, A)= {calibrate}. Y,e.:(s1,A4) =
{(extend_arm,1)}. Hence, the probability distribution of
states after executing the combinatidrin states; will be a
uniform distribution over:

((T,F,F,F),{(extend_arm,1)})
((F,F,F,F),{(extend_arm,1)})

Start and Goal States The start state igso, #) and the
new set of goal states - = {(X,0)|X € G}.

of a domain(c) as the maximum concurrency of any state
in the domain. Thus; represents the maximum number of
actions that could possibly execute in parallel at any point.
The following theorem can be used to provide an admissible
heuristic for CPTP problems.

Theorem 1 Lets = (X,Y),
(X

5) > 2K
C

(s) =

Proof Sketch: Consider any trajectory of make-spdn

1%

J forY =10

Q" (X, As)

1%

J forY # 0

Thus we have modeled a CPTP problem as a CoMDP (from a states = (X, ) to a goal state) in a CPTP prob-
in our interwoven state space. We have redefined the startlem using its optimal policy. We can make all concurrent
and goal states, the applicability function, and the probabil- actions sequential by executing them in the chronological
ity transition function. Now we can use the techniques of order of being started. As all concurrent actions are non-
CoMDPs to solve our problem. In particular, we can use our interacting, the outcomes at each stage will have similar
Bellman equations as described below. probabilities. The maximum make-span of this sequential
trajectory will becL (assuminge actions executing at all
points in the semi-MDP trajectory). HendéX) using this
(possibly non-stationary) policy would be at mast:(s).

Thus J*(X) < eJi(s). The second inequality can be

proven in a similar waym
There are cases where these bounds are tight. For ex-
ample, consider a deterministic planning problem in which
the optimal plan is concurrently executingctions each of
The main bottleneck in inheriting our previous methods unit duration (make-span = 1). In the sequential version, the
(e.g.Sampled RTDP) naively is the huge size of the inter- same actions would be taken sequentially (make-spgn =
woven state space. In the worst case (when all actions  Following this theorem, the maximum concurrentiQ)
can be executed concurrently) the size of the state space isheuristic for a state = (X, Y’) is defined as follows:
|S| x (IT,eq A(a)). We get this bound by observing that . .
; acA T i . J(X) Q (XaAS)
or each actioru, there areA(a) number of possibilities : ifY =0 Hye(s) = elseH o (s) = ~———2
either ¢ is not executing or it is and has remaining times ¢ ¢
1,2,...,Aa) — 1. The maximum concurreneycan be calculated by a static
Thus we need to reduce, abstract or aggregate our stateanalysis of the domain. Thus the time taken for each heuris-
space to make the problem tractable. We now present sev-tic is the time required for solving the MDP. In our imple-
eral heuristics which can be used to speed the search. mentation, we do this calculation on demand, as more states

Bellman Equations The set of equations for the solution
of a CPTP problem can be written as:

Ji(s) =0, if s € G- else 3)

Ti(s) =

min

AGApi(S) 5ne$t (Sa A) +Z PT£($/|3’ A) J* (S/)

s'eS -




are visited, by starting the MDP from the current state. Each

s = (X,Y) be a state in the interwoven-epoch space. Let

RTDP run can be seeded by the previous value function, thus J}; ; be the optimal cost function for the relaxed CoMDP.

no computation is thrown away and only the relevant part of
the state space is explored.

Average Concurrency Heuristic Instead of using maxi-
mum concurrency in the above heuristic we use the average
concurrency in the domairc) to get the average concur-
rency AC) heuristic. TheAC heuristic is not admissible, but
in our experiments it is typically a more informed heuristic.

Eager Effects Heuristic

Given the CPTP problem, we can generate a relaxed
CoMDP by making the effects of actions, which would oth-
erwise be visible only in the future, be known right away
— thus the name eager effeciH). A state for this relaxed
CoMDP is(X, ¢) whereX is an MDP state and is an in-
teger. Intuitively,(X, §) signifies that the agent willeach
stateX after timed units. Thus, we have discarded the in-
formation about which actions are executing and when they
will individually end; we only record that all of them will
have ended after timé units and that the agent will reach
the stateX (possibly with some probability).

The applicable set of a relaxed state is defined as
Apee((X,d)) = Ap;(X). Note that this new problem re-

ally is a relaxation because certain actions are applicable that

would be mutex to the currently executing actions (in the
original problem). We explain this in detail in the discussion
of Theorem 2. The goal states in the relaxed problem are
{{X,0)|X € G}, i.e.all states that are goals in the underly-
ing MDP and no action is executing.

