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Abstract

Intelligent agents must function in an uncertain world,

human beings. This paper addresses these two problems by
introducing an extension of DBNs that exposes the domain’s
relational structure, and by developing methods for efficient

containing multiple objects and relations that change
over time. Unfortunately, no representation is currently
available that can handle all these issues, while allowing
for principled and efficient inference. This paper ad-
dresses this need by introducing dynamic probabilistic
relational models (DPRMs). DPRMs are an extension
of dynamic Bayesian networks (DBNs) where each time
slice (and its dependences on previous slices) is repre-
sented by a probabilistic relational model (PRM). Parti-
cle filtering, the standard method for inference in DBNSs,
has severe limitations when applied to DPRMs, but we
are able to greatly improve its performance through a
form of relational Rao-Blackwellisation. Further gains
in efficiency are obtained through the use of abstrac-
tion trees, a novel data structure. We successfully apply
DPRMs to execution monitoring and fault diagnosis of
an assembly plan, in which a complex product is gradu-

inference in this representation.

Formalisms that can represent objects and relations, as op-
posed to just variables, have a long history in Al. Recently,
significant progress has been made in combining them with a
principled treatment of uncertainty. In particular, probabilis-
tic relational models or PRMgriedmanet al, 1999 are an
extension of Bayesian networks that allows reasoning with
classes, objects and relations. The representation we intro-
duce in this paper extends PRMs to sequential problems in
the same way that DBNs extend Bayesian networks. We thus
call it dynamic probabilistic relational model®r DPRMs.

We develop an efficient inference procedure for DPRMs by
adapting Rao-Blackwellised particle filtering, a state-of-the-
art inference method for DBN#Murphy and Russell, 2001
We introduceabstraction treess a data structure to reduce
the computational cost of inference in DPRMs.

Early fault detection in complex manufacturing processes

ally constructed from subparts. can greatly reduce their cost. In this paper we apply DPRMs

to monitoring the execution of assembly plans, and show that

: our inference methods scale to problems with over a thou-
1 Introduction sand objects and thousands of steps. Other domains where
Sequential phenomena abound in the world, and uncertaintye envisage DPRMs being useful include robot control, vi-
is a common feature of them. Currently the most power-ssion in motion, language processing, computational modeling
ful representation available for such phenomena is dynamiof markets, battlefield management, cell biology, ecosystem
Bayesian networks, or DBNiDean and Kanazawa, 1989 modeling, and the Web.
DBNs represent the state of the world as a set of variables, and The rest of the paper is structured as follows. The next two
model the probabilistic dependencies of the variables withirsections briefly review DBNs and PRMs. We then introduce
and between time steps. While a major advance over prevBPRMs and methods for inference in them. The following
ous approaches, DBNs are still unable to compactly represesection reports on our experimental study in assembly plan
many real-world domains. In particular, domains can contairmonitoring. The paper concludes with a discussion of related
multiple objects and classes of objects, as well as multiplend future work.
kinds of relations among them; and objects and relations can
appear and disappear over time. For example, manufactuz Dynamic Bayesian Networks
ing plants assemble complex artifacts (e.g., cars, computers,
aircraft) from large numbers of component parts, using mul-A Bayesian networlencodes the joint probability distribu-
tiple kinds of machines and operations. Capturing such a daion of a set of variables| 71, .. ., Z;}, as a directed acyclic
main in a DBN would require exhaustively representing allgraph and a set of conditional probability models. Each node
possible objects and relations among them. This raises twoorresponds to a variable, and the model associated with it
problems. The first one is that the computational cost of usallows us to compute the probability of a state of the vari-
ing such a DBN would likely be prohibitive. The second is able given the state of its parents. The set of parents of
that reducing the rich structure of the domain to a very largeZ;, denotedPa(Z;), is the set of nodes with an arc 6
“flat” DBN would render it essentially incomprehensible to in the graph. The structure of the network encodes the as-
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sertion that each node is conditionally independent of itghis weighted distribution. The particles will thus tend to stay
non-descendants given its parents. The probability of an aclustered in the more probable regions of the state space, ac-
bitrary eventZ = (Z,...,Z4) can then be computed as cording to the observations.
P(Z) = Hle P(Z;|Pa(Z;)). ~ Although particle filtering has scored impressive successes
Dynamic Bayesian Networks (DBNasde an extension of in many practical applications, it also has some significant
Bayesian networks for mode“ng dynamic Systems_ Ina DBN!ImItatlonS. One that is of p.art|C.U|ar .Concel.'n to us here is that
the state at time is represented by a set of random variablesit tends to perform poorly in high-dimensional state spaces.
Zy = {Zv4,...,Zas}. The state at time is dependent on This is because the number of particles required to main-
the states at previous time steps. Typically, we assume th&&in @ good approximation to the state distribution grows very
each state only depends on the immediately preceding statapidly with the dimensionality. This problem can be greatly
(i.e., the system is first-order Markovian), and thus we needitenuated by analytically marginalizing out some of the vari-
to represent the transition distributidh( Z,, 1|7, ). This can  ables, a technique known &ao-BlackwellisatioiMurphy
be done using a two-time-slice Bayesian network fragmengnd Russell, 2041 Suppose the state spakgcan be divided
(2TBN) B,.1, Which contains variables fron#,,,; whose into two subspace§; andV; such thatP(V;|U;, Y1, ..., Y;)
parents are variables fro) and/orZ,_, ;, and variables from can be computed analytically and efficiently. Then we only
Z, without any parents. Typically, we also assume that théeed to sample from the smaller spagerequiring far fewer
process is stationary, i.e., the transition models for all timeParticles to obtain the same degree of approximation. Each
slices are identicalB; = B, = ... = B, = B_,. Thusa particle is now composed of a sample frahlU;[Y3, . .., Y3)
DBN is defined to be a pair of Bayesian networlg (B_,),  Plus a parametric representationfofl;|Uy, Y1, . . ., ¥3). For
whereB, represents the initial distributioR(Z,), andB_, is ~ €xample, if the variables i, are discrete and independent of
a two-time-slice Bayesian network, which as discussed abov@ach other give®;, we can store for each variable the vector
defines the transition distributiaR(Z, 1| Z;). of parameters of the corresponding multinomial distribution
The setZ, is commonly divided into two sets: the unob- (i-e., the probability of each value).
served state variable$; and the observed variabl&s. The

