
To appear, AAAI-94 1

Omnipotence Without Omniscience:

E�cient Sensor Management for Planning

Keith Golden Oren Etzioni Daniel Weld�

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195
fkgolden, etzioni, weldg@cs.washington.edu

Abstract

Classical planners have traditionally made the
closed world assumption | facts absent from
the planner's world model are false. Incomplete-
information planners make the open world as-
sumption | the truth value of a fact absent from
the planner's model is unknown, and must be
sensed. The open world assumption leads to two
di�culties: (1) How can the planner determine the
scope of a universally quanti�ed goal? (2) When
is a sensory action redundant, yielding information
already known to the planner?
This paper describes the fully-implemented xii

planner, which solves both problems by represent-
ing and reasoning about local closed world infor-
mation (LCW). We report on experiments utilizing
our UNIX softbot (software robot) which demon-
strate that LCW can substantially improve the soft-
bot's performance by eliminating redundant infor-
mation gathering.

Introduction
Classical planners (e.g., (Chapman 1987)) presuppose
correct and complete information about the world. Al-
though recent work has sketched a number of algo-
rithms for planning with incomplete information (e.g.,
(Ambros-Ingerson & Steel 1988; Olawsky & Gini 1990;
Krebsbach, Olawsky, & Gini 1992; Peot & Smith 1992;
Etzioni et al. 1992; Etzioni, Lesh, & Segal 1993;
Genesereth & Nourbakhsh 1993)), substantial prob-
lems remain before these planners can be applied to
real-world domains. Since the presence of incomplete
information invalidates the Closed World Assumption,
an agent cannot deduce that a fact is false based on its
absence from the agent's world model. This leads to
two challenges:

�We thank Denise Draper, Steve Hanks, Terrance
Goan, Nick Kushmerick, Neal Lesh, Rich Segal, and Mike
Williamson for helpful discussions. This research was
funded in part by O�ce of Naval Research Grants 90-J-1904
and 92-J-1946, and by National Science Foundation Grants
IRI-8957302, IRI-9211045, and IRI-9357772. Golden is sup-
ported in part by a UniForum Research Award.

� Satisfying Universally Quanti�edGoals: Goals
of the form \Move all widgets to the warehouse" or
\Make all �les in /tex write-protected" are com-
mon in real-world domains. Classical planners such
as prodigy (Minton et al. 1989) or ucpop (Pen-
berthy & Weld 1992) reduce universally quanti�ed
goals to the set of ground instances of the goal, and
satisfy each instance in turn. But how can a planner
compute this set in the absence of complete infor-
mation? How can the planner be certain that it has
moved all the widgets or protected all the relevant
�les?

� Avoiding Redundant Sensing: Should the plan-
ner insert a sensory action (e.g., scan with the cam-
era, or the UNIX command ls) into its plan? Or is
the action redundant, yielding information already
known to the planner? Since satisfying the precon-
ditions of a sensory action can require arbitrary plan-
ning, the cost of redundant sensing is potentially un-
bounded and quite large in practice (see the Exper-
imental Results section).

This paper reports on the fully-implemented xii

planner1 which addresses these challenges. We allow
incomplete information in the initial conditions, and
uncertainty in the e�ects,2 but assume the informa-
tion that is known is correct, and that there are no
exogenous events. xii's planning algorithm is based on
ucpop (Penberthy & Weld 1992), but xii interleaves
planning and execution and, unlike ucpop, does not
make the closed world assumption.
The next section introduces the central concept un-

derlying xii's operation: local closed world informa-
tion (LCW). In the following section we describe how
incorporating LCW in a planner enables it to solve uni-
versally quanti�ed goals in the presence of incomplete
information. We then show how the same mechanism
addresses the problem of redundant information gath-

1
xii stands for \eXecution and Incomplete

Information."
2All e�ects of operators must be speci�ed, but xii sup-

ports a three-valued logic which allows us to specify a lim-
ited form of uncertainty in the e�ects.

ering. The Experimental Results section demonstrates
the advantages of eliminating redundant sensing. We
conclude with a discussion of related and future work.

