
An Algorithm for Probabilistic Planning�

Nicholas Kushmerick Steve Hanks Daniel Weld

Department of Computer Science and Engineering, FR{35

University of Washington

Seattle, WA 98195

fnick, hanks, weldg@cs.washington.edu

April 13, 1994

Technical Report 93-06-03 (revised March 1994)

To appear in Arti�cial Intelligence

Abstract

We de�ne the probabilistic planning problem in terms of a probability distribution

over initial world states, a boolean combination of propositions representing the goal,

a probability threshold, and actions whose e�ects depend on the execution-time state

of the world and on random chance. Adopting a probabilistic model complicates the

de�nition of plan success: instead of demanding a plan that provably achieves the goal,

we seek plans whose probability of success exceeds the threshold.

In this paper, we present buridan, an implemented least-commitment planner

that solves problems of this form. We prove that the algorithm is both sound and

complete. We then explore buridan's e�ciency by contrasting four algorithms for

plan evaluation, using a combination of analytic methods and empirical experiments.

We also describe the interplay between generating plans and evaluating them, and

discuss the role of search control in probabilistic planning.

�We gratefully acknowledge the comments and suggestions of Tony Barrett, Tom Dean, Denise Draper,
Mike Erdmann, Keith Golden, Rex Jacobovits, Oren Etzioni, Neal Lesh, Mike Wellman, Mike Williamson,
and the anonymous reviewers. This research was funded in part by National Science Foundation Grants
IRI-9206733 and IRI-8957302, O�ce of Naval Research Grant 90-J-1904, and the Xerox Corporation.

Contents

1 Introduction 1

1.1 Action representation : 1

1.2 The planning algorithm : 3

1.3 Discussion : 4

1.4 Example : 5

1.5 Alternative assessment algorithms : 7

1.6 Contributions : 8

2 A Semantics for Probabilistic Planning 9

2.1 States and expressions : 9

2.2 Actions and action sequences : 9

2.3 Planning problems and solutions : 10

2.4 Extending the example : 11

3 The buridan Algorithm 13

3.1 Data structures : 13

3.2 The buridan algorithm: top-level : 15

3.3 Plan re�nement : 15

3.4 Plan assessment : 18

4 Formal Properties 22

4.1 Soundness : 22

4.2 Completeness : 23

5 E�cient Plan Assessment 24

5.1 The forward assessment algorithm : 24

5.2 The query assessment algorithm : 25

5.3 The network assessment algorithm : 25

5.4 The reverse assessment algorithm : 27

5.5 Empirical con�rmation : 28

6 The Assess-Re�ne Interface 34

6.1 Reasoning about partial orders : 36

6.2 Search control : 37

6.3 Summary : 37

7 Related Work 39

7.1 Probabilistic planning : 39

7.2 Robotic motion planning : 40

7.3 Graphical decision models : 40

7.4 Probabilistic temporal reasoning : 41

i

7.5 Action representation and plan evaluation : : : : : : : : : : : : : : : : : : : 41

7.6 Classical planning : 41

8 Conclusions 42

8.1 Implementation : 42

8.2 Summary : 42

8.3 Future work : 42

A Proof of Completeness 44

B The reverse Assessment Algorithm 48

ii

1 Introduction

Classical planning assumes complete and deterministic information about the world state

and the e�ects of actions. These assumptions are inappropriate for many domains: turning

the ignition key might usually start one's old car, but occasionally fail for unknown reasons.

Even if a deterministic model is possible for a given domain, it might be too complex to be

useful. For example, when deciding between an indoor and an outdoor site for a wedding,

one is likely to use a probabilistic model to forecast the weather rather than project the

cloud dynamics. The initial world state is also a source of uncertainty: will the freeways be

crowded?

This paper presents a planning algorithm that does not depend on the assumptions of

complete and deterministic information. We use a probability distribution over possible

world states to model imperfect information about the initial world state, and we model

actions using a conditional probability distribution over changes to the world.

Adopting a probabilistic model complicates the de�nition of plan success. Instead of

terminating when it builds a plan that provably achieves the goal, our planner terminates

when it builds a plan that is su�ciently likely to succeed: our algorithm produces a plan such

that the probability of the plan achieving the goal is no less than a user-supplied probability

threshold, if such a plan exists.

The work reported here makes several contributions. First, we de�ne a symbolic action

representation and provide it probabilistic semantics. Second, we describe an implemented

algorithm, buridan,1 for probabilistic planning. Third, we prove the planner both sound

and complete. Fourth, we compare the e�ciency of four di�erent probabilistic assessment al-

gorithms both analytically and with empirical experiments. Finally, we explore the interface

between the process of generating plans and the process of evaluating them.

1.1 Action representation

Following [29], we extend the standard strips [23] representation to allow conditional and

probabilistic e�ects. In strips, an action is \enabled" if its preconditions are satis�ed when

the action is executed, in which case the action has a deterministic e�ect. If the preconditions

do not hold, the action is \disabled," and executing it is an error or meaningless. This simple

model is not su�cient for representing actions with multiple possible consequences. buridan

models actions that can be executed in any world state, with the e�ect of executing the action
depending on the execution-time state and on random chance.

Consider the following simple action from a robot planning domain. Suppose that a

robot's grasping operation is not always successful. We model this action's e�ects as depend-

ing both on the state of the world at execution time and on random chance. Speci�cally, we

1Jean Buridan (b�o�o r�e d�an0), 1300-58, a French philosopher and logician, has been credited with originating
probability theory. He seems to have toyed with the idea of using his theory to decide among alternative
courses of action: the parable of \Buridan's Ass" is attributed to him, in which an ass that lacked the ability
to choose starved to death when placed between two equidistant piles of hay.

1

model the uncertainty of this pickup action by describing it in terms of four consequences. In

two of the consequences, the robot will be holding the block after executing the action, but

in the other two the world state doesn't change. To each consequence we assign a probability

which depends on the state of the world when the action is executed. For example, we might

encode the fact that if the gripper is dry then the block is successfully grasped 95% of the

time, but if the gripper is wet then the block is grasped only 50% of the time. Figure 1

shows our representation of the pickup action.

pickup

HB HBβα γ δ

GD GD

ρα=0.95 ρβ=0.05 ργ=0.5 ρδ=0.5

Figure 1: The pickup action. GD means \gripper dry;" HB means \holding block."

Propositions likeGD and HB (\gripper dry" and \holding block") characterize the relevant

part of the world's state. The �� encode the conditional probabilities that the corresponding

consequence is realized when the action is executed. For example, �� = 0:95 indicates

that consequence � is realized with probability 0.95 given that GD holds when the action is

executed.

As shown in Figure 1, actions are encoded with binary trees. The leaves of the tree are the

action's e�ects, the set of changes made to the world state if the corresponding trigger holds

when the action is executed. The labels on the path from the root encode the consequence's

trigger, a conjunction expressing the conditions under which this consequence occurs. For

example, executing pickup when the gripper is dry (GD), would likely (probability :95) cause

the robot to be holding the block (HB).2 Like strips's add- and delete-lists, consequences

describe changes to the world state rather than entire states. As shown in the �gure, we

index an action's consequences with �, �, etc. The binary tree representation enforces the

constraint that the triggers for all consequences of an action are mutually exclusive and

exhaustive: exactly one will be realized during execution.

In classical planning, a world state is described with a set of propositions. Since buridan's

domains are probabilistic, we characterize the agent's knowledge of the world not as a single

state but rather as a probability distribution over possible states. In the classical paradigm,

actions cause a transition from one state to another; buridan's actions induce a transition

from one probability distribution to another.

Graphical depictions of actions like Figure 1 might give the mistaken impression that

we are assigning probabilities directly to propositions in an action's consequences without

regard to the state of the world at execution time. This is not the case: we are assigning

2Since no set of e�ects contains HB, our simple model of robot grippers does not capture the phenomenon
of dropping an already held block when attempting a pickup. Of course, it would be easy to elaborate our
model to account for this phenomenon by introducing HB to the triggers of the action so that the e�ect of
pickup depends on whether something is already held.

2

probabilities to possible world states in which propositions are deterministically true or false.

Section 2 provides a formal semantics for our action representation.

1.2 The planning algorithm

The job of a probabilistic planning algorithm is to construct a sequence of actions such that

executing each action in turn, starting from some initial probability distribution over states,

results in a �nal distribution in which the goal expression holds with su�cient probability,

where su�ciency is de�ned with respect to a user-supplied probability threshold.

buridan searches through a space of plans until it �nds one that achieves the goal

with su�cient probability. Each plan consists of a set of actions, a partial temporal ordering

relation over the actions, a set of causal links, and a set of subgoals (each a proposition-action
pair). The �rst two items are straightforward; the last two require some explanation.

A causal link [39] Ai;�

p
!Aj caches the planner's reasoning that proposition p could be

true at the time action Aj (the link's consumer) is executed because consequence � of action

Ai (the link's producer) makes it true. The link is said to provide causal support for p. To

realize this support, the planner must try to increase the probability that consequence � of

Ai is realized and prevent p from being made false by other actions. buridan attempts the

former by providing additional causal support to the triggers of Ai's consequence �.

The �nal component of a plan|the set of subgoals|is used for this purpose. The idea

behind these pairs is analogous to a goal agenda in a classical planner: if p is a subgoal

for action Aj (written p@Aj), then buridan seeks to increase the probability of p at the

time that Aj is executed. For example, one way to increase this probability is to add to

the plan a new action that makes p true. Whenever buridan does this (suppose it adds

Ai whose consequence � makes p true), it records the decision with a causal link Ai;�

p
!Aj.

buridan then makes each proposition in consequence �'s trigger a subgoal for Ai. When

planning starts, the set of subgoals is initialized to the set of goal propositions tagged with a

dummy action denoting the end of the plan. In summary, subgoals serve to focus buridan's

attention towards improvements to a plan that will tend to increase the probability of goal

satisfaction.

We say that an action Ak threatens a causal link Ai;�

p
!Aj if some consequence of Ak

asserts p and if Ak might occur between Ai and Aj . Threatened links signify that buridan's

commitments might not be met, so the planner must take evasive action. For example,

buridan can try to constrain the threatening action so that it must be executed before Ai

or after Aj, thereby eliminating the threat.

Planning starts with the null plan: a plan consisting of just two special actions initial

and goal, with the constraint that initial be executed �rst and goal last (in the �gures, we

use the convention that time progresses from left to right). These special actions encode the

probability distribution over initial world states and the goal expression, respectively. For

example, consider a world with one block; suppose that initially the block is not held and

the gripper is dry with probability 0.7. The initial action corresponding to this distribution

is shown on the left side of Figure 2. Each consequence of initial describes one of these two

3

possible world states. The agent's goal is encoded with a distinguished action goal. Suppose

that the goal is to be holding the block, HB; the right side of Figure 2 shows the goal action

for this goal expression. goal has a single consequence that produces SUCCESS, triggered by

the goal expression.

initial

GD, HB GD,HB

ρα=0.7 ρβ=0.3

βα

0 goal

SUCCESS

{ HB}

α

G

ρα=1

Figure 2: The null plan encodes the initial state distribution and the goal.

buridan searches the space of partial plans, performing two operations at each visited

node:

1. Plan Assessment: Determine whether the probability that the current plan achieves

the goal exceeds the probability threshold, terminating successfully if so.

2. Plan Re�nement: Otherwise, try to increase the probability of goal satisfaction by

re�ning the current plan:

� Nondeterministically choose a subgoal p@Aj, and add a causal link to Aj from

some new or existing action Ai that can produce p, in an attempt to increase the

probability of p when Aj is executed; or

� Nondeterministically choose an existing causal link that is threatened, and resolve

the threat.

Signal failure if there are no possible re�nements, otherwise continue by looping with

the new partial plan.

In Section 1.4 we illustrate these two operations using the example described earlier, but

�rst we discuss some signi�cant di�erences between the buridan planning algorithm and

other least-commitment planners.

1.3 Discussion

Re�ning a plan with conditional and probabilistic operators di�ers from classical plan re-

�nement (e.g. snlp [39]) in three important ways.

First, snlp establishes a single causal link between a producing action and a consuming

action, and that link alone ensures that the link's literal will be true when the consuming

action is executed. Our planner links one of an action's consequences to a later action. An

action can have several consequences, though only one will actually occur. Furthermore,

a single link Ai;�

p
!Aj ensures that p will be true for action Aj only if trigger ti

�
holds with

probability one. Therefore multiple links may be needed to support a literal: even if no

4

single link makes the literal su�ciently likely, their combination might. We lose snlp's clean

distinction between an \open condition" (a trigger that is not supported by a link) and a

\supported condition" that is guaranteed to be true. Causal support in a probabilistic plan

is a cumulative concept: the more links supporting a literal, the more likely it is that the

literal will be true.

The concept of a threatened link is di�erent when actions have conditional e�ects. Recall

that Ak threatens Ai;�

p
!Aj if some consequence of Ak asserts p and if Ak can be ordered

between Ai and Aj. buridan resolves threats in the same way that classical planners do: by

ordering the threatening action either before the producer or after the consumer. But a plan

can be su�ciently likely to succeed even if there is a threat, as long as the threat is su�ciently

unlikely to occur. We can therefore resolve a threat in an additional way, by confrontation:

if action Ak threatens link Ai;�

p
!Aj , plan for the occurrence of some consequence of Ak that

does not make p false.

A �nal di�erence between classical planners and buridan concerns the relationship be-

tween buridan's subgoals and a classical planner's goal agenda [45]. In a classical planner,

every entry on the agenda must be made true before the plan can be considered a solution,

but in the case of a probabilistic planner this is no longer the case. Thus buridan need

not consider all subgoals to devise a plan that achieves its goal with su�cient probability.

Indeed, if the threshold is zero, it need consider none at all!

1.4 Example

Recall the example: a robot whose gripper is possibly wet (with probability 0:3) needs to

be holding a block. Alas, the pickup action is unreliable, especially when the gripper is

wet. Suppose that there is also a dry action that usually (with probability 0:8) succeeds.

We now illustrate the two steps of our planning algorithm with this example, assuming

that a plan must be constructed that works 90% of the time. For expository purposes,

we illustrate buridan making the correct nondeterministic choices; in reality, considerable

search is necessary to �nd a solution (see Section 6).