observed variableg,; are assumed to depend only on the cur-3  Probabilistic Relational Models
rent state variableX;. The joint distribution represented by

a DBN can then be obtained by unrolling the 2TBN: A relational schemas a set of class@s = {C'1, Cy, ..., Oy},
where each clas§' is associated with a set pfopositional
P(Xo, X1, o, X1, Yo, Y1, ., V) attributes A(C') and a set ofelational attributesor refer-

T ence slotsR(C). The propositional attributel of classC
is denotedC'. 4, and its domain (assumed finite) is denoted
- P(X0>P(YO|X0)HP(X”Xt—l)P(Yt‘Xt) V(C.A). The relational attribute? of C' is denotedC.R,
=1 and its domain is the power s2¢” of a target clasg” e C.
Various types of inference in DBNs are possible. One ofin other words,C.R is a set of objects belonging to some
the most useful is state monitoring (also known as filtering orclassC’.r For example, the\ircraft schema might be used
tracking), where the goal is to estimate the current state of th represent partially or completely assembled aircraft, with
world given the observations made up to the present, i.e., tolasses corresponding to different types of parts like metal
compute the distributio®(Xr|Yy, Y1, ..., Yr). Proper state sheets, nuts and bolts. The propositional attributes of a bolt
monitoring is a necessary precondition for rational decisionmight include its color, weight, and dimensions, and its rela-
making in dynamic domains. Inference in DBNs is NP-tional attributes might include the nut it is attached to and the
complete, and thus we must resort to approximate methtwo metal sheets it is bolting. Ainstantiationof a schema is
ods, of which the most widely used one psarticle filter-  a set of objects, each object belonging to some dassC,
ing [Doucetet al, 200]. Particle filtering is a stochas- with all propositional and relational attributes of each object
tic algorithm which maintains a set of particles (samples)specified. For example, an instantiation of the aircraft schema
xl,x?, ...,z to approximately represent the distribution of might be a particular airplane, with all parts, their properties
possible states at timegiven the observations. Each parti- and their arrangement specified.
clez? contains a complete instance of the current state, i.e., a A probabilistic relational model (PRMgncodes a proba-
sampled value for each state variable. The current distributiobility distribution over the set of all possible instantiatidns

is then approximated by of a schemdFriedmanet al, 1999. The object skeletorf
LN 4 an instantiation is the set of objects in it, with all attributes
P(Xp =z|Yo,Y1,...Y7r) = — Z Sz =x) unspecified. Theelational skeletorof an instantiation is the
N~ set of objects in it, with all relational attributes specified, and