Local Closed World Information

Our agent's model of the world is represented as a set
of ground literals stored in a database DM. Since DM
is incomplete, the closed world assumption is invalid|
the agent cannot automatically infer that any sentence
absent from DM is false. Thus, the agent is forced to
represent false facts explicitly | as DM sentences with
the truth value F.
In practice, many sensing actions return exhaustive

information which warrants limited or \local" closed
world information. For example, the UNIX ls -a com-
mand lists all �les in a given directory. After execut-
ing ls -a, it is not enough for the agent to record that
paper.tex and proofs.tex are in /tex because, in ad-
dition, the agent knows that no other �les are in that
directory. Note that the agent is not making a closed
world assumption. Rather, the agent has executed an
action that yields closed world information.
Although the agent now knows that

parent.dir(foo, /tex) is false, it is impractical for
the agent to store this information explicitly in DM,
since there is an in�nite number of such sentences. In-
stead, the agent represents closed world information
explicitly in a meta-level database, DC, containing for-
mulas of the form LCW(�) that record where the agent
has closed world information. LCW(�) means that for
all variable substitutions �, if the ground sentence ��
is true in the world then �� is represented in DM.
For instance, we represent the fact that DM contains
all the �les in /tex with LCW(parent.dir(f,/tex))

and that it contains the length of all such �les with
LCW(parent.dir(f,/tex)^length(f,l)).
When asked whether an atomic sentence � is true,

the agent �rst checks to see if � is in DM. If it is, then
the agent returns the truth value (T or F) associated
with the sentence. However, if � 62 DM then � could
be either F or U (unknown). To resolve this ambiguity,
the agent checks whether DC entails LCW(�). If so, �
is F, otherwise it is U.

LCW Updates

As the agent is informed of the changes to the external
world | through its own actions or through the ac-
tions of other agents | it can gain and lose LCW; these
changes must be recorded in DC. We assume here, and
throughout, the absence of hidden exogenous events
that invalidate xii's information. In other words, we
assume that the rate of change in the world is slower
than the rate at which xii plans and executes. This is
the standard assumption of correct information made
by most planners.3

3In fact, the softbot relaxes this assumption by associ-
ating expiration times with beliefs in D

M
and D

C
and by

recovering from errors that result from incorrect informa-

When xii executes an action which ensures that
DM contains all instances of � that are true in
the world, xii adds a formula LCW(�) to DC.
For example, xii is given an axiom stating that
each �le has a unique word count. Thus, exe-
cuting the UNIX command wc paper.tex adds the
formula LCW(word.count(paper.tex,c)) to DC as
well as adding the actual length (e.g., word.count

(paper.tex,42)) to DM. Since the LS operator (Fig-
ure 1) has a universally quanti�ed e�ect, executing ls

-a /tex yields LCW(parent.dir(f,/tex)).
It would be cumbersome if the author of each op-

erator were forced to list its LCW e�ects. In fact, this
is unnecessary. xii automatically elaborates operator
schemata with LCW e�ects. For example, the following
e�ects are automatically added to the LS operator:
LCW(parent.dir(f1, ?d))

LCW(parent.dir(f2, ?d) ^ (filename f2, p2))

LCW(parent.dir(f3, ?d) ^ (pathname f3, n2))
where the subscripted symbols indicate new unique
variables, and ?d is a parameter that will be substi-
tuted with a constant value at run-time. This com-
pilation process takes time linear in the length of the
operator schemata and the number of unique-value ax-
ioms (Golden, Etzioni, & Weld 1994).
Observational e�ects (e.g., those of LS) can only cre-

ate LCW, but causal e�ects can both create and destroy
LCW.4 For example, deleting all �les in /tex provides
complete information on the contents of the directory
regardless of what the agent knew previously. Com-
pressing a �le in /tex, on the other hand, makes the
length of the �le unknown,5 thus invalidating previ-
ously obtained LCW on the lengths of all �les in that
directory.
The theory behind LCW is complex; (Etzioni, Golden,

& Weld 1994) de�nes LCW formally, explains the con-
nection to circumscription, and presents a set of
tractable update rules for the case of conjunctive LCW
formulas. In this paper, we show how to incorpo-
rate conjunctive LCW into a least commitment planner
and argue that this addresses the challenges described
in the introduction: satisfying universally quanti�ed
goals and avoiding redundant sensing.