1.4.1 Plan re�nement

Plan re�nement starts with the null plan shown in Figure 2. Since HB is not true in any

state in the initial distribution, buridan adds an instance of the pickup action to the plan

because this is the only action that can make HB true. buridan creates a link from pickup's

� consequence to the goal action. This link caches the planner's reasoning that HB will be

true because pickup makes it true, as long as the conditions under which pickup produces HB

are satis�ed and no intermediate actions produce HB. buridanmust thus try to bring about

the circumstances that cause pickup to produce HB. In general buridan can not guarantee
that an action has a particular consequence, but the planner can add further re�nements

to make the desired consequence more likely. In our example this means trying to make

the gripper dry when pickup is executed. buridan can make GD true in two ways. GD is

true initially with probability 0.7, so the �rst option is to add a causal link from initial. As

5

we shall show in the next section, this simple plan|consisting of a single pickup action|

has probability 0.815, which is less than the probability threshold 0.9. So buridan adds

additional causal support for GD by inserting and linking from a dry action. Figure 3 shows

the resulting plan. This plan achieves HB with probability 0.923, which exceeds the threshold

of 0.9, so buridan has successfully found a solution.

initial

GD, HB GD, HB

ρα=0.7 ρβ=0.3

βα

0 goal

SUCCESS

{ HB}

α

G

dry

GD

ρα=0.8 ρβ=0.2

α β

2

pickup

HB HBβα γ δ

1

GD GD

ρα=0.95 ρβ=0.05 ργ=0.5 ρδ=0.5 ρα=1

Figure 3: This plan for holding the block, HB, works at least 90% of the time despite the

fact that gripper dryness, GD, is not guaranteed.

1.4.2 Plan assessment

We have implemented and analyzed four algorithms that compute the probability that a

plan achieves its goal; Section 5 discusses the performance tradeo�s among them. Here

we illustrate the simplest assessment strategy, forward, which directly implements the

de�nition of plan success implied above. Recall that executing an action induces a transition

from one probability distribution over states to another. forward takes an action sequence

and \executes" each action in turn, and then computes the probability of the goal expression

in the �nal distribution.3

Recall the simple one-action plan described above: picking up the block without �rst

drying the gripper. The initial distribution consists of two states that di�er only in whether

GD holds: fGD;HBg and fGD;HBg (for conciseness we write the state using set notation).

The initial probability distribution over states is: P[fGD;HBg] = 0:7, P[fGD;HBg] = 0:3. The

probability distribution resulting from executing pickup in this initial distribution consists

of the four states:

1. fGD;HBg is the resulting state if the initial state is in fact fGD;HBg and the pickup

action is \successful," i.e., consequence of � of pickup is realized. (The other \suc-

cessful" consequence,
, can not happen in this initial state since one of its triggers,

GD, is de�nitely false.) The probability of this new state is the probability of this ini-

tial state times the probability that pickup has consequence � given this initial state,

0:7� 0:95 = 0:665.

3If the partially ordered plan is consistent with multiple total orders, then forward performs the com-
putation for each total order and returns the minimum.

6

2. fGD;HBg is realized if the initial state is fGD;HBg and pickup results in consequence

�; this state has probability 0:7� 0:05 = 0:035.

3. fGD;HBg is realized if the initial state is fGD;HBg and pickup results in consequence

; this state has probability 0:3� 0:5 = 0:15.

4. fGD;HBg is realized if the initial state is fGD;HBg and pickup results in consequence

�; this state has probability 0:3� 0:5 = 0:15.

Since pickup is the plan's only action, we now assess the goal HB with respect to this �nal

state distribution. HB is true in the �rst and third states listed above, so the probability is

the sum, 0.815, as reported earlier.

1.5 Alternative assessment algorithms

The forward assessment strategy, while simple, can be quite ine�cient. For example, there

exist domains in which the number of states with non-zero probability grows exponentially

with the length of the plan. This ine�ciency motivates a second focus of our research,

an investigation of alternative assessment algorithms. Since the general plan assessment

problem is NP-hard [5, 8], we can not hope to produce an assessment algorithm that runs

e�ciently in every domain. However, by exploiting the structure of the actions, goals and

state space, we can sometimes realize tremendous e�ciency gains. For example, while the

number of states with non-zero probability may grow exponentially in the size of the plan, in

general not all of the distinctions between the di�erent states will be relevant to the question

of whether the goal proposition holds. So one alternative assessment strategy, called query,

limits the growth of the state distribution by distinguishing states based on the value of only

the subset of propositions relevant to the goal conjunction.

Another class of algorithms reasons not about the actual state space but rather about

the propositions that de�ne the space. The insight is that while the number of states

may grow exponentially, the number of propositions within a domain is constant. So a

third assessment algorithm, which we call network, maps the actions to a network of

probabilistic constraints over the propositions, and then solves these constraints directly.

The resulting networks tend to be more complicated than they need to be, however. For

example, the network contains arcs and nodes that encode the fact that the truth value of

a proposition remains unchanged across an action that does not a�ect it. But note that

the plan itself contains explicit information about persistence: causal links are essentially a

cache for deductions about persistence. We thus de�ne a fourth algorithm, reverse, that

traverses the plan's causal link structure to do plan assessment. reverse and query are

also di�erent from the other two assessment algorithms in an important way. forward

and network explicitly examine every totally ordered sequence of actions consistent with

the plan (resulting in a large performance penalty), while reverse and query can directly

evaluate a partially ordered sequence of actions. We have implemented all four assessment

algorithms; in Section 5 we present an analytical and empirical study of the tradeo�s among

the various alternatives.

7

In Section 6 we consider the assessment algorithms in a larger context. We demonstrate

that speed of assessment does not always correlate with planning speed because some as-

sessors compute better bounds on the exact probability than others. Preliminary empirical

results show that an improved interface between plan assessment and plan re�nement can

lead to signi�cant speedup.

1.6 Contributions

This paper describes our implemented, provably correct probabilistic planning algorithm.

We have tested it on many small examples, including the simple Slippery Gripper example

just described, an extension of this example that will be used throughout this paper to

describe our algorithm in detail, and the Bomb and Toilet example [41] (see Section 6). We

make the following advances to the �eld of planning:

1. We de�ne an expressive action representation for which we provide a probabilistic

semantics (Section 2).

2. We describe buridan, an implemented algorithm for probabilistic planning (Section

3).

3. We prove the planner both sound and complete (Section 4).

4. We compare the e�ciency of four di�erent probabilistic assessment algorithms both

analytically and empirically (Section 5) and explore the relationship between the pro-

cesses of plan re�nement and plan assessment (Section 6).

8

2 A Semantics for Probabilistic Planning

The task of this section is to de�ne a planning problem, and what it means to solve one. We

begin by de�ning states and expressions, then actions and sequences of actions, and �nally

the planning problem and its solution.

2.1 States and expressions

A state is a complete description of the world at a single point in time. A state is de-

scribed using a set of propositions in which every proposition appears exactly once, possibly

negated.4 Uncertainty about the world is represented using a random variable over states.

An expression is a set (implicit conjunction) of literals. We de�ne the probability of an

expression E with respect to a state s as

P[E js] =

(
1 if E � s

0 otherwise
(1)

2.2 Actions and action sequences

Our model of action, taken from [29, 30, 28], combines a symbolic model of the changes

the action makes to propositions with probabilistic parameters that represent chance (un-

modeled) in
uences. Figure 1 is a representation of the pickup action: if the gripper is dry

(GD holds) at execution time, it makes HB true with probability 0.95, and with probability

0.05 makes no change to the world state. But if GD is false at execution, pickup makes HB

true only with probability 0.5. Note that the propositions in the boxes refer to changes
the action makes, not to world states. For example, it is not correct to say that the HB

holds with probability 0.95 after executing pickup in a state where the gripper is dry, since

the probability of HB after pickup is executed also depends on the probability of HB before
execution (as well as the probability of GD before execution).

We can make this intuitive de�nition more precise as follows.

De�nition 1 (Action) An action is a set of consequences fht�; ��; e�i; : : : ; ht�; ��; e�ig
For each �, t� is an expression called the consequence's trigger, 0 � �� � 1, and

e� is a set of literals called the e�ects. The triggers must be mutually exclusive

and exhaustive:

8� :

X
s

��P[t� js] = 1 (2)

8s; �; � : t� 6= t�) P[t� [t� js] = 0 (3)

The notation Ai;� refers to consequence � of action Ai, and superscripts are used
to refer to parts of a particular action: Ai = f: : : ; ht

i

�
; �

i

�
; ei

�
i; : : :g.

4We use this representation for expository purposes only; an implementation need not manipulate states
explicitly. In fact our plan re�nement algorithm has no explicit representation of state: it reasons directly
about the state's component propositions. Also see Section 5.

9

The representation for the pickup action is thus

fhfGDg; 0:95; fHBgi; hfGDg; 0:05; fgi; hfGDg; 0:5; fHBgi; hfGDg; 0:5; fgig.

A consequence de�nes through its set of e�ects a (deterministic) transition from a state

to a state, de�ned by a function result, similar to add- and delete-lists in strips.

De�nition 2 (Change e�ected by a consequence) Let s be a state and e be

a set of literals. Then result(e; s) is de�ned as follows: for each proposition p,

� If p 2 e then p 2 result(e; s) and p 62 result(e; s).

� If p 2 e then p 2 result(e; s) and p 62 result(e; s).

� Otherwise p 2 result(e; s) i� p 2 s, and p 2 result(e; s) i� p 2 s.

An action A induces a change from a state s to a probability distribution over states s0:

P[s0 js;A] =

(
��P[t� js] if ht�; ��; e�i 2 A and s

0 = result(e�; s)

0 otherwise
(4)

Note that because an action's triggers are mutually exclusive and exhaustive we have thatP
s0 P[s0 js;A] = 1 for all states s and all actions A.

We now de�ne the result of executing actions in sequence. The probability that a state

s
0 will hold after executing a sequence of actions hAii

N

i=1
(given that the world was initially

in state s) is de�ned as follows:

P[s0 js; hi] =

(
1 if s0 = s

0 otherwise
(5)

P
h
s
0 js; hAii

N

i=1

i
=

X
u

P[u js;A1]P
h
s
0 ju; hAii

N

i=2

i
(6)

where hAii
k

i=j
= hi if j > k.

Finally, we de�ne the probability that an expression is true after an action sequence is

executed beginning in some state, and the probability of an expression after executing an

action sequence given an initial probability distribution over states:

P
h
E js; hAii

N

i=1

i
=

X
s0

P
h
s
0 js; hAii

N

i=1

i
P[E js0] (7)

P
h
E j~sI; hAii

N

i=1

i
=

X
s

P
h
E js; hAii

N

i=1

i
P[~sI=s] (8)

2.3 Planning problems and solutions

We have given a semantics for actions in probabilistic domains. So far this discussion has

been quite detached from the use of this semantics in a planning context. We are now in

a position to de�ne the input-output behavior of a probabilistic planning algorithm. The

input is a planning problem.

10

De�nition 3 (Planning Problem) A planning problem is a 4-tuple h~sI ;G; �;�i,

where ~sI is a random variable over states, G is a expression, 0 � � � 1, and � is

a set of actions.

The intent is the following:

1. knowledge of the world at execution time is characterized by ~sI;

2. the goal to be achieved is an expression G;

3. � is the probability threshold for goal satisfaction; and

4. � is the set of actions from which solutions may be constructed.

Given these inputs, an algorithm for probabilistic planning must compute a totally or-

dered sequence of actions such that executing each action in turn induces a probability

distribution over states in which the goal holds with probability no less than the threshold.

Thus our �nal task is to give a precise meaning to the sentence \The action sequence hAii
N

i=1

is a solution to the planning problem h~sI ;G; �;�i." Intuitively, an action sequence is suc-

cessful if the execution of the sequence achieves the goal with probability no less than the

threshold.

De�nition 4 (Solution) Let� = h~sI ;G; �;�i be a planning problem, and hAii
N

i=1

be a (possibly empty) sequence of actions. hAii
N

i=1
is a solution to � i� each

Ai 2 � and
P
h
G j~sI; hAii

N

i=1

i
� � (9)

2.4 Extending the example

The simple example described in Section 1.4 illustrates some aspects of our planning algo-

rithm, but to fully describe buridan it is helpful to consider an extended version.

Recall that we have de�ned two actions: pickup and dry are shown in Figures 1 and 3.

Figure 4 illustrates a third action, paint, that paints the block (BP) but sometimes causes

the gripper to become dirty (GC). For the problem's goal, we demand that in addition to

holding the block (HB), the robot needs to have it painted (BP) as well, while keeping its

gripper clean (GC).

To describe this example as a probabilistic planning problem we proceed as follows.

Suppose that initially the block is not being held, the gripper is clean, the block is unpainted,

and the gripper is dry with probability 0.7. Thus we have two initial states with non-zero

probability, For our example, the world is initially in one of two possible states: s1 =

fGD;HB;GC;BPg and s2 = fGD;HB;GC;BPg, and the probability distribution over these

states is characterized by a random variable ~sI as follows: P[~sI=s1] = 0:7; P[~sI=s2] = 0:3.

The goal is straightforward: G = fHB;BP;GCg. If we are willing to consider plans with a

twenty percent chance of failure, then we set the probability threshold � = 0:8. Finally, we

want the solution built from the three actions de�ned above: � = fpickup; paint; dryg. These

four components together constitute the input to the planning algorithm.

11

paint

BP, GC BP BP, GCβα γ

HBHB

ρα=0.1 ρβ=0.9 ργ=1

Figure 4: The paint action. HB means \holding block;" BP means \block painted;" GC means

\gripper clean."

12

3 The buridan Algorithm

Given a planning problem, buridan searches through a space of partial plans, terminating

when it �nds one corresponding to a solution. Each plan consists of a set of actions,5 a

partial temporal ordering relation \<" over the actions, a set of causal links, and a set of

subgoals. There are signi�cant di�erences between the last two items and the analogous snlp

concepts.

A causal link caches buridan's reasoning that a particular consequence of a particular

action could make a literal true for a (later) action in the plan. The link Ai;�

p
!Aj records

the fact that literal p is a member of the trigger of one of action Aj's consequences (Aj is

the link's consumer), and the e�ect set of consequence � of action Ai (the link's producer)

contains p. Action Ak threatens link Ai;�

p
!Aj if some consequence of Ak asserts p, and if Ak

can be ordered between Ai and Aj.