_ L . all propositional attributes unspecified. In the simplest case,
whered(z7. = z) is 1if the state represented by. is same as  the relational skeleton is assumed known, and the PRM spec-
z, and 0 otherwise. The particle filter starts by generafing ifies a probability distribution for each attributé of each
particles according to the initial distributidf(X,). Then, at  classC. The parents of each attribute (i.e., the variables
each step, it first generates the next stgte for each parti- it depends on) can be other attributescf or attributes of
cle i by sampling fromP(X/, ;| X;). It then weights these
samples according to the likelihood they assign to the ob- 1C.R can also be defined as a function fratnto 2€°, but we
servations,P(Y;41|X}, ), and resampledV particles from  choose the simpler convention here.
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classes that are related@by some slot chain. A slot chain Definition 3 A dynamic probabilistic relational model
is a composition of relational attributes. In general, it must(DPRM)for a relational schem& is a pair(My, M_,), where
be used together with aaggregation functiorthat reduces a M, is a PRM overl,, representing the distributioR, over
variable number of values to a single value. For example, #he initial instantiation ofS, andM_, is a 2TPRM represent-
parent of an attribute of a bolt in the aircraft schema might beng the transition distributiodP(1;|I;_1) connecting succes-
avg(bolt.plate.nut.weightthe average weight of all the nuts sive instantiations of. O

on the metal plates that the bolt is attached to. For anyT’, the distribution overy, ..., I is then given by

Definition 1 A probabilistic relational model (PRMII for a

relational schem& is defined as follows. For each claSs T

and each propositional attributee A(C), we have: P(lo, ..., It) = Py(lo) H P(Ii|li-1)

e A set ofparentsPa(C.A) = {Pay, Pas, ..., Pa;}, where = )
eachPa; has the fornC.B or v(C.7.B), wherer is a slot DPRMs are extended to the case where only the object
chain andy() is an aggregation function. skeleton for each time slice is known in the same way that

. . PRMs are, by adding to Definition 2 a set of parents and con-

* A conditional probability modefor P(C.A|Pa(C.A)). D ditional probability model for each relational attribute, where
Let O be the set of objects in the relational skeleton. Thethe parents can be in the same or the previous time slice.

probability distribution over instantiationsof S represented When the object skeleton is not known (e.g., if objects can

by the PRM is then appear and disappear over time), the 2TPRM includes in ad-
dition a Boolean existence variable for each possible object,

P(I) = H H P(obj.A|Pa(obj.A)) again with parents from the same or the previous time Slice.

obj €O AcA(obj) As with DBNs, we may wish to distinguish between observed

_ _ and unobserved attributes of objects. In addition, we can con-
A PRM and relational skeleton can thus be unrolled into asjger anActionclass with a singie attribute whose domain is

large Bayesian network with one variable for each attributgne set of actions that can be performed by some agent (e.g.,
of each object in the skeletdnOnly PRMs that correspond painting a metal plate, or bolting two plates together). The
to Bayesian networks without cycles are valid. distribution over instantiations in a time slice can then de-
_ More generally, only the object skeleton might be known,nend on the action performed in that time slice. For example,
in which case the PRM also needs to specify a distributionihe actionBolt(Partl, Part2)may with high probability pro-
over the relational attributd&Setooret al, 200]. In the air-  §ycePartl.mate— {Part2}, and with lower probability set
craft domain, a PRM might specify a distribution over the part1. mateto some other object d?art2s class (i.e., be im-
state of assembly of an airplane, with probabilities for differ-properly performed, resulting in a fault).