Finally, the transition probabilities are redefined. The

state-component of the resulting relaxed states denotes that

the effects of the combination currently started have been

realized. Whereas, the time component does not advance to

the end of all actions, rather it advances to the completion
of the shortest action, generating a new decision epoch for
starting new actions.

Formally, suppose that we execute a combinatibim

states = (X, §). LetsEE be the length of the longest action
in A. Letdf;”,, be the the length of the shortest actiondn
DefinesZE, as
5’E€€t = 6laz>t 5fu":>t if6=0
6last 0 if0<d < 5fzrst
= 6last 5fu st if 6fzrst <90 < 5last
= 0- (sfzrst if 6 > 5last

The transition function can now be defined using the above
definition of 622

next*

Pree((X',6")(X,0), A) SFE

If 5/ 7& next
if o' = oEE

next

=0
== PT|‘<X/|X, A)

The cost of executing a combination in the relaxed state rep-
resents the duration by which the current time moves for-
ward. It is equal tanax(8, 6£E) — 6EE .

Based on the solution of the relaxed CoMDP we can com-
pute a heuristic value for our original CPTP problem. Let

Then, theEE heuristic function is computed as follows:
Z PTH X | X, A, )JEE(<X/ 51nsf>)
X'es

Theorem 2 The EE heuristic value is non-overestimating,
thus admissible.

Hgg(s

The admissibility stems from the fact that, in the relaxed
problem, we have eased two essential features. First, we
have assumed that the present state contains the results of
actions that would actually complete in the future. So, there
is actually more information in the relaxed problem, than
in the original problem; thus the decisions taken are more
informed and lead to a goal in less time. Secondly, since we
lose the information of which actions were executing in the
domain, we have to allow for all applicable combinations in
the MDP state. That is, all the actions that were mutex with
the actions executing (in the real problem) are also allowed.
Thus, this is a relaxation of the original problem, and the
time taken to reach the goal will be shorter. Hence, overall
the heuristic value is admissible.

We further speed the convergence of the relaxed problems
by initializing its value function with simple heuristics. It is
easy to show that the following inequalities hold:

Jpp((X,0) = 0
Tee((X,0) = Jpp((X,d)) L
Tep((X,0) = Jpp((X,d) = (8"=0) ifd'>0

So for any stat€X, ) we can set the initial value function
to 0 or max it with other values computed using the above
equations for the statdsy, ¢’) that have already been vis-
ited. We can use the current values of these states instead of
J5 ; to compute these seed values.

Comparing the Two Heuristics

Theorem 3 Neither of the two heuristics (eager effects or
maximum concurrency) dominates the other.

Proof: Consider a deterministic problem in which two par-
allel sets of actions in the order, as, a3 andby, bo, b3 need
to be executed to achieve the goal. kbetas, b2, andbs be
of durationn and the rest be unit duration. If the maximum
concurrency in the domain is 2, thdi,;- value of start
state is(4n + 2)/2 which is also the optimal valuef + 1).
The Hgg value of the start state calculatesta- 2. This is
an example of a problem in which ti&C heuristic is more
informative. If however in a similar problem, the only ac-
tions that could be executed concurrently @aseandbs then
the maximum concurrency remains 2. So g does not
change, although the optimal plan is now longer. But the
Hgp value calculates t8n + 2 which is optimal =

In spite of the theorem, in practié is consistently more
informative tharMC on the domains we tried. But, the com-
putation times required for the two heuristics are quite dif-
ferent. MC requires the computation of the underlying MDP
which is a relatively easy problem to solve. Wherdzk,
requires the computation of a problem which has a larger



search space than even the underlying COMDP. Thus the Algorithm — Hybrid(r, k,m){ = . o
computation oEE heuristic can take a long time, at times to Vs € & initialize L= (s) with an admissible heuristic;
the extent that the advantage of the more informative heuris- ~ Repeat{

tic is lost in the complex heuristic computation. Performm RTDP trials; .
Compute Hybrid policy €) using interwoven-epoch policy

. . for k-familiar states and aligned-epoch policy otherwise;
5. Hybrid Algorithm Cleanr by removing all dead-ends and cycles;