A plan's set of subgoals consists of the literals in the plan that buridan could try to

make true at particular points in time. A subgoal is a literal annotated with a particular

action, written p@Ai. buridan adopts p@Ai as a subgoal of a plan if Ai is the producer

for some link in the plan, and p is a trigger of the producing consequence. More formally,

buridan adopts p@Ai as a subgoal if Ai;�

q
!Aj is one of the plan's links and p 2 t�

i
.6 The set

of subgoals is initialized to include all top-level goals. In Section 1.3 we discussed important

di�erences between buridan's notion of a subgoal and the set of open conditions in classical

planners such as snlp.

buridan searches for a solution by performing two operations at each node in the space

of plans:

1. Plan Assessment: Compute the probability that the current plan will achieve the goal.

If the probability is high enough, then the plan is a solution, and planning terminates

successfully.

2. Plan Re�nement: Otherwise, try to increase the probability of goal satisfaction by

re�ning the current plan. Each re�nement generates a new partial plan. Signal failure

if there are no possible re�nements, otherwise nondeterministically choose a new partial

plan, and loop.

We describe each of these operations below, but �rst we describe the details of buridan's

representations.

3.1 Data structures

As we mentioned above, a causal link caches the planner's reasoning that a particular proposi-

tion could be made true for an action because some consequence of a particular action makes

5The set actually contains action instances because a plan may have more than one instance of a particular
action. But since our representation is propositional this distinction is unimportant, and we use the term
\action" to refer both to actions and instances.

6Subgoals are also used to implement confrontation; see Section 3.3.

13

it true.

De�nition 5 (Causal Link) A causal link is a 4-tuple hAi; �; p;Aji, written

Ai;�

p
!Aj. Consequence � of action Ai is the link's producer; Aj is the link's con-

sumer; p is the proposition supported by the link.

Each node in the space buridan searches is a plan.

De�nition 6 (Plan) A plan is 4-tuple hA;O;L;Si, where A is a set of actions,

O is a set of temporal ordering constraints over A (each element of which is of

the form Ai < Aj), L is a set of causal links, and S is a set of subgoals (each of

the form p@Ai).

An action threatens a link when executing the action between the link's producer and

its consumer might decrease the probability of the proposition supported by the link.

De�nition 7 (Threat) Let hA;O;L;Si be a plan, and let Ai;�

p
!Aj 2 L be one

of the plan's links and Ak 2 A be one of the plan's actions. Ak threatens Ai;�

p
!Aj

i� Ai < Ak < Aj is consistent with O, and if there is some consequence � of Ak

such that p 2 ek
�
.

buridan encodes the initial probability distribution over states with a distinguished

action initial. Each consequence of initial encodes one possible initial state, and the probability

associated with the consequence encodes the state's probability in the initial distribution ~sI.

De�nition 8 (Action corresponding to a probability distribution over states)

Let ~sI be a random variable encoding a probability distribution over states. The

action corresponding to ~sI is initial(~sI) = f: : : ; hfg; ��; e�i; : : :g such that for each
�, �� = P[~sI=e�].

It is straightforward to prove that initial(~sI) satis�es the formal de�nition of an action.

The goal is also encoded with a special action goal. It has a distinguished consequence

marked SUCCESS and it is triggered by the goal expression.

De�nition 9 (Action corresponding to a goal) Let G = fp1; : : : ; png be an

expression. The action corresponding to G is goal(G) = fhG; 1; fSUCCESSgig.

Note that this de�nition of goal(G) does not satisfy the formal de�nition of an action,

but it is straightforward to construct a more complicated de�nition that does satisfy the

de�nition.7

Recall the example from Section 2.4: initially the block is neither painted nor held (BP

and HB) and the gripper is certainly clean (GC), but there is only partial information about

whether the gripper is dry; in one state (with probability 0.7) GD holds, but in the other it

does not. Recall also that the goal is have the block painted, the gripper clean, and block

held: G = fBP;GC;HBg. Figure 5 shows the initial and goal actions for this planning problem.

7A formally correct goal action has � = jGj + 1 consequences de�ned as follows: each probability term
is 1.0, and the �rst trigger is the negation of the �rst goal literal, the second trigger is the �rst goal literal
and the negation of the second, : : : , the jGj'th trigger is the �rst jGj� 1 goal literals and the negation of the
jGj'th, and the �'th trigger is the entire goal expression.

14

initial

GD, HB, GC, BP GD, HB, GC, BP

ρα=0.7 ρβ=0.3

βα

0 goal

SUCCESS

{ GC, HB, BP}

α

G

ρα=1

Figure 5: initial and goal encode the initial probability distribution over states and the goal.

Now we can describe the root node of the space of plans, from which buridan starts

searching for a solution.

De�nition 10 (Null plan) Let h~sI ;G; �;�i be a planning problem.

null-plan(h~sI;G; �;�i) = hA;O;L;Si is a plan constructed from h~sI ;G; �;�i as
follows:

A = fA0;AGg

A0 = initial = initial(~sI)

AG = goal = goal(G)

O = fA0 < AGg

L = ;

S = fp@AG j p 2 Gg

A0 must be the �rst action in any plan and AG must be the last; the ordering constraints of

the null plan enforce this invariant. To preserve this constraint, similar ordering constraints

are added when each new action is introduced into all re�nements of this plan. The set of

subgoals is initialized to the set of goal propositions annotated with AG, the time just after

all planned actions have been executed.

3.2 The buridan algorithm: top-level

We are now in a position to describe the buridan algorithm; see Table 1. Given a planning

problem h~sI ;G; �;�i, buridan �rst converts the problem to the corresponding null plan. The

null plan is then iteratively re�ned by calling the refine subroutine. refine nondetermin-

istically chooses one possible re�nement; if none are available then the planning problem has

no solution and buridan terminates. When the assessment algorithm (assess) determines

that the plan's probability of success is no less than � , an arbitrary totally ordered sequence

of the plan's actions is returned. Section 3.3 explains plan re�nement in detail; Section 3.4

describes assessment.

3.3 Plan re�nement

buridan's plan re�nement procedure (Table 2) considers all possible successors of a partic-

ular plan, and nondeterministically chooses one to return. There are two ways to re�ne a

15

buridan(h~sI ;G; �;�i)
1. hA;O;L;Si null-plan(h~sI ;G; �;�i)
2. Do forever

If assess(hA;O;L;Si) � � , then
a. Return total-order(A � fA0;AGg;O)

else
b. hA;O;L;Si refine(hA;O;L;Si;�)

If refine signalled failure, then
c. Signal failure

Table 1: The buridan algorithm: top-level.

plan: either by resolving a threat to a causal link, or by adding a new link to (potentially)

increase the probability that a subgoal proposition holds when its annotating action is exe-

cuted. buridan stores the set of subgoals in the S component of each plan, but the set of

threatened links is easily computed dynamically from the plan's links and actions.

refine(hA;O;L;Si,�)
1. Choose flaw from S or the set of threatened links.
2. If flaw is p@Aj then add support:

a. Nondeterministically add a new action Ai from � to A (also adding
A0 < Ai < AG to O), or choose an existing Ai from A such that Ai

has a consequence � (chosen nondeterministically) that asserts p.

b. Add Ai;�
p
!Aj to L and Ai < Aj to O.

c. Add q@Ai to S, for each q 2 ti�.
d. Signal failure if none of these options are possible for the current plan.

3. If flaw is a threat to Ai;�
p
!Aj by Ak, then nondeterministically choose:

a. Demotion: constrain Ak < Ai, or
b. Promotion: constrain Aj < Ak, or
c. Confrontation: commit to consequences of Ak that do not make p false:

i. Create a new safety proposition s,
ii. Modify Ak so that its non-interfering consequences produce s,
iii. Add s@Aj to S.

d. Signal failure if none of these options are possible for the current plan.
4. Return the resulting plan.

Table 2: The refine algorithm.

Link creation in buridan is similar to the corresponding re�nement in snlp or ucpop,

but there are some important di�erences. We have already remarked that it may be desirable

to add two independent actions to make a proposition true and that doing so will result in

two causal links supporting the proposition. A planner that does not allow actions with

disjunctive e�ects need not consider multiple causal support, although it may choose to

do so for e�ciency reasons [33]. The whole notion of causal support is more complex in

the probabilistic case. For example, linking to a new action, even if it does not involve

threats, may not increase the probability of goal satisfaction. Suppose that consequences

from two di�erent actions are used to support the same subgoal. If the triggers of the two

16

supporting consequences are identical and are supported from the same source, then they

are probabilistically dependent. In this case the support they lend is not additive. For

example, suppose that turning the ignition key always starts the car just in case its battery

is charged, but the agent doesn't know whether the battery is healthy or dead. In this case,

is clearly doesn't help to turn the key more than once. This explains why buridan (unlike

snlp or ucpop) needs a separate assessment routine | no \local" computation (i.e., one

that does not look at the causal structure of the entire plan) su�ces to determine plan

success. Said another way, whereas in the classical paradigm causal links can eliminate the

need for dynamically computing the Modal Truth Criterion, this can not be avoided in the

probabilistic case.

Link promotion and demotion are identical to threat resolution in classical planners,

so we do not discuss them further.8 Confrontation is a signi�cant departure from snlp,

however, and it deserves some additional explanation. The probability that link Ai;�

p
!Aj

succeeds in producing p for Aj is the probability that executing action Ai actually results

in consequence � and that no action between Ai and Aj makes p false. Since buridan need

only produce a plan that succeeds with probability no less than � , it might be acceptable to

allow a threatening action to remain between the link's producing and consuming actions as

long as it makes p false with su�ciently low probability. Confrontation resolves a threat in

exactly this manner. Confrontation involves noting which consequences of the threatening

action do not pose a threat to the link (the non-interfering consequences), and attempting

to increase the probability that one of these consequences is realized when the threatening

action is executed. Speci�cally, buridan confronts a threat by modifying the threatening

action so that each non-interfering consequence produces a newly created proposition s,

unique to the threat, called a safety proposition. The safety proposition, annotated with the

consumer of the link, is then adopted as an additional subgoal. Since only the non-interfering

consequences of Ak can produce s, planning for the safety condition amounts to planning to

make a non-interfering consequence of the threatening action occur. Of course, if an action

has no non-interfering consequences then confrontation is inappropriate; the algorithm must

in this case either promote or demote the threat instead.

Example: We now demonstrate how the plan re�nement algorithm constructs a plan that

will succeed with probability at least 0.8 in satisfying its goal to be holding a painted block

with a clean gripper. As in the example of Section 1, we simplify the presentation by

assuming that refine makes the correct sequence of nondeterministic choices; as discussed

in Section 6, buridan takes about 4:5 seconds to �nd a solution with brute-force search.

1. Planning starts with the null plan, shown in Figure 5. The subgoals for this plan

are the goal propositions annotated with the goal action: S = fHB@AG;BP@AG;GC@AGg.

buridan chooses to support the �rst subgoal, HB@AG, by adding an instance of the pickup

action, A1, and linking to this action's � consequence with the link A1;�
HB
!AG. buridan

supports the desired consequence � of A1 by adopting GD@A1 as a subgoal. Support for this

8We ignore separation (the addition of variable-binding constraints [5]) since buridan is propositional.
Lifting techniques [39] could be used to extend buridan to a more expressive language.

17

subgoal is then provided by linking directly to the initial action A0 with the link A0;�
GD
!A1.

The resulting plan is shown in Figure 6. The assessor determines that this plan is inadequate,

so re�nement continues.

initial

GD, HB, GC, BP GD, HB, GC, BP

ρα=0.7 ρβ=0.3

βα

0 goal

SUCCESS

{ GC, HB, BP}

α

G

pickup

HB HBβα γ δ

1

GD GD

ρα=0.95 ρβ=0.05 ργ=0.5 ρδ=0.5

ρα=1

Figure 6: Support for holding the block.

2. buridan next supports the subgoal of having the block painted, BP@AG, by adding

a new paint action, A2, and adding the link A2;�
BP
!AG. Consequence � of paint is realized

only if the block is not held. The planner thus adopts HB@A2 as a subgoal, support for

which is added with a link from initial: A0;�
HB
!A2. pickup and paint are unordered, so pickup

threatens this new link: if pickup is executed before paint then the block will be held when

paint is executed, violating the HB trigger of paint's consequence �. buridan resolves this

threat by promoting pickup with the constraint A2 < A1.

buridan then supports the goal of having a clean gripper by providing support to GC@AG

with the link A0;�
GC
!AG. But paint threatens this link: paint asserts GC if either consequence

� or consequence
 is realized. The only option is confrontation, which involves adding a

new safety proposition s1 to e2
�
, the only consequence of A2 that does not cause GC. The

resulting plan is shown in Figure 7. The gray circle on the link indicates that the threat has

been resolved by confrontation.

3. Figure 7's plan has probability 0.7335 (as computed in Section 3.4). This value is less

than � = 0:8 so buridan tries to make the goal more probable by drying the gripper before

trying to pick up the block. This is done by adding a new dry action, A3, and adding the

link A3;�
GD
!A1. buridan also adds additional support for the goal of having the gripper

clean, GC@AG, by linking from initial with A0;�
GC
!AG. This link is threatened by A2 just

as A0;�
GC
!AG was, and the threat is resolved in the same way, by confrontation; the safety

proposition for this threat is s2. The resulting plan is shown in Figure 8.

This plan has a probability of 0.831, which exceeds � , so buridan has succeeded in

�nding a solution.

3.4 Plan assessment

The plan assessment algorithm decides whether the probability of success for a plan exceeds

the threshold � . Soundness demands only that the assessor never incorrectly identify a plan

18

initial

GD, HB, GC, BP GD, HB, GC, BP

ρα=0.7 ρβ=0.3

βα

0 goal

SUCCESS

{ GC, HB, BP}

α

G

pickup

HB HBβα γ δ

1

GD GD

ρα=0.95 ρβ=0.05 ργ=0.5 ρδ=0.5

ρα=1s1

paint

BP, GC BP, s1 BP, GCβα γ

2

HBHB

ρα=0.1 ρβ=0.9 ργ=1

Figure 7: Support for painting the block while keeping the gripper clean.

initial

GD, HB, GC, BP GD, HB, GC, BP

ρα=0.7 ρβ=0.3

βα

0 goal

SUCCESS

{ GC, HB, BP}

α

G

dry

GD

ρα=0.8 ρβ=0.2

α β

3
pickup

HB HBβα γ δ

1

GD GD

ρα=0.95 ρβ=0.05 ργ=0.5 ρδ=0.5

ρα=1s1

s2

paint

BP, GC BP, s1, s2 BP, GCβα γ

2

HBHB

ρα=0.1 ρβ=0.9 ργ=1

Figure 8: Additional support for a dry gripper.

as a solution|that is, that it never identify a plan as a solution when in fact the plan's

success probability is less than � . The algorithms we implemented are somewhat more

general, computing a lower bound on the exact probability of success. In this section we

describe only the forward assessment algorithm, a straightforward implementation of the

de�nition of a solution to a planning problem (De�nition 4); in Section 5 we describe three

di�erent algorithms.