ent faults (e.g., a bolt is loose, the wrong plates have been jyst as a PRM can be unrolled into a Bayesian network, so

bolted, etc.). can a DPRM be unrolled into a DBN. (Note, however, that
) o . this DBN may in general contain different variables in dif-
4 Dynamic Probabilistic Relational Models ferent time slices.) In principle, we can perform inference

s.0n this DBN using particle filtering. However, the filter is
dikely to perform poorly, because for non-trivial DPRMs its
tate space will be huge. Not only will it contain one variable
each attribute of each object of each class, but relational
attributes will in general have very large domains. We over-

tional attributeprevious There is one object; for each time ~ COMe this by adapting Rao-Blackwellisation to the relational

slice, and thepreviousattribute connects it to the object in Setting. We make the following (strong) assumptions:

the previous time slice. Given a relational sche$have first 1. Relational attributes with unknown values do not appear
extend each clas§ with the relational attribut&€.previous anywhere in the DPRM as parents of unobserved at-
with domainC. As before, we initially assume that the re- tributes, or in their slot chains.

lational skeleton at each time slice is known. We can thea . :
; . - ) . Each referen lot can i t most on t.
define two-time-slice PRMs and dynamic PRMs as follows. ch reference slot can be occupied by at most one objec

Definition 2 A two-time-slice PRM (2TPRMbr a relational

In this section we extend PRMs to modeling dynamic sy
tems, the same way that DBNs extend Bayesian network
We begin with the observation that a DBN can be viewed as
special case of a PRM, whose schema contains only one cla
Z with propositional attributeg’;, ..., Z; and a single rela-

Proposition 1 Assumptions 1 and 2 imply that, given the
. X ropositional attributes and known relational attributes at
schemas is defined as follows. For each classand each 'ﬁmgst andt — 1, the joint distribution of the unobserved
propositional attributel & A(C), we have: relational attributes at time is a product of multinomials,
e A set of parentsPa(C.A) = {Pay, Pas, ..., Pa;}, where  one for each attribute.
eachPa; has the fornC.B or f(C.7.B), wherer is a slot
chain containing the attributereviousat most once, and
f() is an aggregation function.

¢ A conditional probability modefor P(C.A|Pa(C.A)). O

Notice also that, by Assumption 1, unobserved proposi-
tional attributes can be sampled without regard to unobserved
relational ones. Rao-Blackwellisation can now be applied

- ®Notice that the attributes of nonexistent objects need not be
2plus auxiliary (deterministic) variables for the required aggre-specified, because by definition no attributes of any other objects
gations, which we omit from the formula for simplicity. can depend on thebGetooret al., 200].
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with U; as the propositional attributes of all objects daid 5 EXxperiments
as their relational attributes. A Rao-Blackwellised particle is|, his section we study the application of DPRMs to fault
composed of sampled values for all propositional attributegyatection in complex assembly plans. We use a modified ver-
of all objects, plus a probability vector for each relational at-;5, of theSchedule Worldomain from the AIPS-2000 Plan-
tribute of each object. The vector element corresponding Qing Competitiorf: The problem consists of generating a plan
obj.Rli] is the probability that relatior holds betweembj o 3ssembly of objects with operations such as painting, pol-
and theith object of the target class, conditioned on the value§ghing, etc. "Each object has attributes such as surface type,
of the propositional attributes in the particle, etc. color, hole size, etc. We add two relational operations to the
Rao-Blackwellising the relational attributes can vastly re-domain: bolting and welding. We assume that actions may
duce the size of the state space which particle filtering needse faulty, with fault model described below. In our experi-
to sample. However, if the relational skeleton contains aments, we first generate a plan using the FF plafHeff-
large number of objects and relations, storing and updatingnann and Nebel, 2001 We then monitor the plan’s execu-
all the requisite probabilities can still become quite expention using particle filtering (PF), Rao-Blackwellised particle
sive. This can be ameliorated if context-specific independenfiltering (RBPF) and RBPF with abstraction trees.
cies exist, i.e., if a relational attribute is independent of some We consider three classes of objecRlate, Bracketand
propositional attributes given assignments of values to othBolt. Plate andBrackethave propositional attributes such as
ers[Boutilier et al, 1996. We can then replace the vector weight, shape, color, surface type, hole size and hole type,
of probabilities with a tree structure whose leaves represerdnd relational attributes for the parts they are welded to and
probabilities for entire sets of objects. More precisely, we dethe bolts bolting them to other parts (e Blate73.bolt&orre-
fine theabstraction treelata structure for a relational attribute sponds to the fourth bolt hole on plate 73). Bt class has
obj. R with target clas€’ as follows. A node’ of the tree is  propositional attributes such as size, type and weight. Propo-
composed of a probability and a logical expressiopover  sitional actions include painting, drilling and polishing, and
the propositional attributes of the schema. Ogf{C’) be the  change the propositional attributes of an object. The rela-
set of objects inC’ that satisfy thep's of v and all ofv’s an-  tional actionBolt sets abolt attribute of aPlate or Bracket
cestors. Them def Zobj’EO,,(C’) P(obj' € (0bj.R), | Uy). object to aBolt object. TheWeldaction sets avelded-toat-
The root of an abstraction tree contaifis= true. The chil- tribute of aPlateor Bracketobject to anothePlate or Bracket