. . . JZ(s0, Evaluation ofr from the start state;
In this section we present an approximate method to solve = (s0,0) g
JT((s0,0)) = L= ((s0,0)) >
<r

CPTP problems. While there are many possible approxima- } Until =
tion methods, our technique exploits the intuition that it is Lz ((50,0))
best to focus computation on the most probable branches in ~ Return hybrid policyr;
the current policy’s reachable space. The danger of this ap- }
proach is the chance that, during execution, the agent might
end up in an unlikely branch, which has been poorly ex- immediate precursors of that state. If a cycle is detécted
plored; indeed it might blunder into a dead-end in such a then we compute an aligned policy for all the states which
case. This is undesirable, because such an apparently attracare part of the cycle.
tive policy might have a true expected make-span of infinity. We have not yet said how the hybrid algorithm terminates.
Since, we wish to avoid this case, we explore the desirable Use of RTDP helps us in defining a very simple termina-
notion ofpropriety. tion condition with a parameter that can be varied to achieve
the desiredclosenesgo optimality as well. The intuition
is very simple. Consider first, optimal Labeled RTDP. This
starts with an admissible heuristic and guarantees that the
value of the start statd,- ((so, #)), remains admissible (thus
less than or equal to optimal). In contrast, the hybrid pol-
icy’s make-span is always longer than or equal to optimal.
We now describe an anytime approximation algorithm, Thus as time progresses, these values approach the optimal
which quickly generates a proper policy and uses any ad- Make-span from opposite sides. Whenever the two values

ditional available computation time to improve the policy, are within anoptimality ratio (r), we know that the algo-
focusing on the most likely trajectories. rithm has found a solution, which is close to the optimal.

Finally, evaluation of the hybrid policy is done using sim-
ulation, which we perform after a fixed numberafRTDP
trials. The algorithm is summarized in Figure 4. One can
see that this combined policy is proper for two reasons: 1)
if the policy at a state is from the aligned policy, then it is

Figure 4:Pseudo-code for the hybrid algorithm

Propriety: A policy is properat a state if it is guaranteed
to lead, eventually, to the goal statee(, it avoids all dead
ends and cycles) (Barto, Bradtke, & Singh 1995). We
define a planning algorithmroperif it always produces
a proper policy (when one exists) for the initial state.

Hybridization Our algorithm is created byybridizing

two other policy creation algorithms. Indeed, our novel no-
tion of hybridization is both general and powerful, apply-
ing to many MDP-like problems; however, in this paper we

focus on the use of hybridization for CPTP. Hybridization  nroper hecause the RTDP for aligned-epoch model was run
uses an anytime algorithm like RTDP to create a policy for 4, convergence, and 2) for the rest of the states we have ex-
frequently visited states, and uses a faster (and presumably yjicitly ensured that there are no cycles or dead-ends.
suboptimal) algorithm for the infrequent states.

For the case of CPTP, our algorithm hybridizes the RTDP 6. Experiments
algorithms for interwoven-epoch and aligned-epoch models. ) _ L
With aligned-epochs, RTDP converges relatively quickly, In this section, we compare the computation time and so-
because the state space is smaller, but the resulting policy lution quality of six methods: interwoven Sampled RTDP
is suboptimalfor the CPTP problembecause the policy ~ With no heuristic (0), with the maximum concurrendy@),
waits forall currently executing actions to terminate before average concurrencAC), and eager effect&€) heuristics,
starting any new actions. In contrast, RTDP for interwoven- the hybrid f) algorithm and Sampled RTDP on the aligned-
epochs generates the optimal policy, but it takes much longer €Poch AE) model. We also use an artificial domain to see
to converge. Our insight is to run RTDP on the interwoven if the relative performanpe of the teqhmques varies with the
space long enough to generate a policy which is good on the @mount of concurrency in the domain.
common states, but stop well before it converges in every Experimental Setup We test our algorithms on problems
state. Then, to ensure that the rarely explored states have g three domains. The first domain is a probabilistic, du-
proper policy, we substitute the aligned policy, returning this - yative variant of NASA Rover domain from the 2002 AIPS

hybrid policy. o _ _ Planning Competition, in which there are multiple objects
Thus the key question is how to decide which states are to be photographed and various rocks to be tested with re-
well explored and which are not. We define faeniliarity sulting data to be communicated back to the base station.