Table 3 presents the forward algorithm. To explain the algorithm, we �rst de�ne the

data structure it uses to represent a probability distribution over states.

De�nition 11 (State distribution) A state distribution SD = fhs1; �1i; : : : ; hsn; �nig

is a set of pairs such that each si is a state, 0 � �i � 1, andX
hsi; �ii2SD

�i = 1 (10)

19

For example, the state distribution corresponding to the probability distribution over initial

world states in the example is the set fhfGD;HB;GC;BPg; 0:7i; hfGD;HB;GC;BPg; 0:3ig. For-

mally, an action induces a transition from one probability distribution over states to another.

forward uses the exec function to represent this transition in terms of state distributions.

De�nition 12 (Execution of an action in a state distribution) Let SD =

fhs1; �1i; : : : ; hsn; �nig be a state distribution and A = fht�; ��; e�i; : : : ; ht�; ��; e�ig

be an action. Then the execution of A in SD is the set:

exec(A;SD) =

8>><
>>:
hs1;�; �1;�i; : : : ; hs1;�; �1;�i;

...
hsn;�; �n;�i; : : : ; hsn;�; �n;�i

9>>=
>>; (11)

where
hsi;�; �i;�i = hresult(e�; si); �i��P[t� jsi]i (12)

It is straightforward to prove that exec(A;SD) is a state distribution. Finally, forward

needs to evaluate the probability of an expression in a state distribution:

P[E jSD] =
X

hsi; �ii2SD

�i P[E jsi] (13)

forward uses Equations 11 and 12 to compute the successive state distributions that

result while projecting the e�ects of a plan's actions. For e�ciency, forward prunes zero-

probability states and combines members of the state distribution that refer to the same

state. After all actions have been projected, the goal expression is evaluated using Equation

13.

Complicating the assessment process is the fact that a solution is de�ned in terms of a

totally ordered sequence of actions, while a plan's actions might be only partially ordered. We

can still compute a lower bound on the plan's success, however, by considering the minimum

over all total orders consistent with the plan's orderings. This policy is conservative in that

it computes the best probability that can be expected from every total order.9

Example: We now illustrate how the forward plan assessment algorithm computes the

probability of success for the plan shown in Figure 7. This plan involves �rst painting the

block and then picking it up.

The initial state distribution SD0 consists of two states with non-zero probability. They

di�er only in whether or not the gripper is dry:

SD0 = fhfGD;HB;GC;BPg; 0:7i; hfGD;HB;GC;BPg; 0:3ig

9Section 6.1 considers the possibility of computing the maximum over all total orders, corresponding to
the best probability that could be expected from any consistent total order.

20

assess(P)

1. Return forward(P)

forward(hA;O;L;Si)

1. Let SD be the state distribution corresponding to A0 2 A.

2. Let G be tG
1
(the trigger of AG's SUCCESS consequence).

3. scenarios set-of-all-total-orders(A � fA0;AGg;O).

4. If scenarios = ; then min 0 else min 1.

5. For each sequence hAii
N

i=1 2 scenarios, use Equations 11 and 12 to calculate

exec(AN ; exec(AN�1; � � �exec(A1;SD) � � �)),

the state distribution resulting from executing each action in turn. For e�ciency, \compress" the
intermediate distributions by eliminating states with zero probability and merging identical states.

6. Use Equation 13 to compute the probability of G in the �nal state distribution; update min whenever
the sum is lower.

7. Return min.

Table 3: forward is the simplest of our four plan assessment algorithms.

Projecting the e�ects of paint in SD0 results in a state distribution with four elements:

SD1 = exec(paint;SD0) =

8>>><
>>>:
hfBP;GC;HB;GDg; 0:03i;

hfBP;GC;HB;GDg; 0:27i;

hfBP;GC;HB;GDg; 0:07i;

hfBP;GC;HB;GDg; 0:63i

9>>>=
>>>;

We then project pickup:

SD2 = exec(pickup;SD1) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

hfGD;HB;GC;BPg; 0:0315i;

hfGD;HB;GC;BPg; 0:5985i;

hfGD;HB;GC;BPg; 0:0035i;

hfGD;HB;GC;BPg; 0:0665i;

hfGD;HB;GC;BPg; 0:135i;

hfGD;HB;GC;BPg; 0:135i;

hfGD;HB;GC;BPg; 0:015i;

hfGD;HB;GC;BPg; 0:015i

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

Finally, the goal expression is evaluated with respect to this state distribution. Since the

goal holds in 2 of the 8 states (those marked in the previous equation), we get

P[fBP;GC;HBg jSD2] = 0:5985 + 0:135 = 0:7335

which is less than the threshold � = 0:8, so as described in the previous section, planning

continues until producing the plan shown in Figure 8.

21

4 Formal Properties

We now prove that the buridan planning algorithm is sound and complete. We say that a

probabilistic planner is sound if it never returns an action sequence whose chance of success is

less than the threshold � demands. We call such a planner complete if it �nds such a sequence

whenever a solution exists. Note that this does not require the planner to recognize futility

when no solution exists and that buridan could loop in this case.10

As we shall see, the explicit correspondence between the assess and forward algorithms

and the underlying semantics makes the proof of soundness quite straightforward.

Proving completeness is more di�cult | we need to establish two things: (i) that every

action sequence leading to a solution is eventually considered by the planner, and (ii) that

every solution passed to the assessor is recognized as a solution. The key to the �rst point

is showing that a plan's set of subgoals identi�es all the re�nements that might increase

the probability of achieving the goal. To establish the second point we start by observing

that since buridan's assessor implements De�nition 4 directly, it calculates by de�nition

the exact probability of any totally ordered sequence of actions. The trick is to establish

that buridan will add enough ordering constraints to raise a plan's minimum probability

(taken over its total orders) over the threshold if it is possible to do so.

First we need to reconcile the notation introduced when we characterized a planning

problem and solution formally with the data structures manipulated by the planner (in

particular the assessment algorithm). The forward assessor manipulates a data structure

called a state distribution, which is a set of pairs of the form hsi; �ii. There is an obvious

equivalence between a state distribution and a probability distribution over states ~s: hsi; �ii 2

SD is equivalent to P[~s = si] = �i.

Similarly the formal exposition represented actions as conditional probabilities of the form

P[s0 js;A] whereas forward uses a function exec(A;SD) that produces a state distribution.

Once again the equivalence should be clear: if SD and ~s are equivalent, then hsi; �ii 2

exec(A;SD) just in case �i =
P

s0 P[si js
0

;A]P[~s=s
0]

In the following proofs we mix the two notations (random variables over states and state

distributions; conditional probabilities de�ning action execution and the exec function).

4.1 Soundness

We de�ne soundness in terms of De�nition 4. A planner is sound if it never returns a plan

that is not a solution.

Theorem 1 (Soundness) Let � = h~sI ;G; �;�i be a planning problem. If buridan(�)

returns the action sequence hAii
N

i=1
, then hAii

N

i=1
is a solution to �.

10It is not clear at this point whether the problem buridan solves is fully decidable. On the one hand,
results on classical planning with in�nite state spaces [5, 19] do not apply because buridan's state space is
propositional and does not allow functions (thus is �nite). On the other hand, the fact that buridan must
search through a space of probability distributions over states (which is in�nite) complicates the problem.

22

Proof: buridan's re�nement and assessment algorithms make this proof straightforward.

Note that buridan can exit its in�nite loop in only two ways. One of these exits (Line 2.c

of Table 1) signals failure; since this return does not produce an action sequence, it does

not satisfy the antecedent of the theorem and need not be considered. The other exit (Line

2.a) returns an action sequence consistent with the plan's partial order O only when the

probability assessment produced by forward is at least � . Since forward computes the

minimum probability of achieving the goal taken over all total orders consistent with O, the

estimate returned by forward is guaranteed to be no higher than the actual probability that

G will be achieved by hAii
N

i=1
. Transitivity ensures that hAii

N

i=1
is a solution and buridan is

sound. 2

4.2 Completeness

There are several possible de�nitions of completeness. For example, one might require that

the planner return all action sequences that achieve the goal with probability greater than

the threshold. This de�nition is silly, however, because it requires the planner to augment a

solution with irrelevant actions.

Our de�nition sidesteps the problem of irrelevant actions in the plan: we require that the

planner �nd all essential solutions. An essential solution is an action sequence that is itself a

solution but which fails to be a solution when any of its actions are removed. (The fact that

an action sequence is essential does not mean that it is the shortest possible solution; there
might be a completely di�erent and much shorter sequence that also achieves the goal.)

Theorem 2 (Completeness) Let � = h~sI ;G; �;�i be a planning problem and let hAii
N

i=1

be an essential solution (i.e., no proper subsequence is also solution) of �. Then there exists

a sequence of nondeterministic choices such that buridan(�) will return hAii
N

i=1
.

We prove completeness by induction on the N , length of the essential solution. In the base

case (a zero-length plan) we show that the algorithm correctly recognizes the case where

the initial state satis�es the goal with su�cient probability. We then make the inductive

hypothesis that the algorithm will �nd all essential plans of length less than N . The di�culty

is in showing how the ability to generate N � 1 step plans bears on a problem, �, whose

essential solution has N steps. We do this by constructing a modi�ed planning problem

which can be solved in N � 1 steps. Since the proof's details are complex, we relegate them

to Appendix A.

23

5 E�cient Plan Assessment

Our plan re�nement algorithm calls a plan assessment algorithm as a subroutine; that al-

gorithm must compute the probability that the totally ordered completions of a partially

ordered plan achieve the goal expression, or at least provide a lower bound on that proba-

bility. This section examines plan assessment in isolation.

Assessing an arbitrary partially ordered plan with conditional e�ects is NP-hard even

when all probabilities are zero or one [5, 10]. While refine doesn't generate arbitrary

partial orders, we believe that the additional complexity of probabilistic computations [8]

can make assessment (even of a totally ordered plan) require time that is exponential in

the length of the plan | the computation might require considering all combinations of

consequences of every action in the plan.

So our aspirations are not to produce an algorithm that works e�ciently for all planning

problems; instead we present four alternative algorithms and demonstrate when each does

and does not perform well. Future work might attempt to integrate the best aspects of

these approaches given the expected characteristics of the domain in question. Studying

assessment in isolation gives us insight into why various algorithms work or don't work, but

the study is not an end unto itself. We are ultimately interested in how long it takes to

generate a complete solution, not the per-plan time for re�nement or assessment. As we

show in Section 6, the fastest assessment algorithm does not necessarily lead to the fastest

planner. By returning a better bound on the plan's success probability, a slower assessor can

speed the overall planning process considerably.

5.1 The forward assessment algorithm

We begin by describing the computational problems with the forward algorithm described

in Section 3.4. forward is a straightforward implementation of our action semantics. Two

features of the algorithm are important for this discussion. First, forward projects each

action through a state distribution, producing a new distribution. And second, since plan

success is de�ned only for a totally ordered sequences of actions, forward computes the

success probability for every totally ordered sequence consistent with the input partial order,

and returns the minimum.

Each of these features can lead to computational problems. First, there is a potential

explosion in the size of the state distributions that are manipulated: if the original state dis-

tribution has M members, each action has � consequences, and the plan contains N actions,

assessing even a single total order can generate a state distribution containing as many as

M�
N states.11 The second computational problem concerns partially ordered actions: there

are as many as N ! consistent total orders of the actions in an N -action plan, and the basic

algorithm has to be applied once for each total order.

11Of course, if there are D propositions, then the state distribution can never have more than 2D distinct
states. However, if the initial distribution has a small number of states with non-zero probability, then
executing each action can lead to growth that is exponential in the number of actions.

24

In summary, forward might make distinctions among states in the state space, and

among orderings among the total orders, that are irrelevant to whether the goal is achieved.

These ine�ciencies can lead to degraded performance; our second algorithm, query, is

designed to overcome both problems.

5.2 The query assessment algorithm

The query assessor is an adaptation of Hanks's [28, 30] projection algorithm which actually

applies to a richer action representation than buridan's, including continuous quantities

and sets, and conditional (branching) plan execution. query is goal directed|it tries to

articulate the state space only when doing so is necessary to decide the state of a query

proposition. The basic idea is to divide an action's consequences into equivalence classes

based on how they a�ect the query proposition, and reason about the classes instead of about

the individual consequences. For example, consider an action A with several consequences.

Suppose that each of these consequences makes a goal proposition G true, but they di�er

on the changes they make to other propositions. If G is all that is relevant to plan success,

query will consider A to have a single consequence class that makes G true and is realized

with probability one. We omit the details of the query algorithm from this paper; see

instead [28, 30].

5.3 The network assessment algorithm

forward and query are similar in that they represent world states explicitly: both ma-

nipulate structures that represent elements of the state space. An alternative is to dis-

pense with an explicit representation of a state and represent its component propositions

directly. Instead of reasoning about actions as transformations from state distributions to

state distributions we instead reason about the circumstances under which an action makes

a proposition true, makes it false, or leaves it unchanged.

This strategy suggests using a belief network [44] for assessment whose is similar to that

proposed by Dean and Kanazawa [13] and Hanks [31]. Figure 9 shows such a network for a

domain with propositions fp1; : : : ; pmg and a plan with action sequence hAii
N

i=1
.12

The graph consists of two types of nodes. First there is a node for each action: the

node for Ai takes a value from the set f�; : : : ; �g, where Ai has � consequences; the value �

represents the case where consequence � of Ai is realized. Second, there is a \layer" of binary-

valued nodes representing the propositions evaluated just after executing each action.