Universally quanti�ed goals

In this section we explain how xii utilizes LCW to satisfy
universally quanti�ed goals. Traditionally, planners
that have dealt with goals of the form \Forall v of type
t make �(v) true" have done so by expanding the goal
into a universally-ground, conjunctive goal called the

tion. However, a discussion of this mechanism is beyond
the scope of this paper.

4
xii operator schemata explicitly distinguish between

causal e�ects (that change the state of the external world)
and observational e�ects (that only change the state of xii's
model) as explained in (Etzioni et al. 1992).

5This is written in the operator e�ects as
(cause (length ?f ?l) U).

(defoperator LS ((directory ?d) (path ?dp))

(precond (and (satisfy (current.shell csh))

(satisfy (current.dir ?d))

(satisfy (protection ?d readable))

(find-out (pathname ?d ?dp))))

(effect (forall ((file !f) :in (parent.dir $?d))

(exists ((path !p) (name !n))

(and (observe (parent.dir !f ?d))

(observe (pathname !f !p))

(observe (filename !f !n))))))

(interface (execute-unix-command ("ls -a"))

(sense-func (!f !n !p) (ls-sense ?dp))))

Figure 1: UNIX operator. The xii LS operator lists all �les in the current directory. The last two lines specify
the information needed to interface to UNIX. The �rst of these says to output the string \ls -a" to the UNIX
shell. The second says to use the function ls-sense to translate the output of the shell into a set of bindings for
the variables !f, !n and !p.

universal base (Weld 1994). The universal base of such
a formula equals the conjunction �1^: : :^�n in which
the �is correspond to each possible interpretation of
�(v) under the universe of discourse, fC1; : : : ; Cng, i.e.
the possible objects of type t (Genesereth & Nilsson
1987, p. 10). In each �i, all references to v have
been replaced with the constant Ci. For example, sup-
pose that pf denotes the type corresponding to the �les
in the directory /papers and that there are two such
�les: C1 = a.dvi and C2 = b.dvi. Then the universal
base of \Forall f of type pf make printed(f) true" is
printed(a.dvi)^printed(b.dvi).
A classical planner can satisfy 8 goals by subgoal-

ing to achieve the universal base, but this strategy
relies on the closed world assumption. Only by as-
suming that all members of the universe of discourse
are known (i.e., represented in the model) can one be
con�dent that the universal base is equivalent to the 8
goal. Since the presence of incomplete information in-
validates the closed world assumption, the xii planner
uses two new mechanisms for satisfying 8 goals:

1. Sometimes it is possible to directly support a 8 goal
with a 8 e�ect, without expanding the universal
base. For example, given the goal of having all �les
in a directory group readable, xii can simply execute
chmod g+r *; it doesn't need to know which �les (if
any) are in the directory.

2. Alternatively, xii can subgoal on obtaining LCW on
the type �i of each universal variable vi in the goal.
Once xii has LCW(�i), the universe of discourse for
vi is completely represented in its world model. At
this point xii generates the universal base and sub-
goals on achieving it. Note that this strategy di�ers
from the classical case since it involves interleaved
planning and execution. Given the goal of printing
all �les in /papers, xii would plan and execute an ls
-a command, then plan to print each �le it found,
and �nally execute that plan.

For completeness, xii also considers combinations of
these mechanisms to solve a single 8 goal, via a tech-
nique called partitioning; see (Golden, Etzioni, & Weld
1994) for details.6 In the remainder of this section we
explain these two mechanisms in more detail.

Protecting 8 links

In the simplest case, xii can use a universally quan-
ti�ed e�ect to directly support a universally quanti-
�ed goal. However, 8 goals, like ordinary goals, can
get clobbered by subgoal interactions; to avoid this,
xii uses an extension of the causal link (McAllester
& Rosenblitt 1991) mechanism to protect 8 goals. A

causal link is a triple, written Ap
G
!Ac, where G is a

goal, Ap is the step that produces G and Ac is the step
that consumes G. We refer to G as the label of the link.
When xii supports a 8 goal directly (i.e., without ex-
panding into the universal base) it creates a link whose
label, G, is a universally quanti�ed formula (instead of
the traditional literal); we call such links \8 links." In
general, a link is threatened when some other step, At,
has an e�ect that possibly interferes with G and At

can possibly be executed between Ap and Ac. For nor-
mal links, interference is de�ned as having an e�ect
that uni�es with :G. Such an e�ect also threatens a 8
link, but 8 links are additionally threatened by e�ects
that possibly add an object to the quanti�er's universe
of discourse. For example, if xii adds a chmod g+r *

step to achieve the goal of having all �les in a directory
group readable, the link would be threatened by a step
which moved a new �le (possibly unreadable) into the
directory. Threats to 8 links can be handled using the
same techniques used to resolve ordinary threats: de-