. : bject.
dren v; of a noder contain expression®; such that the o
OV.(CV") form a pal:tition ofOV(CE’). Eacﬁ leaf of the tree The fault model has a global parameter, fhalt proba-

stores a parametric distribution giving the probability that.biIity ps. With probability1 — py, an action produces the

each object in the leaf is a member @fj.R, as a function intended effect. With probability;, one of several possible

of the object's propositional attributes. The probability thatf2ultS occurs. Propositional faults include a painting oper-
an arbitrary objecbbj’ € C' is a member obbj. R is found ation not being completed, the wrong color being used, the

by starting at the root of the abstraction tree dbj. R, going POHST of an o!:;ject Ibfein% ru(;ned, gtc. Tr,‘[ﬁ probabili@y of ?'Ih
to the child whose condition is satisfied byj’, and so on 'crent Propositional faults depends on the properties of e
object being acted on. Relational faults include bolting the

recursively until a leaf is reached and the object’s probability . ! .
: g wrong objects and welding the wrong objects. The proba-
is read from the leaf distribution. . . . . .
. , ) bility of choosing a particular wrong object depends on its
Initially, the abstraction tree consists only of the root, andsjmilarity to the intended object. Similarity depends on dif-
as inference progresses it is gradually refined as dictated Jgrent propositional attributes for different actions and differ-
the attributes thaC. 2 depends on. For example, supposeent classes of objects. Thus the probability of a particular
the first action to be performed Bolt(Partl, Part2) and  \yrong object being chosen is uniform across all objects with
with probability p; the action is performed incorrectly. The the same relevant attribute values.
faulty action consists of attachirRartl to some other object  The DPRM also includes the following observation model.
of Part2s classC”, with uniform probability overC’. Then  There are two instances of each attribute: the true one, which
two childrenv, andu; of the root ofPartl.mates abstraction s never observed, and the observed one, which is observed
tree are created, withy specifying the singleton s¢Part2} gt selected time steps. Specifically, when an action is per-
and ¢, its complement inC’, and withp; = 1 — py and  formed, all attributes of the objects involved in it are ob-
p2 = py. The uniform distribution in leaf, has a single pa-  served, and no others. Observations are noisy: with proba-
rameter, the probability = p;/(|/C’| — 1) that a given object  pjlity 1 — p, the true value of the attribute is observed, and
in it is attached tdPartl. This takesO(1) space to store and ith probability p, an incorrect value is observed. Incorrect
O(1) time to update, as opposed@(|C’|). If objects with  yajues for propositional observations are chosen uniformly.
different attributes have different probabilities of being bolted|ncorrect values for relational observations are chosen with
to Partl, a node'for'each relevant combination o_f at'grlbutes iSa probability that depends on the similarity of the incorrect
created. Thus, ifi. is the number of such combinations, the object to the intended one.
storage and update time requiredRart1.mateareO(n.) in- Notice that, if the domain consisted exclusively of the
stead ofO(|C"]). By design,n. < (|C']); in the worst case, propositional attributes and actions on them, exact inference
the tree will have one leaf per element@f. As we will see  yjght be possible; however, the dependence of relational at-

in the next section, the use of abstraction trees can greatlyihutes and their observations on the propositional attributes
reduce the computational cost of Rao-Blackwellised particle

filtering in DPRMs. 4URL: http://www.cs.toronto.edu/aips2000
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creates complex dependencies between these, making ap- , , , ,
proximate inference necessary. 14 RBPF (p, =0.1%) 1