The nodes for the propositions just after Ai point to the action node for Ai+1 if the

proposition is one of Ai+1's triggers. The action node then has an arc to the proposition

nodes that it might a�ect. The state of every proposition at one stage also a�ects the state

12For simplicity, in Figure 9 we assume that each action potentially a�ects every proposition and vice

versa, and that the goal expression mentions every proposition. The implementation of network adds arcs
only between nodes that in
uence one another.

25

A0

p1

p2

pm

AN

p1

p2

pm

A1

p1

p2

pm

...
SUCCESS

p1

p2

pm

...
...

...
...

Figure 9: A probabilistic network for plan assessment.

of the same proposition at the next stage. Finally, there is a binary SUCCESS node that is

true exactly when all propositions in the goal expression hold.

We may solve this network of constraints using standard propagation techniques [44],

provided we supply appropriate numeric parameters for the model: a conditional probability

table (\link matrix") indicating the probability that the node will take on one of its values,

conditioned on the states of all the arcs that point to it. Speci�cally, network constructs

a network such that:

� Action Ai will realize consequence � with probability �
i

�
if that consequence's trigger

propositions all hold.

� A proposition p is true after action Ai realizes consequence � in one of two cases:

either p 2 ei
�
, or p was true before Ai was executed and p 62 ei

�
. Note that the

node for p just after the execution of Ai has two incoming arcs: one from the node

representing Ai, indicating which consequence was realized, and the other indicating

p's state immediately prior to Ai.

� The SUCCESS node is a conjunction of the propositions in G evaluated after execution

of the last action.

Each of these boolean functions can easily be coded into an appropriate link matrix.

Section 5.5 reports on an implementation of network that uses the IDEAL [55] in
uence-

diagram processor, using the Jensen clustering algorithm. We consistently see assessment

time growing exponentially with the size of the plan.13 One possible reason for this poor

performance is that the causal network associated with a plan actually contains a lot of

structure that is irrelevant to the goal, and this causes the propagation algorithm to do un-

necessary work. For example, suppose that a goal proposition is actually made true by initial,

and no action in the plan changes that proposition under any circumstances. The causal

network must nonetheless propagate that persistence information through every stage of the

plan's execution, computing the probability of every trigger of every action in the process.

13We are not promoting this method as the best candidate for solving the network|that is a topic for
future research. Dean and Kanazawa [13] argue that a stochastic simulation technique might be more
suitable, but also point out the absence of convergence bounds for these algorithms. Without a guarantee
of convergence, our plan re�nement algorithm is no longer sound nor complete.

26

This analysis suggests that a causal network could be built that eliminates this irrelevant

structure; the reverse algorithm does just that.

5.4 The reverse assessment algorithm

The reverse assessment algorithm is based on the insight that the plan's causal link struc-

ture captures the information needed for assessment. Consider the causal link Ai;�

p
!Aj. This

link records the information that consequence � of Ai makes p true, and that no intervening

action makes p false as long as confronted threats to the link do not actually result in an

interfering consequence. Note that p could also become true for some other reason; for ex-

ample, some intervening action might make p true even though no link in the plan records

this causal relationship. Thus directly examining a plan's causal structure yields su�cient
conditions for goal satisfaction, and the assessed probability is a lower bound on the true

probability of success.

Another important feature of reverse is that because the link structure guides assess-

ment rather than just the plan's actions, reverse reasons directly about plans with partially

ordered actions, unlike forward and network which explicitly reason about every con-

sistent total order. See also Section 6.1.

reverse uses a plan's causal link structure to construct an assessment expression, a
boolean combination of terms that refer to earlier parts of the plan.14 The idea is that a

consequence's (conjunctive) trigger is true if every component literal is true, and a single

literal is true if any of the incoming (disjunctive) links make the literal true. Initially the

assessment expression is the trigger of the goal's SUCCESS consequence. The expression is then

incrementally transformed by traversing the causal link structure according to the following

rules:

� The assessment expression for a trigger is the conjunction of the assessment expressions

of the subgoals corresponding to the trigger's conjuncts.

� The assessment expression for a subgoal is the disjunction of the assessment expressions

for all the links supporting the subgoal.

� The assessment expression for a link is the assessment expression of the trigger for the

link's producing outcome, conjoined with a conjunction of the assessment expressions

of the subgoals of the safety condition associated with confronted threats.

The assessment expression is transformed using these rules until no more transformations

are applicable. The probability of this expression can be then be computed directly. See

Appendix B for a complete discussion of reverse.

14Note that this is not an \expression" in the sense of Section 2.1: an assessment expression can be an
arbitrary boolean formula, and the terms in the formula are not propositions.

27

5.5 Empirical con�rmation

So far we have motivated and described four plan assessment algorithms. We described

one algorithm that directly implements the de�nition of success probability, and hinted

at potential computational problems; we used these problems to suggest three alternative

algorithms. Now we analyze in detail the performance di�erences between these algorithms.

We have built three illustrative domains, each intended to produce di�erent behavior

in forward, query, and reverse. Each domain involves an initial action, a goal action,

and a \template" for de�ning additional actions. By varying one aspect of the domain (e.g.

the goal or the probability threshold) we can vary the number of actions required to solve

the problem. For each domain, we analyze the time taken by each algorithm to assess the

solution plan, as a function of plan length.

5.5.1 A domain favoring forward

One might think that since forward and query are exploring the same state space|the

�rst blindly and the second in a manner sensitive to the query|that query would always

outperform forward. The domain shown in Figure 10(a) shows this is false: in this domain

forward requires time linear in the length of the plan, while query and reverse require

time exponential in plan length. (network performs poorly in all of our domains, as

discussed in Sections 5.3 and 5.5.4.)

Action Ai makes the goal proposition G true with probability 0.5 and makes propositions

p1; : : : ; pi false with probability 1.0. A successful N -action plan is of the form hAii
N

i=1
; this

sequence makes G true with probability 1 � 1

2N
. We therefore can vary the threshold � to

change the length of the plan: � = 0 requires a zero-action plan, � = 0:5 requires a one-action

plan, and so on.

Figure 10(b) shows that forward will project the N -action plan without a proliferation

of states; forward does well in this domain because after each action in the plan there are

only two states with non-zero probability.

query will have trouble with this domain because of a heuristic it uses when deciding

what parts of the tree to make explicit: it considers actions from latest to earliest in deciding

what consequence classes to build. Consider the case N = 2, so � = 0:75 and the successful

plan has actions A1 and A2 in that order. When query is asked to assess the probability

of G it �rst considers A2 and decides to split the action into two classes that di�er on their

e�ect on G. The �rst class consists of just the � consequence, and the second class is f�;
g.

At this point there are two possible completions to the plan, both with probability 0.5. G

is true in the �rst but its value could be either true or false in the second, so the bound on

G's probability is [0:5; 1:0], which is ambiguous with respect to the threshold. query next

considers A1 and splits its consequences into the same two classes, f�g and f�;
g. Now

there are four completions to the plan, each with probability 0.25, and G is true in three of

them. So now the bound on G's probability is [0:75; 0:75], and query terminates. If query

had divided A1 into classes �rst it would have realized that the three consequences of A2

have the same e�ect on G's state in the � branch of the tree (i.e. given that G was already

28

α

initial
0 goal

SUCCESS

G

α

G
Ai

pi pi

i

ρα = ρβ = 0.5... ...
p1, p2, ...,pN, G

α p1, ...,p i, G β p1, ..., p i

γ p1, ...,p i

(a)

〈{ p1,p2,...,pN,G}, 1.0〉

〈{ p1,p2,...,pN,G}, 0.5〉

(b)

A1

A2 〈{ p1,p2,...,dN,G}, 0.75〉
AN 〈{ p1,p2,...,pN,G}, 1-1/2N〉

〈{ p1,p2,...,pN,G}, 0.5〉
A2 AN 〈{ p1,p2,...,pN,G}, 1/2N〉〈{ p1,p2,...,pN,G}, 0.25〉

...

p1,p2,...,pN,G

τ = 1 - 1/2N

(c)

{ α} { β, γ} p1,p2,...,pN,G

p1,p2,...,pN,G

p1,p2,...,pN,G

{ α}

{ β, γ}

{ β, γ}
p1,p2,...,pN,G

{ α}

p1,p2,...,pN,G

p1,p2,...,pN,G

...

p1,p2,...,pN,G{ β, γ}

{ α} p1,p2,...,pN,G

p1,p2,...,pN,G{ β, γ}

{ α} p1,p2,...,pN,G

...A1

A2

A2

AN

AN

Figure 10: The domain shown in (a) is e�cient for forward because after projecting each

action there are only two states with non-zero probability, as shown in (b); (c) illustrates

how query's tree branches unnecessarily at each action.

true). In that case the size of the tree would grow by only one completion for each new

action in the plan. But no matter which prede�ned order is chosen for splitting, there will

exist examples that are pathological for that heuristic.

reverse's performance will degrade because each additional action in the plan adds

an additional link to the goal proposition, which adds another disjunct to the assessment

expression, and as we describe in Appendix B, reverse takes time that is exponential in

the number of disjuncts.

Figure 11 shows performance statistics for the domain shown in Figure 10, measuring the

average time to perform a single assessment as the function of the number of actions in the

plan.15 As expected, forward's assessment time grows linearly with plan size; the other

15All experiments were performed on a Sun sparc-ipx. Since the inter-run variation was negligible, the

29

algorithms required time exponential in the number of actions in the plan.

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

pl
an

 a
ss

es
sm

en
t t

im
e

[m
se

c]

plan length [actions]

FORWARD
QUERY

NETWORK
REVERSE

Figure 11: Average assessment time for plans in forward's domain.

5.5.2 A domain favoring query

Figure 12(a) shows a domain favorable to the query algorithm. We vary the length of a

solution plan by varying the number of conjuncts in the goal: a goal of the form fp1; : : : ; pNg

requires a plan with N actions.

Each action Ai has two consequences, but the distinction among the consequences is

irrelevant to whether the plan satis�es the goal. None of the other algorithms recognize this

feature of the domain: the state space explodes for forward, and reverse must explicitly

consider the disjunction of the two links that support each goal conjunct.

Figure 12(b) shows the explosion in the state space for forward's projection. The result

is a state distribution of size 2N ; each state has probability 1

2N
and the goal is true in all

of them, thus the plan is successful with probability 1. query's projection, on the other

hand (Figure 12(c)) does not branch at all. Each of the N actions has a single relevant

consequence class, in which the corresponding proposition is made true.

reverse has trouble with the domain once again because of disjunction in the assessment

expression: each conjunct pi in the goal expression has two links pointing to it, from ei
�
and

ei
�
.

Figure 13 shows average assessment time for this domain, again as a function of plan

size. query's assessment time grows linearly with plan size, the others grow exponentially.

con�dence intervals for average data were too small to plot.

30

initial
0

goal

SUCCESS

{ p1, ...,pN}

α

G

A i

i

ρβ = 0.5ρα = 0.5

α p i,x i β p i,x i

... ... τ = 1

(a)

〈{ p1,p2,...,pN,x1,x2,...,xN}, 1.0〉

〈{ p1,p2,...,pN,x1,x2,...,xN}, 0.5〉

〈{ p1,p2,...,pN,x1,x2,...,xN}, 0.5〉

〈{ p1,p2,...,pN,x1,x2,...,xN}, 0.25〉

〈{ p1,p2,...,pN,x1,x2,..,xN}, 0.25〉

〈{ p1,p2,...,pN,x1,x2,...,xN}, 0.25〉

〈{ p1,p2,...,pN,x1,x2,...,xN}, 0.25〉

〈{ p1,p2,...,pN,x1,x2,..,xN}, 1/2N〉

〈{ p1,p2,...,pN,x1,x2,...,xN}, 1/2N〉

(b)

A1

A2

A2

...

AN

AN

(c)

p1,p2,...,pN,x1,x2,...,xN p1,p2,...,pN p1,p2,...,pN p1,p2,...,pN

A1: {α, β} A2: {α, β} AN: {α, β}...

...

α
p1, p2, ..., pN
x1, x2, ..., xN

Figure 12: The domain shown in (a) is e�cient for query. Although forward doubles the

size of its state set after every action (b), query makes no irrelevant distinctions (c).

5.5.3 A domain favoring reverse

We noted above that reverse has problems with plans that have multiple supporting causal

links since these cause long assessment expressions. reverse works best in domains in which

propositions do not require multiple support, i.e. in which each proposition is supported by

a single causal link. Such is the case in the domain appearing in Figure 14. There is a

single line of causal support from the � consequence of the initial action to goal. Thus the

assessment expression is of constant length regardless of the plan's length. Both query and

forward have to directly consider the entire collection of states with non-zero probability,

which grows exponentially with the length of the plan.

Figure 15 con�rms our expectations: assessment time for reverse increases linearly

with plan size, while both query and forward are exponential. query does somewhat

better in the limit than does forward because it can ignore the distinction between the two

consequences that do not generate the proposition required in the next action|it produces

two branches per action whereas forward generates a three-fold increase in the size of the

state distribution after every action.

31

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

pl
an

 a
ss

es
sm

en
t t

im
e

[m
se

c]

plan length [actions]

FORWARD
QUERY

NETWORK
REVERSE

Figure 13: Average assessment time for plans in query's domain.

α

initial
ρα = 0.8 ρβ = 0.2

0
goal

SUCCESS

pN+1

α

G
A i

p i p i

α

i

p i+1
ρβ = ργ = 0.5

β x i γ x i

... ... τ = 0.8
p1, p2, ..., pN, pN+1

x1, x2, ..., xN
β

p1, p2, ..., pN, pN+1
x1, x2, ..., xN

Figure 14: An e�cient domain for reverse.

5.5.4 The network algorithm

We did not discuss the network algorithm above, for reasons that should now be clear: its

performance was dominated by the other algorithms, and it performed essentially the same on

all examples. We noted above that a generic clustering algorithm is probably inappropriate

for this application, since it does not exploit the Markov property of the network.

32

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

pl
an

 a
ss

es
sm

en
t t

im
e

[m
se

c]

plan length [actions]

FORWARD
QUERY

NETWORK
REVERSE

Figure 15: Assessment time for reverse's domain.

33

6 The Assess-Re�ne Interface

The experiments reported in Section 5.5 were valuable in con�rming our intuition about the

relationship between domain characteristics and the performance of assessment algorithms,

but they should be interpreted narrowly for several reasons: they involved very small, care-

fully constructed domains, and they measured assessment time in isolation, without regard

to the total time spent generating a successful plan.