of a states to be the number of times it has been visited in - Cameras need to be focused, and arms need to be positioned
previous RTDP trials. Any reachable state whose familiarity pefore usage. Since the rover has multiple arms and multiple

is less than a constarit, has an aligned policy crgated forit.  cameras, the domain is highly parallel. We generate prob-
Furthermore, if a dead-end state is reached using the greedy

interwoven policy, then we create an aligned policy for the ’In our implementation cycles are detected using simulation.
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Figure 5:(a,b,c): Running times (on a log scale) for the Rover, Machineshop and Artificial domain, respectively. For each problem the six
bars represent the times taken by the algorithms: S-RTDP with no (0) heuristid@itAC, EE heuristics, hybrid algorithm and aligned-
epoch RTDP, respectively. The white bar BB denotes the portion of time taken by heuristic computation anld danotes the portion of

time taken by aligned-epoch RTDP.

Mach2 Mach3 Macha Machs Maché

Ratio of make-span to optimal

X - os
================== COOWITW COUWTW SEUWTW SQOWTW CQOWTW COOWTW
QUTY CQUTY CQQUTY SIRUETY ST SguTy SQUTY TLUTY CLQUTY CQQUTY CQWTY SQwWTY SAUTY C2UUTY TPRUTY CRQETY SNy SZ9NTR SgRuy

Figure 6:(a,b,c): Comparison of make-spans of the solution found with the optimal (plottedrathe y-axes) for Rover, Machineshop and
Artificial domains, respectively. All algorithms excedE produce solutions, which are quite close to the optimal.

lems with 17-21 state variables and 12-18 actions, whose H ), heuristic. The parametersk, andm are kept at.05,
duration range between 1 and 20. The problems have be- 100 and500, respectively. We test each of these algorithms
tween 15,000-700,000 reachable states in the interwoven- on a number of problem instances from the three domains,
epoch state spacé;-. which we generate by varying the number of objects, de-
We also test on a probabilistic temporal version of Ma- grees of parallelism, durations of the actions and distances
chineshop domain with multiple subtaslksd, shape, paint, to the goal.
polishetc), which need to be performed on different objects  omparison of Running Times Figures 5(a, b, and c)
using different machines. Machines can perform in parallel, gpq the variations in the running times for the algorithms
but not all are capable of every task and they cannot perform o giferent problems in Rover, Machineshop and Artifi-
on the same object concurrently. Different pieces need to be 5| gomains, respectively. The first four bars represent the
transported from one machine to another for different sub- ;56 Sampled RTDP without any heuristic, with; c, with
tasks. We test on problems with 18-26 variables and up to fr  “and with H respectively. The fifth bar repre-
500,000 reachable states with action durations being 1-10.  genis the hybrid a|gérithm (using thé,,c heuristic) and
Finally, we test on an artificial domain. In this domain, the sixth bar is computation of the aligned-epoch Sampled
some Boolean variables need to be toggled; however, 10g- RTPP with costs set to the maximum action duration. The
gling is probabilistic in nature. Moreover, certain pairs of - yhite region in the fourth bar represents the time required
actions have conflicting preconditions and thus, by varying for the 17, computation. The white region in the fifth bar
the number of mutex actions we may control the domain's epresents the time taken for the aligned-epoch RTDP com-

degree of parallelism. All the problems in this domain have ,tations in the hybrid algorithm. The error bars represent
14 state variables and 17,000-40,000 reachable states antysy, confidence intervals on the running times. Note that the

durations of actions between 1 and 3. plots are on a log scale.
~ We use our implementation of Sampled RTD®hich is We notice thaAE solves the problems extremely quickly;
implemented on top of Labeled RTDP in GPT, as the base thijs is natural since the aligned-epoch space is smaller. Use
CoMDP solver. We implement all heuristics: maximum  of poth H,,;~ and Hac always speeds search in tise
concuf;rency HMCf)’ avr:arqgg.clc_)ncgrrenfcyi](é,c), landf €& model. UsingH gz speeds up the solutions for most prob-
ger effects {/pp) for the initialization of the value func- 1o "yt sometimes the heuristic computation takes a huge
tion. We calculate these heuristics on demand for the states amount of time and the overall running time is not competi-
visited, instead of computing the complete heuristic for the e ' comparing the heuristics amongst themselves, we find
whole state space at once. We also implement the hyHid (5 77, . mostly performs faster thaH y;: — presumably
algorithm in which the initial value function was set to the becauseH ¢ is a more informed heuristic in practice, al-
e though at the cost of being inadmissible. We find a couple
Note that policies returned by Sampled RTDP are not guar- 4t cages in whichi 4 doesn't perform better; this could
anteed to be optimal. Thus all the implemented algorithms are ’

approximate. We can replace Sampled RTDP by pruned RTDP b_e beqau_se it is_ fo_cusing the search in the incorrect regic_m,
(Mausam & Weld 2004) if optimality is desired. given its inadmissible nature. For the the Rover domain