6Note also that the classical universal base mechanism
requires that a type's universe be static and �nite. xii

correctly handles dynamic universes. Furthermore, xii's
policy of linking to 8 e�ects handles in�nite universes, but
this is not of practical import.

motion, promotion, and confrontation.7 Additionally,
the following rule applies.

� Protect forall: Given a link Ap
G
!Ac in

which G = 8type1x S(x) and the type type1

equals fxjP(x)^ Q(x) ^ : : :^ Z(x)g and a threat
At with e�ect P(foo), subgoal on achieving
S(foo)_:Q(foo)_ : : :_ :Z(foo) by the time Ac is
executed.

For example, suppose a 8 link recording the condi-
tion that all �les in /tex be group readable is threat-
ened by step At, which creates a new �le, new.tex.
This threat can be handled by subgoaling to ensure
that new.tex is either group readable or not in direc-
tory /tex.

Protecting LCW

The other way to satisfy a 8 goal is to subgoal on
obtaining LCW, and then satisfy each subgoal in the
universal base. However, since LCW goals can also get
clobbered by subgoal interactions, xii has to ensure
that actions introduced for sibling goals don't cause
the agent to lose LCW. For example, given the goal
of �nding the lengths all �les in /papers, xii might
execute ls -la. But if it then compresses a �le in
/papers, it no longer has LCW on all the lengths.
To avoid these interactions, we use LCW links which

are like standard causal links except that they are la-
beled with a conjunctive LCW formula. Since LCW(P(x)
^ Q(x)) asserts knowledge of P and Q over all the
members of the set fx j P(x) ^ Q(x)g, an LCW link is
threatened when information about a member of the
set is possibly lost or a new member, for which the re-
quired information may be unknown, is possibly added
to the set. We refer to these two cases as information
loss and domain growth, respectively, and discuss them
at length below. Like threats to ordinary causal links,
threats to LCW links can be handled using demotion,
promotion, and confrontation. In addition, threats due
to information loss can be resolved with a new tech-
nique called shrinking, while domain-growth threats
can be defused either by shrinking or by a method
called enlarging.

Information Loss We say that At threatens Ap
G
!Ac

with information loss if G = LCW(P1 ^ : : :^ Pn), At

possibly comes between Ap and Ac, and At contains an
e�ect that makes R unknown, for some R that uni�es
with some Pi in G. For example, suppose xii's plan

has a link Ap
H
!Ac in which

H = LCW(parent.dir(f,/papers)^length(f; n))

indicating that the link is protecting the subgoal
of knowing the lengths of all the �les in directory

7The �rst two techniques order the threatening action
before the link's producer or after its consumer. Con-
frontation works when the threatening e�ect is conditional;
the link is protected by subgoaling on the negation of the
threat's antecedent (Penberthy & Weld 1992).

/papers. If xii now adds a step which has the action
compress myfile.txt, then the new step threatens
the link, since compress has the e�ect of making the
length of myfile.txt unknown.

� Shrinking LCW: Given a link with condition
LCW(P(x)^Q(x)^ : : :^Z(x)) and threat causing
P(foo) to be unknown (or true), xii can protect
the link by subgoaling to achieve :Q(foo)_ : : : _
:Z(foo)8 at the time that the link's con-
sumer is executed. For example, compress-

ing myfile.txt threatens the link Ap
H
!Ac de-

scribed above, because if myfile.txt is in direc-
tory /papers, then the lengths of all the �les
in /papers are no longer known. However, if
parent.dir(myfile.txt,/papers) is false then the
threat goes away.