As a preliminary e�ort toward a more thorough empirical study we tested the four al-

gorithms on two additional problems. The �rst is the example used throughout this paper,

which we will refer to as the Slippery Gripper problem. The second is an extension of Moore's

[41] Bomb and Toilet problem, which we describe below:

A robot is given two packages, and told that exactly one of them contains a

bomb. It wants to defuse the bomb, and the only way to do so is to dunk the

package containing the bomb in the toilet. Placing a package in the toilet might

(with probability 0.05) clog the toilet, and that is to be avoided.

Suppose we want to achieve both goals|the bomb defused and the toilet unclogged|with

probability at least 0.9. The obvious plan is to dunk both packages, guaranteeing that the

bomb is defused and incurring only a small risk of clogging the toilet. Indeed, buridan

builds the plan shown in Figure 16.

Table 4 shows the total planning time required by the four assessment algorithms, on

both the Bomb/Toilet and Slippery Gripper problems. The real surprise here is the poor

Problem

Algorithm Slippery Gripper Bomb/Toilet

forward 4.5 6.9
query 8.0 64.9

network 179.9 152.0
reverse 404.9 6736.0

Table 4: Total planning time (CPU seconds) for two problems and four assessors.

performance for reverse: forward runs about 100 times faster that reverse on the

Slippery Gripper problem, and about 1000 times faster on the Bomb/Toilet problem. Was

the assessment of the plans generated in solving these domains pathologically di�cult for

reverse? Table 5 indicates that this is not the case: although reverse was the fastest

assessor for Slippery Gripper and the second fastest for Bomb/Toilet, it caused many addi-

tional plans to be generated and assessed, and this resulted in signi�cantly slower planning

performance.

In hindsight, the reason for this behavior is clear. Recall that a fundamental di�erence

between reverse and the other algorithms is reverse's reliance on the plan's causal-link

structure. When a plan doesn't contain all possible links between producing consequences

34

s1

s2

s4

s3

initial

B1, B2, TC, D

c0 (p=0.5) c0

α

0

B1, B2, TC, Dβ

goal

SUCCESS

{ D, TC}

α

G

dunk-p1

D, s1, s2 D, TC TCs1, s2βα γ δ

1

B1 B1

ρα = 0.95 ρβ = 0.05 ργ = 0.95 ρδ = 0.05

dunk-p2

D, s3, s4 D, TC TCs3, s4βα γ δ

2

B2 B2

ρα = 0.95 ρβ = 0.05 ργ = 0.95 ρδ = 0.05

Figure 16: buridan's solution to the Bomb/Toilet problem. B1 means \package 1 contains

bomb;" B2 means \package 2 contains bomb;" TC means \toilet clogged;" D means \bomb

defused."

and consuming propositions, reverse underestimates the probability of goal achievement,

whereas forward, query and network compute the exact value. When this happens,

reverse might believe that the plan is not su�ciently likely to succeed, even though in

fact the plan does represent a solution. In these cases, forward, query, and network

can terminate planning much sooner than reverse which requires that refine add more

causal links before reverse can compute a tight bound.

Our hope was that reverse would run faster using the cached information in the plan's

link structure, and that speed would o�set the fact that the planner might need to iterate a

few more times to produce a complete plan. Although neither hope is manifested in these

examples, these experiments should be interpreted with caution. Two factors tend to make

reverse look worse than it otherwise might:

� These domains are very small, and contain very little irrelevant information. There are

few operators, few propositions in the state space, and few consequences per action.

All these factors conspire to make forward look good: both query and reverse

spend computational e�ort trying to separate relevant aspects of the problem from

irrelevant. If there are no irrelevant aspects to the problem, this e�ort is obviously

wasted.

� Little attention was given to search-control issues. Our plan re�nement algorithm used

a simple search-control policy of favoring plans with fewer links and fewer actions. In

35

Problem

Slippery Gripper Bomb/Toilet
Algorithm Time/Assess Number Assessed Time/Assess Number Assessed

forward 11.9 119 8.2 239
query 429.6 119 251.9 239

network 1521.0 119 636.7 239
reverse 10.6 4756 85.2 24420

Table 5: Average assessment time per plan (CPU microseconds), and number of plans as-

sessed before returning a solution.

reality the policy amounted to breadth-�rst search through the plan space. Better

search control would direct the re�nement algorithm toward a complete plan more

quickly. We address this issue brie
y in Section 6.2.

6.1 Reasoning about partial orders

Recall that the assessor is given a partially ordered plan, yet it must reason about total-

order completions of that plan. forward and network deal with partial orders in

the obvious way: they generate all completions, assess each one individually, and take the

minimum. reverse can cope with partially ordered actions in the sense that once threats

are eliminated from a plan, an action unordered with respect to a link can never decrease

the probability that the proposition will be supported. Since reverse computes a lower

bound, it can safely ignore any non-threatening actions that might be ordered within the

scope of a link.

query reasons quite deeply about partial orders: if the order of actions within a partial

order cannot a�ect the value of a query proposition, it will compute the proposition's truth

value without exploring any completions of that order. But in reasoning explicitly about

partial orders, query has usurped some of the functionality of the plan re�nement algorithm.

In particular, the bound query returns on a plan's success is the minimum that can be

guaranteed from any completion of the plan, whereas the bound reverse returns is on

what can be guaranteed from every completion. query tells the re�nement algorithm that

some completion of its current plan will succeed, but the planner has to �gure out which

one.16

Having the assessor reason about partial orders is a potentially powerful form of search

control: the assessor can reason more e�ciently about partial orders and notify the planner

when it �nds a successful plan, thus saving the planner from applying its slower, more general

re�nement methods to the same task. As a particularly simple example of such a strategy

we modi�ed forward and network to return the maximum probability over all possible

16Alternatively we could extend the interface between assessor and re�nement so the former would return
the successful completion.

36

completions instead of the minimum.

Problem

Algorithm Slippery Gripper Bomb/Toilet

forward 4.5 6.9
forward-max 0.53 7.0
network 179.9 152.0

network-max 43.6 151.3

Table 6: Total planning time (CPU seconds) is reduced when the assessor recognizes total

orders that maximize goal probability, enabling early termination.

As Table 6 demonstrates, the ability for an assessor to hasten recognition of a totally

ordered solution can reduce planning time considerably. The improvement is only realized

for Slippery Gripper, because the order of the actions in this domain is signi�cant (and

therefore buridanmust make more ordering decisions before terminating) whereas the order

of the two dunk actions in Bomb/Toilet is not signi�cant (so buridan can leave the actions

unordered).

6.2 Search control

Although we have only started to address the question of search control, it is clear that an

assessment algorithm might be able to provide information that would guide the process of

plan re�nement. We already saw one example where this information is readily available: the

assessor tells the re�nement algorithm that a solution can be found by imposing additional

order on its current plan (i.e. without adding any new actions).

In fact, a powerful way to view the assessment task is as one of discovering
aws in

the plan and communicating that information back to the planner [54, 27, 29]. Our query

algorithm builds a structure called a scenario that is the basis for assessment, but is also

a temporal trace of the plan's execution. One can identify from this structure the point

at which the plan's probability of success decreased, and why. This information could be

exploited in deciding which re�nement to apply next.

reverse could supply similar information: its assessment expression captures how likely

various propositions are to be true at various points in the plan. One could trace back

through the assessment structure to �nd those propositions that are either unlikely to be

true, or likely to be clobbered. Once again this information could guide the establishment

of new links, or the confrontation of threats.

6.3 Summary

This section explored the interplay between plan assessment and plan re�nement. In hind-

sight, buridan's simple architecture seems problematic. In order to increase planning perfor-

37

mance, it will be necessary to create a more sophisticated interface between plan assessment

and re�nement. Many factors in
uence overall planning performance: speed of assessment,

the tightness of probabilistic bounding calculations, and the type of search control guidance

that the assessor can provide.

38

7 Related Work

Related work can be found in several areas: other AI approaches to probabilistic planning,

robotic motion planning, decision models, and classical planning and plan evaluation tech-

niques.

7.1 Probabilistic planning

Several early pieces of work [22, 42] cast planning in probabilistic or decision-theoretic terms,

but did not provide concrete representations or algorithms to solve the problem. More recent

work divides according to how the planning problem is de�ned, and how states and operators

are represented.

Markov decision processes Several research e�orts (e.g. [34, 12]) adopt a planning model

based on fully observable Markov processes. There are two main di�erences between this

work and ours. First of all, the algorithms operate directly on the state space rather than on

its component propositions, and the actions are represented directly as probabilistic map-

pings from states to states|the algorithms do not manipulate symbolic action descriptions.

(Koenig shows a translation from strips-like symbolic operators to the transition-matrix

representation, but the solution algorithm does not use the symbolic representation.)

A more important distinction is that these approaches build a reaction strategy rather

than a plan. A reaction strategy is a policy that dictates the action the agent should take

for each state in the state space. A plan, on the other hand, is a sequence of actions that

the agent executes without regard to the state. The assumption behind the Markov decision

process approach is that the agent will always know what state it is in while it is executing its

strategy|in other words, that it will be provided with accurate and immediate information

about the new world state every time it executes an action.

A plan embodies the opposite assumption|that the agent will get no additional informa-

tion about the world at execution time|so it might as well plan what to do ahead of time.

Recent extensions to buridan [16, 15] take a middle ground: that information is available

at execution time, but it has to be explicitly gathered, and is potentially inaccurate.

Symbolic planning approaches Farley [21] proposes a similar action representation,

though he attaches probabilities directly to postconditions rather than to sets of postcon-

ditions. His planning algorithm is linear and \progressive": it starts from the initial state

(assumed unique) and builds linear plan sequences, always adding steps to the end of the

plan.

Mansell [37] proposes a strategy in which the planner attacks each possible initial world

state in isolation (beginning with the most likely), and uses a deterministic hierarchical

planning algorithm to build a plan for each. After these plans are built, the algorithm

tries to merge the distinct plans. This approach is similar to the \robusti�cation" approach

proposed by Drummond and Bresina [17]. buridan can be forced to operate in this mode

39

(by allowing it to link to only a single initial state at a time), though the advantage of

postponing the merging process to the end of the planning episode is not clear.

Preliminary work by Goldman and Boddy [24] attacks a similar problem: building plans

that are likely to achieve the goal, where likely is de�ned in terms of a threshold. They

develop an extended action and plan representation that incorporates observations and con-

tingencies, so a comparison to c-buridan [16, 15] is more apt. Their approach to planning

is quite di�erent from ours, however. They use a deterministic planner (based on cnlp

[52]) and they manage uncertainty using an external probabilistic network model to assign

probabilities to propositions with unknown truth values. Splitting the problem into a de-

terministic planner and an external mechanism for managing uncertainty is more similar to

Mansell's approach than to ours.

7.2 Robotic motion planning

Robotics researchers have also considered the problem of planning with actions whose e�ects

are uncertain. For example, Lozano-Perez, Mason and Taylor [36] introduced a backward

chaining strategy (LMT) for motion planning given sensing and control uncertainty which

has been extended by Erdmann [18] and others. An interesting connection between these

approaches and ours is the analogy between the use of compliant motion and conditional

e�ects for reducing uncertainty, but there are more di�erences than similarities. Most obvious

is their emphasis on geometry. Second, they model sensing actions (but see Brost [4]) which

are omitted from buridan, though the extensions cited above address that de�ciency. Third,

their preimage notion of uncertainty bears more of a resemblance to a possible-worlds model

of incomplete information than our probabilistic model. Fourth, their focus is on planning

strategies that are guaranteed to succeed despite uncertainty (as are the Markov-process

approaches above); in contrast, buridan plans need only have probability of success that

exceeds a user speci�ed threshold. Donald's work [14] extends the basic LMT paradigm to

handle incomplete knowledge of the world's geometry and to provide error detection and

recovery.

7.3 Graphical decision models

Work on graphical probabilistic and decision models (see Howard [32], Pearl [44], or the

overview in [11, Chapter 7]) also deals with decision making and planning problems, but

has focused more on solving a given probabilistic or decision model whereas our algorithm

interleaves the process of constructing and evaluating solutions. The problem modelled

by an in
uence diagram involves choosing options from a �xed set of choices rather than

constructing a course of action dynamically from a goal description.

Recent work, however, has recognized the importance of interleaving the model-construction

and the model-solution problems, both in general [25] and as applied to the planning problem

in particular [51]. Also see [3] for a survey of work in this area.

40

7.4 Probabilistic temporal reasoning

The representation for the network algorithm is similar to the network proposed by Dean

and Kanazawa [13].

As we discussed in Section 5, a totally ordered plan can be formulated as a probabilistic

network allowing assessment to be performed using standard propagation techniques [44].

Although our experiments with the network assessment algorithm showed that the Jensen

clustering algorithm is probably inappropriate for problems of this type, other approaches

might be more suitable. Dean and Kanazawa [13] advocate stochastic simulation techniques,

but these lack convergence bounds and thus sacri�ce soundness and completeness. Recent

results [9] also suggest that an approximation algorithm may not be more e�ective than an

exact method.

7.5 Action representation and plan evaluation

Our action representation comes from Hanks's work [29, 30, 28] on probabilistic projection.

Chrisman [6] develops an action representation and projection rule for planning under un-

certainty, and Martin and Allen [38] develop statistical techniques to gather probabilities

like the ones our algorithm uses. None of this work directly addresses the problem of plan

generation.

The query algorithm is described in [30, 28]; Drummond [17] presents an alternative

algorithm for a similar problem.

Haddawy and Hanks [26] motivate building a planner such as buridan. They provide

a framework for constructing a restricted class of utility functions for use by a decision-

theoretic planner and show circumstances under which determining whether one plan dom-

inates another reduces to establishing bounds on the probabilities of particular propositions

at particular times, which is precisely what our plan assessment algorithms compute. Doyle

and Wellman [57] discuss the general problem of modular speci�cation of a planner's objec-

tives in a decision theoretic framework. They exploit multiattribute utility theory to devise

techniques for composing separate preference speci�cations.