Hpr; does not perform as well @, whereas for Machi- Algos Average Quality
neshop domain for most problenty ; outperforms even Rover | Machineshop| Artificial | Average

H ac. For the Artificial domain, the performance typically MOC i'g?g%g i-gggggg i-ggigé i-ggﬂ%‘
lies in betweerH ;- andH 4. : : : :

. . . AC 1.017141 1.046391 1.020523| 1.028019
For the Rover domain, the hybrid algorithm performs EE | 1021806 1.027887 | 1.012897| 1.020863

fastest. In fact, the speedups are dramatic compared to other ——H—117059349| 1.075534 | 1.059201| 1.064691
methods. In other domains, the results are more comparable —AE [ 1.257205] 1.244862 | 1.254407| 1.252158
for small problems. However, for large problems in these ] _ _
two domains, hybrid outperforms the others by a huge mar- Figure 8: Overall_ solution quallt_y produced by all algorlthms.
gin. In fact for the largest problem in Artificial domain, none ~ Note that all algorithms except aligned-epotE) produce poli-
of the heuristics are able to converge (within a day) and only cies whose quality is quite close to optimal. On averaggpro-

the hybrid algorithm (anéE) converge to a solution. duces make-spans that are abtii% of the optimal.
Figure 7 shows the speedups obtained by various algo-
rithms compared to the basic Sampled RTDRSin In the 7. Related Work

Rover and Artificial domains the speedups obtainedby  Younes and Simmons (2004) handle a formalism with many
andAE are much more prominent than in the Machineshop desirable features.g.continuous time, more expressive goal

domain. Averaging over all domaing] produces a 10x  language, and uncertain action durations. Their planner
speedup anéE produces more than a 100x speedup. solves a deterministic version of the problem and uses the
resulting plan as a candidate policy which can then be re-

Algos | Speedup compared w/ heuristic-free S-RTDEB > = X ! - !
Rover | Machineshop| Artficial Averag_e paired if failure points are identified. While apparently fast,
MC | 3.016764| 1545418 | 1.071645| 1.877942 this method does not guarantee convergence, proximity to
AC | 3.585993| 2.173809 | 1.950643| 2.570148 the optimal, or propriety. o .
EE 2.99117 1.700167 | 2.447969| 2.379769 NASA researchers proposej@st-in-casescheduling al-
H 10.53418] 2.154863 | 16.53159| 9.74021 gorithm, which incrementally adds branches to a straight-
AE | 135.2841| 16.42708 | 241.8623| 131.1911 line plan (Bresinat al. 2002; Deardert al. 2003). While

they handle continuous variables and uncertain continuous
effects, their solution is heuristic and the quality of their
policies is unknown. Also, since they consider only limited
contingencies, their solutions are impropetr.

More recently, Prottle (Little 2004) solves problems with

Comparison of Solution Quality Figures 6(a, b, and c) more expressive domain description language, but for a fi-
show the quality of the policies obtained by the same six nite horizon — thus for an acyclic state space. Prottle uses
methods on the same domains. We measure quality by sim- an RTDP type search guided by heuristics computed using
ulating the generated policy across multiple trials, and re- probabilistic variants of planning graph. It would be excit-
porting the average time taken to reach the goal. We plot the ing to combine their method with ours, perhaps by using
ratio of the so-measured expected make-span to the optimaltheir heuristics to guide our search.

expected make-span Figure 8 presents solution qualities (Aberdeen, Thiebaux & Zhang 2004) develop a CoMDP-
for each method, averaged over all problems in a domain. like formalism and apply it to military operations planning.
We note that the aligned-epocAR) policies usually yield The search is guided by domain-specific heuristics.
significantly longer make-spans (e.25% longer); thus one Rohanimanesh and Mahadevan (2001) investigate a spe-
must make a quality sacrifice for their speedy policy con- cial class of semi-MDPs in which the action space can be
struction. In contrast, the hybrid algorithm extorts only a partitioned by (possibly concurreritjarkov options They

small sacrifice in quality in exchange for its speed. propose an algorithm based on value-iteration, but their fo-
- ith . cus is calculating joint termination conditions and rewards
Variation with Concurrency Figure 5(c) represents our received, rather than speeding policy construction.