Domain Growth We say that At threatens Ap
G
!Ac

with domain growth if G = LCW(P1 ^ : : :^ Pn), At

possibly comes between Ap and Ac, and At contains
an e�ect that makes R true, for some R that uni�es
with some Pi. For the example above in which the

link Ap
H
!Ac protects LCW on the length of every �le

in /papers, addition of a step which moved a new �le
into /papers would result in a domain-growth threat,
since the agent might not know the length of the new
�le. Such threats can be resolved by the following.

� Shrinking LCW (described above): If xii has LCW

on the lengths of all postscript �les in /tex, then
moving a �le into /tex threatens LCW. However, if
the �le isn't a postscript �le, LCW is not lost.

� Enlarging LCW: Given a link with condition
LCW(P(x)^Q(x)^ : : :^Z(x)) and threat causing
P(foo) to be true, xii can protect the link by sub-
goaling to achieve LCW(Q(foo)^ : : :^Z(foo)) at the
time that the link's consumer is executed. For ex-
ample, moving a new �le xii.tex into directory

/papers threatens the link Ap
H
!Ac described above,

because the length of xii.tex may be unknown.
The threat can be resolved by observing the length
of xii.tex.

Note that an e�ect which makes some Pi false does
not pose a threat to the link! This corresponds to an
action that moves a �le out of /papers | it's not a
problem because one still knows the lengths of all the
�les that remain.

Discussion

Given the new ways of resolving goals and threats, how
much larger is the xii search space than that of ucpop?
xii has an additional type of open condition: the LCW

goal. Since LCW goals, being conjunctive, can be solved
using a combination of LCW e�ects, this would seem

8Note the di�erence between shrinking and protecting
a 8 link. Unlike the 8 link case, shrinking does not have a
disjunct corresponding to S(foo).

to result in a large branching factor. In practice, this
is not the case, because LCW goals tend to be short.
In xii, 8 goals can be solved by two additional mech-
anisms: 8 links and partitioning. The addition of 8
links increases the branching factor, but often results
in shorter plans, and thus less search. Partitioning,
in the worst case, has a branching factor equal to the
number of predicates in the domain theory, but in prac-
tice, xii partitions only on predicates that could po-
tentially be useful. The number of such predicates is
typically small. Nonetheless, partitioning can still
be expensive, and search control heuristics that limit
partitioning are useful.
xii also adds three new ways of resolving threats;

none of them apply to the standard causal links sup-
ported by ucpop, so the branching factor for threats
to these links is unchanged. For the new links sup-
ported by xii, the branching factor for threat resolu-
tion is increased by at most k, where k is the number
of conjuncts in the LCW condition or in the universe of
the 8 condition. Presently, k � 3 in all of our UNIX
operators.
The question of completeness for xii is di�cult to an-

swer, because the notion of completeness is ill-de�ned
in an environment that involves execution. Given
the existence of irreversible actions, such as rm, vis-
iting part of the search space may make a previously
solvable goal unsolvable. For example, the dilemma
posed in Stockton's classic story \The lady, or the
tiger?" (Stockton 1888) is solvable; opening the correct
door will result in winning the game. However, the
protagonist cannot determine what is behind a door
without �rst opening it, and opening the wrong door
means losing the game (and his life). By the formal
de�nition of completeness, a complete planner must
produce a plan guaranteed to win the game, since such
a plan exists, but clearly such a guarantee is impos-
sible. In future work, we hope to de�ne a notion of
completeness that is meaningful in such domains, and
prove that xii conforms to that de�nition.

Redundant Information Gathering
The problem of redundant information gathering is
best illustrated by a simple example. Suppose that
we ask a softbot to �nd an Alaska Airlines
ight from
Seattle to San Francisco, cheaper than $80. The soft-
bot can contact travel agents and airlines, which are
listed in various telephone directories (cf (Levy, Sagiv,
& Srivastava 1994)). In general, the separate informa-
tion sources will contain overlapping information. A
given travel agent might provide information on all
domestic
ights within a given price range, while an
airline will provide information on all
ights it o�ers.
Suppose that the softbot has contacted Alaska Airlines
and failed to �nd a fare less that $80. Unless it knows
that contacting Alaska directly provides exhaustive in-
formation on Alaska
ights, it will be forced to back-
track and pursue its other options. To make matters
worse, a travel agency might be listed in multiple di-

rectories, and may have several phone numbers. Thus,
exploring all possible plans to exhaustion would in-
volve contacting the same travel agency multiple times.
In general, once any exhaustive information gathering
action is successfully executed, additional information
gathering actions are redundant.9