7.6 Classical planning

Dealing with state-dependent e�ects is an essential requirement for any useful probabilistic

planner. In this regard buridan can be seen as generalizing the work on planning with

deterministic conditional e�ects, e.g. in [47, 7, 50]. A deterministic form of confrontation

is used in ucpop [50]. Pednault's adl language allowed for disjunctive e�ects and he used

them to solve a simple symbolic version of the \Bomb in the Toilet" example [46] which we

extended in Section 6. However, no implementations of adl (e.g., Pedestal [40] and ucpop

[50]) have implemented the functionality of disjunctive e�ects, which buridan does.

41

8 Conclusions

buridan represents a signi�cant step in the development of practical algorithms for proba-

bilistic planning. While much work remains to be done, buridan provides a pro�table basis

for future study.

8.1 Implementation

buridan is fully implemented in Common Lisp and has been tested on many examples

including the ones presented in this paper. The implementation is robust (e.g. successfully

searches tens of thousands of plans). Although the code has not been optimized for speed or

search control, we feel that it is a solid foundation for future research. In addition, it would

be excellent in an instructional setting. Send mail to bug-buridan@cs.washington.edu for

instructions on acquiring buridan source code via anonymous FTP.

8.2 Summary

In this paper we've reported on several signi�cant advances:

1. We have extended the classical planning representation to handle uncertainty in the

initial world state (via probability distributions over world states) and in the e�ects of

actions (via mutually exclusive and exhaustive triggers paired with strips-like e�ects).

2. We provided a precise probabilistic semantics for our representation. Execution of an

action causes a transition from one state distribution to another.

3. We described buridan, an implemented algorithm for probabilistic planning, and

proved that it is both sound and complete.

4. We compared the e�ciency of the forward, query, network and reverse proba-

bilistic assessment algorithms both analytically and empirically. We characterized the

strengths of each algorithm, and observe that none of the four is clearly dominant.

5. We noted that the fastest assessor does not necessarily lead to the fastest planner

and explain why. We argued that the re�ne-assess architecture could be improved

by allowing the plan assessor to provide more guidance to the plan re�ner. As a

simple example of this strategy, we demonstrated that considerable speedup is possible

when the assessment algorithm returns action-ordering information in addition to its

probability calculation.

8.3 Future work

We hope to extend buridan in many directions. From a purely practical perspective,

buridan's functionality is limited by its propositional representation, so we plan to imple-

ment a lifted [53, 39] version using the codesignation constraint code developed for ucpop

42

[50]. The major challenge of this endeavor is devising an e�cient means for handling the

disjunctive bindings that could result when a lifted trigger condition is supported by multiple

causal links from di�erent ground consequences.

Another extension would allow buridan to handle probabilistic exogenous events and

incorporate the model of sensing and information advanced in the uwl language [20]. We'd

like to integrate Peot and Smith's [52] algorithm for generating conditional plans with this

framework and to consider interleaved planning and execution [2, 43, 35] as well. Recent

work on c-buridan [16, 15] has addressed some of these issues.

We also hope to introduce an explicit temporal model (perhaps using ideas from zeno

[48, 49]) so we can represent deadline goals. This would allow us to consider integrating our

probabilistic plan re�nement algorithm with the utility model presented in [26].

On the algorithmic side we have just begun to explore methods of controlling the search

for good plans. As Section 6 demonstrates, there are a number of important architectural

issues which deserve exploration. We hope to develop a more sophisticated re�ne-assess

interface so that the computational expense of plan assessment pays dividends by guiding

subsequent re�nements. We also wish to evaluate additional assessment methods (e.g. incre-
mental assessment, stochastic simulation, etc.) and their relationship to plan re�nement.

43

A Proof of Completeness

Theorem 2 (Completeness) Let � = h~sI ;G; �;�i be a planning problem and let hAii
N

i=1
be

an essential solution (i.e., no proper subsequence is also solution) of �. Then there exists a

sequence of nondeterministic choices such that buridan(�) will return hAii
N

i=1
.

To �nesse issues of search control, we use hAii
N

i=1
as an oracle to guide the construction of

the partially ordered plan; McDermott [40] refers to this technique as a clairvoyant algorithm.

Our implementation uses exhaustive search to ensure that every sequence of nondeterministic

choices is eventually considered.

We �rst establish a useful lemma. Recall that plan data structures contain a set of

subgoals: S = f: : : ; p@Ai; : : :g. We introduce one new piece of terminology to concisely refer

to the result of executing action subsequences: let SDk

j
be the state distribution produced

by executing hAii
k

i=j
in SD. If k < j then SDk

j
� SD.

Lemma 3 Let� = h~sI ;G; �;�i be a planning problem and suppose that a call to buridan(�)

yields values hA;O;L;Si such that hAii
N

i=2
is a consistent topological sort of A (excluding

the initial and goal actions). Let E be an expression composed of literals all of which are

subgoals in S for the same action Am, and let A1 be some action not in A. If there exists
l < m such that

P
h
E jSDl

1

i
> P

h
E jSDl

2

i
;

then refine can make a sequence of nondeterministic choices that will add A1 to A.

Proof: Our proof is by induction on m.

Base Case: m = 2.

In this case l = 1 and we assume that P
h
E jexec(A1;SD

1

1)
i
> P

h
E jSD1

2

i
, which is

equivalent to P[E jexec(A1;SD)] > P[E jSD].

By de�nition, the only way that the probability of E can be greater after executing A1 is

if doing so increases the probability associated with the states containing E . But the only

way that this could happen is if A1 has an consequence containing p for some p 2 E . But in

that case refine Line 2.a could choose to add A1 to the plan since p@A2 2 S.

Inductive Step: m > 2.

The inductive hypothesis guarantees that if there exists some l < m � 1 such that

P
h
E jSDl�1

1

i
> P

h
E jSDl�1

2

i
then A1 can be added to the plan. We need to show that this

holds for l = m� 1 as well.

Suppose that P
h
E jSDm�1

1

i
> P

h
E jSDm�1

2

i
. Three (exhaustive but non-exclusive) cases

can explain this relationship:

1. The increase in the probability of E happens before Am�1 is executed|in other words,

P
h
E jSDm�2

1

i
> P

h
E jSDm�2

2

i
. But in that case the inductive assumption directly

indicates that A1 could be added.

44

2. The increase in the probability of E occurs because including A1 causes Am�1 to

contribute additional probability mass to E . Speci�cally, Am�1 contains a conse-

quence htm�1

�
; �

m�1

�
; em�1

�
i such that em�1

�
makes some proposition p in E true, and

P
h
tm�1

�
jSDm�2

1

i
> P

h
tm�1

�
jSDm�2

2

i
. But then a nondeterministic choice in refine

Line 2.a could choose this consequence to support p. So for every q 2 tm�1

�
a nondeter-

ministic choice in refine Line 2.a could make q@Am�1 a subgoal as well, the inductive

assumption applies to tm�1

�
, and A1 could be added.

3. Finally, the increase in the probability of E might occur because including A1 causes

Am�1 to contribute less probability mass to an consequence that makes E false. Note

that in this case E must have non-zero probability before Am�1 is executed, i.e.

P
h
E jSDm�2

2

i
> 0. But if this is the case then for every proposition p 2 E there

must be some action Ai with a consequence � that contains p, and refine Line 2.b

could add causal links Ai;�

p
!Am, for each such of them.

It must also be the case that some consequence in Am�1 tends to make E false, and

A1 tends to make that consequence less likely. In other words, Am�1 must contain

a consequence htm�1

�
; �

m�1

�
; em�1

�
i such that p 2 em�1

�
, where p 2 E , and furthermore

P
h
tm�1

�
jSDm�2

1

i
< P

h
tm�1

�
jSDm�2

2

i
.

But in this case, refine would recognize the � consequence of Am�1 as a threat and

Line 3.c could confront the threat. Confronting the threat means that the literals in the

triggers of all non-interfering consequences of Am�1 could be adopted as a subgoal in S

(Line 3.c.iii). Since De�nition 1 states that an action's triggers are mutually exclusive

and exhaustive, P
h
tm�1

�
jSDm�2

1

i
< P

h
tm�1

�
jSDm�2

2

i
implies that the probability of at

least one of Am�1's non-interfering triggers will have greater probability when A1 is

executed. But if so the inductive assumption is satis�ed and A1 could be added to the

sequence. 2

We are now ready to tackle the main theorem. Since the proof is somewhat complex, we

sketch the high level concept before delving into the details. The proof method is induction

and (unsuprisingly) the induction step is the crux. We demonstrate that a sequence of

nondeterministic choices exists which returns an N step plan for a planning problem � by

constructing a modi�ed problem which can be solved in N � 1 steps. Since the induction

hypothesis states that buridan can solve this easier problem, we need only show how the

choices made for the modi�ed problem lead to choices that solve � itself. Lemma 3 makes

this (relatively) straightforward.

Proof (Completeness): Given a planning problem � and an essential solution hAii
N

i=1
,

we need to show two things. First, that refine can make a sequence of nondeterministic

choices resulting in a plan consistent with hAii
N

i=1
. Second, that the forward assessor will

recognize that plan as a solution. Our proof is by induction on N , the number of actions in

the plan.

Base Case: N = 0.

45

If N = 0 then the goal is su�ciently likely without any actions being added: P[G jSD] �

� . A call to buridan will create the null plan for � and immediately call forward for

assessment. Since there are no actions in A� fA0;AGg, forward Line 3 returns the prob-

ability of the single total order consistent with this plan, which by assumption exceeds the

threshold. buridan calls total-order and returns the empty sequence.

Inductive Step: N � 1.

The inductive assumption ensures that clairvoyant buridan correctly generates solutions

of the form hAii
m

i=1
for m < N . We now show that buridan �nds a solution for N -action

plans as well.

Let �0 be the planning problem hexec(A1;SD);G; �;�i. By De�nition 4, the length

N � 1 action sequence hAii
N

i=2
is an essential solution to �0. Clairvoyant buridan(�0)

will therefore generate a partially ordered plan, P0 = hA0

;O0

;L0;S0i, such that hAii
N

i=2
is a

consistent topological sort. P 0 is very similar to the plan that we are seeking, but its initial

action is doing double duty, providing probability mass for propositions that SD and A1

provided collectively in the original solution.

Now consider the execution trace of all nondeterministic choices made by clairvoyant

buridan while constructing P 0 for �0. We can use this trace, with some modi�cations, to

guide buridan toward a solution to the original problem �.

Since the only di�erence between �0 and � occurs in the initial state distributions SD

and exec(A1;SD), we need to guide buridan's choice only when it tries to create a link

from the initial action, A0
0|otherwise, plan re�nement can proceed as it did when P 0 was

generated. Recall that A0
0 (the initial action of P0) corresponds to the state distribution

exec(A1;SD). If P
0 contains a link supporting p whose producing action is A0

0, then there

exists an consequence of A0 or A1 that contains p. In that case we instruct buridan to

choose such an consequence and create a link from it.

Note that this argument guarantees that buridan will add actions A2; : : : ;AN to the

plan (along with ordering constraints on them), but it does not guarantee that buridan will

add A1 to the plan: P0 might not contain a link whose producer is A0
0. But recall that no

proper subsequence of hAii
N

i=1
is a solution, therefore

P
h
G jSDN

1

i
> P

h
G jSDN

2

i
:

Since G is a conjunction of propositions that have been adopted as subgoals in S, Lemma 3

guarantees that there is a sequence of nondeterministic choices refine can make that will

add A1.

At this point we have established that buridan can add the right actions to A, but

we haven't yet guaranteed that it will add enough ordering constraints to O. In particular

we have not guaranteed that A1 will be constrained to occur �rst in the plan. If buridan

fails to constrain A1 to be the �rst action in the plan, then forward will iterate over all

total orders consistent with O and one of these might achieve G with probability less than

� , meaning that buridan would fail to recognize the solution.

We can show that it is a contradiction to assume that no sequence of nondeterministic

choices will cause A1 to be ordered �rst in the plan. Let m � 2 be the smallest number such

46

that executing A1 before Am achieves the goal with some probability � � , while executing

A1 immediately after Am achieves the goal with some probability < � . If so there must be

a sequence of nondeterministic choices made by refine at Lines 2.a and 3.c that create a

causal link whose producer is Am and which is threatened by A1. But if that is the case,

refine Line 3.a could demote A1 by adding A1 < Am to O.

In summary, if hAii
N

i=1
is an essential solution to a planning problem, then a sequence

of nondeterministic decisions can cause buridan to add each of actions A1 through AN to

the plan, along with all relevant ordering constraints. forward will return Min � � , and

clairvoyant total-order will return hAii
N

i=1
which is a solution to �. 2

47

B The reverse Assessment Algorithm

reverse uses the plan's causal links to evaluate a plan. The probability that a proposition

holds when a particular action is executed can be estimated by traversing the link structure

that provides causal support to the proposition. The idea is to traverse the links, constructing

an assessment expression, a boolean combination of causal links, triggers, subgoals and �
i

�

terms. Starting from the trigger of goal's SUCCESS outcome, the assessment expression is

incrementally transformed as follows:

� The assessment expression for the trigger of a consequence is the conjunction of the as-

sessment expressions of the subgoals corresponding to the trigger's conjuncts, conjoined

with the consequence's probabilistic term.

� The assessment expression for a subgoal is the disjunction of the assessment expressions

for all the links supporting the subgoal. If a subgoal has no causal support then no

transformation is made.

� The assessment expression for a link is the assessment expression of the trigger for the

link's producing outcome, conjoined with a conjunction of the assessment expressions

of the subgoals of the safety condition associated with confronted threats.

These transformations are applied repeatedly until the expression is a boolean combination

of only subgoals without causal support and probabilistic terms for the consequences that

constitute the plan's causal structure. This expression can then be evaluated directly. Table

7 precisely speci�es the reverse algorithm.

reverse computes a lower bound on the probability of plan success. To understand this,

note that main di�erence between reverse and the other algorithms is that whereas the

others algorithms take into account all causal relationships inherent in the plan, reverse

reasons about only those causal relationships explicitly represented in the plan's link struc-

ture. There are therefore two ways in which a probability computed using causal links might

di�er from the value returned by the exact algorithms:

� There might be a action that produces a proposition that is required by a subsequent

action, yet refine has not installed a link between those two actions. In that case

reverse may underestimate the proposition's probability.

� There might be a threat to an existing link that has not been resolved yet by the

re�nement algorithm. In that case reverse may overestimate the probability of the

link's supported proposition.