attempt to see if the relative performance of the algorithms " oqt generation of parallel plans has also been investi-
changed with increasing concurrency. Along the top of the 5164 jn deterministic settings, and (Jensen & Veloso 2000)
figure, by the problem names, are numbers in brackets; theseg,;anq it to disjunctive uncertainty. Morris and Muscettola
list the average number of applicable combinations in each (1999) study dynamic control of plans with temporal uncer-
MDP state,Avg.cs-|Ap(s)|, and range from 68 to 1023 tainty.

concurrent actions. Note that for the difficult problems with 8. Conclusions and Future Work

a lot of parallelism, S-RTDP & - slows dramatically, re- )
gardless of heuristic. In contrast, the hybrid algorithm is
still able to quickly produce a policy, and at almost no loss
in quality (Figure 6(c)).

Figure 7: The time taken by each algorithm divided by the time
taken byS- S-RTDP with no heuristics. Our heuristics produce 2-

3 times speedups. The hybrid algo produces about a 10x speedup.
AE produces 100x speedup, but sacrifices solution quality.

This paper summarizes our techniques for incorporating
concurrency with durative actions in the probabilistic plan-
ning models. We formally define the concurrent proba-
bilistic temporal planning problem, and develop two mod-
°In some large problems, the optimal algorithm did not con- ified state spaces (aligned-epodhXand mfterwove_n-epoqh
verge. For those, we take as optimal, the best policy found in our (8-)), which allow us search for an optimal policy, using
runs. Sampled RTDP or other mearesd, Labeled RTDP, LAO*,



value iteration, etc.) Our experiments show that, while we
can search the aligned space faster, the interwoven model
usually yields a much better policy, one which generates a
much lower make-span.

We define two new heuristics (maximum concurrency
(MC) and eager effect&£E)), and prove that they are admis-
sible. MC is quite fast to compute and consistently speeds
up the policy constructiorEE, however, requires more time

to compute and thus speeds up the convergence only in some

domains. We also describe an inadmissible but quite infor-
mative heuristic (average concurrenddj; this heuristic
speeds the RTDP search even more, and with practically no
loss in the solution quality.

We also develop the general technique of hybridizing
two MDP algorithms. Hybridizing interwoven-epoch and
aligned-epoch policy creation yields a much more efficient
algorithm, one which is still proper.¢., its policies guaran-
tee that the goal will be reached whenever possible). Also,
our hybrid algorithm has a parameter, which can be varied
to trade-off speed against optimality. In our experiments, the
hybrid algorithm quickly produces near-optimal solutions.
For larger problems, the speedups over other algorithms are
quite significant. The hybrid algorithm can also be used in
an anytime fashion thus producing good quatitgperpoli-
cies within a desired time. Thus, we expect that the algo-
rithm would be very effective in solving large problems.

Future Work  Scaling to significantly larger problems will

require new techniques for reducing the huge search space.

We are currently looking into approximate search space
compression and aggregation techniques.

In order to model actions that temporarily provide re-
sources, we plan to extend our action representation to a
probabilistic version of PDDL2.1; this shouldn't be difficult,
but will require revisions in our mutex rules.

We also wish to extend our algorithms to richer models
like rewards, non-absorbing goals, mixed costs, stochastic
action durationsetc. Our techniques are general enough to
be applicable in all these scenarios. For example consider
the mixed cost optimization problem, in which the objec-
tive function is the sum (or a linear combination) of time
and resource costs. Here, an equivalkht’ heuristic can
be computed by solving another MDP, which minimizes re-
source costs, and then adding the converged value to the
MC heuristic reported herein. A hybrid algorithm can be
easily developed in the same manner.

More generally, we believe that our hybridization tech-
nigue is very general and applicable to a wide range of
problems. For instance, we could create a proper, anytime
approximation algorithm for Concurrent MDPs (CoMDPSs)
by hybridizing one of the RTDP algorithms of (Mausam &
Weld 2004) with a traditional MDP algorithm. Similarly, a
hybrid POMDP algorithm can be constructed by hybridizing
RTDP for POMDPs with the policy for the equivalent MDP.
We wish to explore these further.
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