The magnitude of the redundant sensing problem
should not be underestimated (see Table 1 for empir-
ical measurements). Furthermore, the problem of re-
dundant sensing is both domain and planner indepen-
dent; when trying alternative ways of satisfying a goal,
a planner is forced to consider every sensory action at
its disposal. Since each action has preconditions, and
there are multiple ways of achieving these precondi-
tions, the amount of wasted work can increase expo-
nentially with the length of the information-gathering
plan | unless the planner has some criterion for de-
ciding which actions will not yield new information.
Fortunately, LCW is just that: An agent should not

execute, or plan to execute, observational actions (or
actions in service of observational actions) to support a
goal when it has LCW on that goal. In fact, a single LCW
formula can service a wide range of goals. For example,
LCW(parent.dir(f,/tex)), which results from exe-
cuting ls -a in /tex, indicates that xii knows all the
�les in /tex. Thus, it can satisfy any goal of the form
\Find out whether some �le x is in /tex" by exam-
ining its world model | no information gathering is
necessary. In addition, xii can combine LCW formulas
to avoid redundant information gathering on compos-
ite goals. For example, if xii knows all the �les owned
by Smith, and all the �les in /tex, then it can satisfy
the conjunctive goal \Give me all the �les in /tex that
are owned by Smith" by consulting its model.
xii utilizes LCW in three ways:

� Execution pruning: when xii is about to execute
an observational step Ap which only supports links
labeled with goals G1,: : : , Gn, xii checks whether
LCW(Gi) holds for all i. If so, Ap is redundant and
xii does not execute it. Instead, it replaces all links
from Ap with links from the model (DM), since any
information that could be obtained by executing Ap

is already recorded in DM. This simple test pre-
vents xii from executing some redundant informa-
tion gathering steps. However, xii might still do
redundant planning (and execution!) to satisfy Ap's
preconditions, and the preconditions' preconditions,
etc.

� Option pruning: to address this problem, xii tests
for LCW when it computes the set of actions A that
could potentially support a goal G. If LCW(G) holds,
xii can omit observational actions from the set.10

9We cannot simply associate exactly one sensory action
with each goal, a priori, because the agent may fail to sat-
isfy that action's preconditions | in which case trying a
di�erent sensory action is warranted.

10Since xii can subsequently lose LCW due to information

Problem Planner Plans Steps Total

Set Version Examined Executed Time

22 problems, With LCW 420 55 109
13 solvable Without LCW 3707 724 966
14 problems, With LCW 373 55 94
all solvable Without LCW 1002 140 160

Table 1: Reasoning about local closed world information (LCW) improves the performance of the softbot on two
suites of UNIX problems. Times are in CPU seconds on a Sun Microsystems SPARC-10. Without LCW inference
the softbot fails to complete eight of the problems in the �rst set, and one of the problems in the second set, before
reaching a 100 CPU second time bound. With LCW, the softbot completes all the problems. The mean size of DC
(the softbot's store of LCW information) is 155 formulas. The maximum size is 167.

� Post hoc pruning: xii may gain LCW(G) af-
ter A is computed (so option pruning did not ap-
ply) but considerably before any of the steps in A
are about to be executed (so execution pruning is
not yet applicable). This occurs when executing
an action yields LCW(G), or when a binding con-
straint is asserted that constrains one or more of
the variables in G. For instance, xii may not have
LCW(parent.dir(f,d)), but once d is instantiated
to, say, /tex, LCW(parent.dir(f,/tex)) can result
in signi�cant pruning.

In concert, these pruning techniques are surprisingly
powerful, as demonstrated in the next section.