We force reverse to produce a lower bound on probabilities by ignoring links that are

threatened (see the prod function in Table 7) and by leaving subgoals with no causal support

untransformed (Line 2.b applies only if the subgoal has causal support). When a plan is

re�ned so that all threats are resolved and all subgoals are supported in all possible ways,

then reverse computes the same probability as the other assessment algorithms.

48

reverse(P)
1. Initialize the assessment expression to tG� .
2. Loop: Transform a term from the assessment expression as follows:

a. ti�) �i� ^
^
p2ti�

p@Ai

b. p@Aj)
_

Ai;�
p
!Aj2prod(p@Aj)

Ai;�
p
!Aj if prod(p@Aj) 6= ;

c. Ai;�
p
!Aj) ti� ^

^
s2safe(Ai;�

p
!Aj)

s@Aj

until no further replacements are possible (i.e., the assessment expression consists only of
literals with no causal support and terms of the form �i�).

3. Convert the assessment expression to disjunctive normal form.
4. Using the probabilistic axiom P[A _B] = P[A] + P[B]� P[A ^B], compute the set of disjuncts of

the DNF expression that must be conjoined to compute the probability of the expression as a whole.
5. Compute the probability of each conjunction as follows:

If the conjunction contains terms of the form �i� and �i�, or p@Ai and p@Ai, then
a. the probability of the expression is 0

otherwise
b. remove duplicate terms, substitute probabilities for the remaining terms (the value of

each �i�, and 0 for each remaining p@Ai), and
c. multiply the results

6. Add or subtract (as appropriate) the probabilities as computed by line 5 for each of the
conjunctions generated by line 4.

prod(p@Ai)
returns the set of P 's unthreatened causal links supporting p@Ai.

safe(Ai;�
p
!Aj)

returns the set of safety propositions corresponding to confronted threats against Ai;�
p
!Aj in P.

Table 7: reverse plan assessment algorithm.

We have not fully investigated the computational complexity of reverse, but clearly the

algorithm runs in time exponential in the number of disjuncts in the disjunctive normal form

of the assessment expression: Line 5 computes the probability of each conjunction generated

by Line 4, and the number of such conjunctions is exponential in the number of disjuncts.

Example: We now show how reverse assesses the plan shown in Figure 7. From Line 1

of Table 7, the initial assessment expression is simply tG
�
. This gets transformed by several

applications of Lines 2.a and 2.b as follows:

tG
�
) �

G

�
^ HB@AG ^ BP@AG ^ GC@AG

) �
G

�
^ A1;�

HB
!AG ^ A2;�

BP
!AG ^ A0;�

GC
!AG

49

Each of these links is then expanded using Line 2.c. Expanding A1;�
HB
!AG and A2;�

BP
!AG

is straightforward: these links just expand into their producing outcomes. But A0;�
GC
!AG

was threatened by paint (A2) and this threat was resolved by confrontation. So in addition

to the producing outcome, A0;�
GC
!AG expands into the safety proposition subgoal s1@AG,

and we have:

�
G

�
^ A1;�

HB
!AG ^ A2;�

BP
!AG ^ A0;�

GC
!AG) �

G

�
^ t1

�
^ t2

�
^ (t0

�
^ s1@AG)

Now applying Lines 2.a, 2.b and 2.c, we have:

�
G

�
^ t1

�
^ t2

�
^ t0

�
^ s1@AG) �

G

�
^ (GD@A1 ^ �

1

�
) ^ (HB@A2 ^ �

2

�
) ^ �0

�
^ A2;�

s1
!AG

) �
G

�
^ (A0;�

GD
!A1 ^ �

1

�
) ^ (A1;�

HB
!A2 ^ �

2

�
) ^ �0

�
^ t2

�

) �
G

�
^ (t0

�
^ �1

�
) ^ (t0

�
^ �2

�
) ^ �0

�
^ (HB@A2 ^ �

2

�
)

) �
G

�
^ (�0

�
^ �1

�
) ^ (�0

�
^ �2

�
) ^ �0

�
^ (A1;�

HB
!A2 ^ �

2

�
)

) �
G

�
^ �0

�
^ �1

�
^ �0

�
^ �2

�
^ �0

�
^ (t0

�
^ �2

�
)

) �
G

�
^ �0

�
^ �1

�
^ �0

�
^ �2

�
^ �0

�
^ �0

�
^ �2

�

As this point, the termination condition of Line 2 is satis�ed, so Line 3 transforms

the expression into disjunctive normal form. Since it is already just a conjunction, no

transformation is needed. For the same reason, Line 4 is trivial: we use Line 5 to assess the

probability of the entire expression.

The expression contains no contradictions, so Line 5.a does not apply. Rather, Line 5.b

�rst removes duplicates, substitutes numbers for the remaining terms, and multiples:

�
G

�
^ �0

�
^ �1

�
^ �0

�
^ �2

�
^ �0

�
^ �0

�
^ �2

�
) �

G

�
^ �0

�
^ �1

�
^ �2

�

) 1:0� 0:7� 0:95 � 0:9

) 0:5985:

This example illustrates that the probability computed by reverse is a lower bound

on the exact probability that a plan achieves the goal: the other algorithms return 0.7335

when they assess this plan. In order for reverse to realize this exact probability, additional

causal links would need to be added to the plan. For example, the link A0;�
GC
!AG represents

a way that the goal GC might be achieved that reverse has not considered.

50

References

[1] J. Allen, J. Hendler, and A. Tate, editors. Readings in Planning. Morgan Kaufmann,

San Mateo, CA, August 1990.

[2] J Ambros-Ingerson and S. Steel. Integrating planning, execution, and monitoring. In

Proc. 7th Nat. Conf. on A.I., pages 735{740, 1988.

[3] J. Breese, R. Goldman, and M.Wellman, editors. Notes from the Ninth National Confer-

ence on Arti�cial Intelligence (AAAI-91) Workshop on Knowledge-Based Construction

of Probabilistic and Decision Models. AAAI, July 1991.

[4] R. Brost. Automatic grasp planning in the presence of uncertainty. International Journal
of Robotics Research, 7(1):3{17, February 1988.

[5] D. Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32(3):333{377,
1987.

[6] L. Chrisman. Abstract Probabilistic Modeling of Action. In Proc. 1st Int. Conf. on A.I.
Planning Systems, 1992.

[7] G. Collins and L. Pryor. Achieving the functionality of �lter conditions in a partial

order planner. In Proc. 10th Nat. Conf. on A.I., August 1992.

[8] G. Cooper. The computational complexity of probabilistic inference using bayesian

belief networks. Arti�cial Intelligence, 42, 1990.

[9] P. Dagum and M. Luby. Approximating Probabilistic Inference in Bayesian Networks

is NP-Hard. Arti�cial Intelligence, 60(1):141{153, March 1993.

[10] T. Dean and M. Boddy. Reasoning about partially ordered events. Arti�cial Intelligence,
36(3):375{400, October 1988. Reprinted in [56].

[11] T. Dean and M. Wellman. Planning and Control. Morgan Kaufmann, 1991.

[12] Thomas Dean, Leslie Kaelbling, Jak Kirman, and Ann Nicholson. Planning with dead-

lines in stochastic domains. In Proc. 11th Nat. Conf. on A.I., July 1993.

[13] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and cau-

sation. Computational Intelligence, 5:142{150, 1989.

[14] B. Donald. A geometric approach to error detection and recovery for robot motion

planning with uncertainty. Arti�cial Intelligence, 37:223{271, 1988 1988.

[15] D. Draper, S. Hanks, and D. Weld. A probabilistic model of action for least-commitment

planning with information gathering. In Proc., Uncertainty in AI, 1994. Submitted.

51

[16] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gathering

and contingent execution. In Proc. 2nd Int. Conf. on A.I. Planning Systems, June 1994.

[17] M. Drummond and J. Bresina. Anytime Synthetic Projection: Maximizing the Proba-

bility of Goal Satisfaction. In Proc. 8th Nat. Conf. on A.I., 1990.

[18] M. Erdmann. On Motion Planning with Uncertainty. AI-TR-810, MIT AI LAB, August

1984.

[19] K. Erol, D. Nau, and V. Subrahmanian. When is planning decidable? In Proc. 1st Int.

Conf. on A.I. Planning Systems, pages 222{227, June 1992.

[20] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M.Williamson. An Approach to

Planning with Incomplete Information. In Proc. 3rd Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, October 1992. Available via FTP from pub/ai/ at

cs.washington.edu.

[21] A. Farley. A Probabilistic Model for Uncertain Problem Solving. IEEE Transactions
on Systems, Man, and Cybernetics, 13(4), July 1983.

[22] J. Feldman and R. Sproull. Decision theory and arti�cial intelligence II: The hungry

monkey. Cognitive Science, 1:158{192, 1977.

[23] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving

to problem solving. Arti�cial Intelligence, 2(3/4), 1971.

[24] Robert P. Goldman and Mark S. Boddy. Epsilon-safe planning. forthcoming, 1994.

[25] Robert P. Goldman and John S. Breese. Integrating Model Construction and Evaluation.

In Proc. 8th Conf. on Uncertainty in Arti�cal Intelligence, July 1992.

[26] Peter Haddawy and Steve Hanks. Utility Models for Goal-Directed Decision-Theoretic

Planners. Technical Report 93{06{04, Univ. of Washington, Dept. of Computer Science

and Engineering, September 1993. Submitted to Arti�cial Intelligence. Available via

FTP from pub/ai/ at cs.washington.edu.

[27] K. Hammond. Explaining and repairing plans that fail. Arti�cial Intelligence, 45:173{
228, 1990.

[28] S. Hanks. Practical temporal projection. In Proc. 8th Nat. Conf. on A.I., pages 158{163,
August 1990.

[29] S. Hanks. Projecting Plans about Uncertain Worlds. PhD thesis, Yale University Com-

puter Science Department, January 1990.

[30] Steve Hanks. Modeling a Dynamic and Uncertain World II: Action Representation and

Plan Evaluation. Technical report, Univ. of Washington, Dept. of Computer Science

and Engineering, September 1993.

52

[31] Steve Hanks and Drew McDermott. Modeling a Dynamic and Uncertain World I:

Symbolic and Probabilistic Reasoning about Change. Arti�cial Intelligence, 65(2), 1994.

[32] R. Howard and J. Matheson. In
uence Diagrams. In The Principles and Applications

of Decision Analysis. Strategic Decisions Group, 1984.

[33] S. Kambhampati. Characterizing multi-contributor causal structures for planning. In

Proc. 1st Int. Conf. on A.I. Planning Systems, pages 116{125, June 1992.

[34] S. Koenig. Optimal probabilistic and decision-theoretic planning using markovian de-

cision theory. UCB/CSD 92/685, Berkeley, May 1992.

[35] K. Krebsbach, D. Olawsky, and M. Gini. An empirical study of sensing and defaulting

in planning. In Proc. 1st Int. Conf. on A.I. Planning Systems, pages 136{144, June
1992.

[36] T. Lozano-Perez, M. Mason, and R. Taylor. Automatic synthesis of �ne motion strate-

gies for robots. International Journal of Robotics Research, 3(1):3{24, Spring 1984.

[37] T. Mansell. A method for planning given uncertain and incomplete information. In

Proc. 9th Conf. on Uncertainty in Arti�cal Intelligence, 1993.

[38] N. Martin and J. Allen. A Language for Planning with Statistics. In Proc. 7th Conf.
on Uncertainty in Arti�cal Intelligence, 1991.

[39] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proc. 9th Nat.

Conf. on A.I., pages 634{639, July 1991.

[40] D. McDermott. Regression planning. International Journal of Intelligent Systems,
6:357{416, 1991.

[41] R. Moore. A Formal Theory of Knowledge and Action. In J. Hobbs and R. Moore,

editors, Formal Theories of the Commonsense World. Ablex, Norwood, NJ, 1985.

[42] John H. Munson. Robot Planning, Execution, and Monitoring in an Uncertain Envi-

ronment. In Proc. 2nd Int. Joint Conf. on A.I., pages 338{349, August 1971.

[43] D. Olawsky and M. Gini. Deferred planning and sensor use. In Proceedings, DARPA
Workshop on Innovative Approaches to Planning, Scheduling, and Control. Morgan

Kaufmann, 1990.

[44] J. Pearl. Probablistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo,

CA, 1988.

[45] E. Pednault. Toward a Mathematical Theory of Plan Synthesis. PhD thesis, Stanford

University, December 1986.

53

[46] E. Pednault. Synthesizing plans that contain actions with context-dependent e�ects.

Computational Intelligence, 4(4):356{372, 1988.

[47] E.. Pednault. Generalizing nonlinear planning to handle complex goals and actions with

context-dependent e�ects. In Proc. 12th Int. Joint Conf. on A.I., July 1991.

[48] J. S. Penberthy and Daniel S. Weld. A new approach to temporal planning (preliminary

report). In Proceedings of the AAAI 1993 Symposium on Foundations of Automatic

Planning: The Classical Approach and Beyond, pages 112{116, March 1993.

[49] J.S. Penberthy. Planning with Continuous Change. PhD thesis, University of Washing-

ton, 1993. Available as UW CSE Tech Report 93-12-01.

[50] J.S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner for

ADL. In Proc. 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning,
pages 103{114, October 1992. Available via FTP from pub/ai/ at cs.washington.edu.

[51] M. Peot and John S. Breese. Model Construction in Planning. In Notes from the Ninth
National Conference on Arti�cial Intelligence (AAAI-91) Workshop on Knowledge-
Based Construction of Probabilistic and Decision Models, pages 95{100, July 1991.

[52] M. Peot and D. Smith. Conditional Nonlinear Planning. In Proc. 1st Int. Conf. on A.I.
Planning Systems, pages 189{197, June 1992.

[53] J. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1), January 1965.

[54] R. Simmons. A theory of debugging plans and interpretations. In Proc. 7th Nat. Conf.
on A.I., pages 94{99, August 1988.

[55] Sampath Srinivas and Jack Breese. IDEAL: In
uence diagram evaluation and analysis

in lisp; documentation and users guide. Technical Memo 23, Rockwell International

Science Center, August 1990.

[56] D. Weld and J. de Kleer, editors. Readings in Qualitative Reasoning about Physical
Systems. Morgan Kaufmann, San Mateo, CA, August 1989.

[57] M. Wellman and J. Doyle. Modular utility representation for decision theoretic planning.

In Proc. 1st Int. Conf. on A.I. Planning Systems, pages 236{242, June 1992.

54