A natural measure of the accuracy of an approximate infer- | R';':P'(:p{ =‘}%’> B : 7620 |
ence procedure is the K-L divergence between the distribu- PF ( :10/")
. . . ()] pf - 0)
tion it predicts and the actual oh€over and Thomas, 2001 S 10 | rRBPF (P, =10%) —— 1
However, computing it requires performing exact inference, §1 PF (p, =10%)
which for non-trivial DPRMs is infeasible. Thus we estimate & 8 | ’ 1
the K-L divergence by sampling, as follows. LB{p||p) be a 61 w070 |
the K-L divergence between the true distributiprand its ;‘ 1730 & S
approximationp, and letX be the domain over which the 4+ i &S 1
distribution is defined. Then X

A def plx
D(pllp) = ) plx)log (2) 0 : ‘ : :
= p(x) 0 2000 4000 6000 8000 10000
A Time St
= Y p(@)logp() = Y p(a) log p(x) ®
TEX TEX Figure 1: Cqmparison of RBPF (5000 part_icles) and PF
The first term is simply the entropy of, H(X), and is a (2(_)(_),000 particles) for 1000 objects and varying fault prob-
. el . ability.

constant independent of the approximation method. Since

we are mainly interested in measuring differences in perfor- 7 . . . :

mance between approximation methods, this term can be ne- RBPF (500 objs) ——
glected. The K-L divergence can now be approximated inthe 6 | PF (500 objs) - 1
usual way by taking’ samples from the true distribution: 5 2950 4010 RBEE 8%8 83}3
15 = /¢ 6580 RBPF(15000bjs)
2 . A L PF (1500 objs) ------- i
D (plp) = ~g D_logi(z:) 5 (1500009
i=1 a3 ]
wherep(z;) is the probability of theith sample according ;’
to the approximation procedure, and the subscript indi- 2 y
cates that the estimate @¥(p||p) is offset by H(X). We 1l |
thus evaluate the accuracy of PF and RBPF on a DPRM by
generatingS = 10, 000 sequences of states and observations . . . .
from the DPRM, passing the observations to the particle fil- 0 2000 4000 6000 8000 10000
ter, inferring the marginal probability of the sampled value Time Step

of each state variable at each step, plugging these values into

the above formula, and averaging over all variables. Noticd-igure 2: Comparison of RBPF (5000 particles) and PF
that Dy (p||p) = oo whenever a sampled value is not rep- (200,000 particles) for fault probability of 1% and varying
resented in any particle. The empirical estimates of the K-Lhumber of objects.

divergence we obtain will be optimistic in the sense that the

true K-L divergence may be infinity, but the estimated oney ) divergence of RBPF increases only very slowly, for all
will still be finite unless one of the values with zero predicted ombinations of parameters tried. Abstraction trees’ reduced
> 2""RBPF’s time and memory by a factor of 30 to 70, and took
comparison between approximation methqu, however, sincg, average six times longer and 11 times the memory of PF,
on average the worse method should prodbggp||p) = oo per particle. However, note that we ran PF with 40 times
earlier in the time sequence. We thus report both the averag@ore particles than RBPF. Thus, RBPF is using less time and
K-L d]ver_gence befo_re _|t_be90mes infinity and the time stePmemory than PF, and performing far better in accuracy.
at which it becomes infinity, if any. , We also ran all the experiments while measuring the K-L
Figures 1 and 2 show the results of the experiments pefgivergence of the full joint distribution of the state (as op-
formed. The observation noise parameigwas set to the posed to just the marginals). RBPF performed even better
same value as the fault probabiljty throughout. One action  compared to PF in this case; the latter tends to blow up much
is performed in each time step; thus the number of time stepgooner (e.g., from around step 4000 to less than 1000 for

is the length of the plan. The graphs show the K-L divergenc%f = 1% and 1000 objects), while RBPF continues to de-
of PF and RBPF at every 100th step (it is the same for RBPgrade only very slowly.

with and without abstraction trees). Graphs are interrupte

at the first point where the K-L divergence became infinite

in any of the runs (once infinite, the K-L divergence never6 Related Work

went back to being finite in any of the runs), and that point isDynamic object-oriented Bayesian networks (DOOBNS)
labeled with the average time step at which the blow-up oc{Friedmanet al., 1999 combine DBNs with OOBNS, a pre-
curred. As can be seen, PF tends to diverge rapidly, while thdecessor of PRMs. Unfortunately, no efficient inference
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