Experimental Results

The reader might question whether redundant sensing
is as common as we suggest, or wonder whether the
cost of utilizing the LCW machinery outweighs the ben-
e�t from pruning xii's search space. To address such
concerns, and to empirically evaluate our LCW imple-
mentation, we plugged xii into the UNIX softbot (Et-
zioni, Lesh, & Segal 1993), providing xii with oper-
ator descriptions of standard UNIX commands, and
enabling it to actually execute the commands by send-
ing (and receiving) strings from the UNIX shell. We
gave the softbot a sequence of goals and measured its
performance with and without LCW. Table 1 quanti�es
the impact of the LCW mechanism on the softbot's be-
havior. We found that our LCW machinery yielded a
signi�cant performance gain for the softbot.
In this experiment, the softbot's goals consisted of

simple �le searches (e.g., �nd a �le with word count
greater than 5000, containing the string \theorem,"
etc.) and relocations. The actions executed in the tests
include mv (which can destroy LCW), observational ac-
tions such as ls, wc and grep, and more. Each exper-
iment was started with DM and DC initialized empty,
but they were not purged between problems; so for

loss or domain growth (described in the previous section),
it has to record this pruning decision and recompute the
options for G if LCW(G) is lost. Doing this in an e�cient
but sound manner is complex | see (Golden, Etzioni, &
Weld 1994) for the details.

each problem the softbot bene�ted from the informa-
tion gained in solving the previous problems.
Maintaining DC introduced less than 15% overhead

per plan explored, and reduced the number of plans ex-
plored substantially. In addition, the plans produced
were often considerably shorter, since redundant sens-
ing steps were eliminated. Without LCW, the softbot
performed 16 redundant ls operations, and 6 redun-
dant pwds in a \typical" �le search. With LCW, on
the other hand, the softbot performed no redundant
sensing. Furthermore, when faced with unachievable
goals, the softbot with LCW inference was able to fail
quickly; however, without LCW it conducted a massive
search, executing many redundant sensing operations
in a forlorn hope of observing something that would
satisfy the goal. While much more experimentation is
necessary, these experiments suggest that local closed
world reasoning, as implemented in xii, has the po-
tential to substantially improve performance in a real-
world domain.

Related work
xii is based on the ucpop algorithm (Penberthy
& Weld 1992). The algorithm we used for inter-
leaving planning and execution closely follows ipem,
by Ambros-Ingerson and Steel (Ambros-Ingerson &
Steel 1988). Our action language borrows both from
adl (Pednault 1986) and uwl (Etzioni et al. 1992).
Our research on LCW has its roots in the socrates

planner, where the problem of redundant informa-
tion gathering was initially discovered (Etzioni & Lesh
1993). Like xii, socrates utilized the UNIX do-
main as its testbed, supported the uwl representa-
tion, and interleaved planning with execution. In ad-
dition, socrates supported a restricted representa-
tion of LCW, which enabled it to avoid redundant in-
formation gathering in many cases. Our advances
over socrates include the ability to satisfy universally
quanti�ed goals, and the machinery for automatically
generating LCW e�ects and for detecting threats to LCW

links.
Genesereth and Nourbakhsh (Genesereth & Nour-

bakhsh 1993) share our goal of avoiding redundant in-
formation gathering, but do so using radically di�erent
mechanisms, and in the context of state-space search.

They derive completeness-preserving rules for pruning
the search as well as rules for terminating planning and
beginning execution. However, they do not have no-
tions that correspond to LCW, a database like DC, or
our threat resolution techniques.
Other researchers have investigated alternative ap-

proaches for planning with incomplete information
(see (Olawsky & Gini 1990) for a nice taxonomy).
Contingent planners (Warren 1976; Schoppers 1987;
Peot & Smith 1992) seek to exhaustively enumerate
alternative courses of action; while this strategy is ap-
propriate in critical domains with irreversible actions,
the exponential increase in planning time is daunt-
ing. Decision theory provides an elegant framework
for computing the value of information; however, al-
though work in this direction is promising, many chal-
lenges remain (Wellman 1993). Our approach sacri�ces
the elegance of a probabilistic framework to achieve a
complete implementation able to tackle practical prob-
lems.

Conclusion

This paper describes the fully-implemented xii planner
which uses local closed world information (LCW) to han-
dle universally quanti�ed goals and to avoid the prob-
lem of redundant sensing. Our technical innovations
include the LCW machinery (e�ects, goals, and novel
techniques for resolving threats to LCW links) and the
LCW-based pruning techniques which solve the problem
of redundant information gathering. As demonstrated
in Table 1, the savings engendered by LCW can be quite
large in the UNIX domain. Although our experiments,
and illustrative examples, are drawn from the UNIX
domain, we emphasize that the notion of LCW, and the
techniques introduced in xii, are domain independent.
In future work, we plan to measure the costs and bene-
�ts of LCW in other domains, and to remove the assump-
tion of correct information made by the xii planner.

References
Ambros-Ingerson, J., and Steel, S. 1988. Integrating plan-
ning, execution, and monitoring. In Proc. 7th Nat. Conf.

on A.I., 735{740.

Chapman, D. 1987. Planning for conjunctive goals. Arti-
�cial Intelligence 32(3):333{377.

Etzioni, O., and Lesh, N. 1993. Planning with incomplete
information in the UNIX domain. In Working Notes of

the AAAI Spring Symposium: Foundations of Automatic
Planning: The Classical Approach and Beyond, 24{28.
Menlo Park, CA: AAAI Press.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N.,
and Williamson, M. 1992. An Approach to Planning
with Incomplete Information. In Proc. 3rd Int. Conf. on
Principles of Knowledge Representation and Reasoning.
Available via FTP from pub/ai/ at cs.washington.edu.

Etzioni, O., Golden, K., and Weld, D. 1994. Tractable
closed-world reasoning with updates. In Proc. 4th Int.
Conf. on Principles of Knowledge Representation and

Reasoning.

Etzioni, O., Lesh, N., and Segal, R. 1993. Build-
ing softbots for UNIX (preliminary report). Techni-
cal Report 93-09-01, University of Washington. Avail-
able via anonymous FTP from pub/etzioni/softbots/
at cs.washington.edu.

Genesereth, M., and Nilsson, N. 1987. Logical Founda-

tions of Arti�cial Intelligence. Los Altos, CA: Morgan
Kaufmann Publishers, Inc.

Genesereth, M., and Nourbakhsh, I. 1993. Time-saving
tips for problem solving with incomplete information. In
Proc. 11th Nat. Conf. on A.I., 724{730.

Golden, K., Etzioni, O., and Weld, D. 1994. xii: Planning
for Universal Quanti�cation and Incomplete Information.
Technical report, University of Washington, Department
of Computer Science and Engineering. Available via FTP
from pub/ai/ at cs.washington.edu.

Krebsbach, K., Olawsky, D., and Gini, M. 1992. An
empirical study of sensing and defaulting in planning. In
Proc. 1st Int. Conf. on A.I. Planning Systems, 136{144.

Levy, A., Sagiv, Y., and Srivastava, D. 1994. Towards
e�cient information gathering agents. In Working Notes

of the AAAI Spring Symposium: Software Agents, 64{70.
Menlo Park, CA: AAAI Press.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. 9th Nat. Conf. on A.I., 634{639.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka,
D. R., Etzioni, O., and Gil, Y. 1989. Explanation-based
learning: A problem-solving perspective. Arti�cial Intel-

ligence 40:63{118. Available as technical report CMU-CS-
89-103.

Olawsky, D., and Gini, M. 1990. Deferred planning and
sensor use. In Proceedings, DARPA Workshop on Inno-
vative Approaches to Planning, Scheduling, and Control.
Morgan Kaufmann.

Pednault, E. 1986. Toward a Mathematical Theory of
Plan Synthesis. Ph.D. Dissertation, Stanford University.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proc. 3rd

Int. Conf. on Principles of Knowledge Representation and
Reasoning, 103{114. Available via FTP from pub/ai/ at
cs.washington.edu.

Peot, M., and Smith, D. 1992. Conditional Nonlinear
Planning. In Proc. 1st Int. Conf. on A.I. Planning Sys-

tems, 189{197.

Schoppers, M. 1987. Universal plans for reactive robots in
unpredictable environments. In Proceedings of IJCAI-87,
1039{1046.

Stockton, F. R. 1888. The lady, or the tiger? and other

stories. New York: Charles Scribner's Sons.

Warren, D. 1976. Generating Conditional Plans and Pro-
grams. In Proceedings of AISB Summer Conference, 344{
354.

Weld, D. 1994. An introduction to least-commitment
planning. AI Magazine. Available via FTP from pub/ai/
at cs.washington.edu.

Wellman, M. 1993. Challenges for decision-theoretic plan-
ning. In Proceedings of the AAAI 1993 Symposium on
Foundations of Automatic Planning: The Classical Ap-

proach and Beyond.

