
UCPOP: A Sound, Complete, Partial Order Planner for ADL

J. Scott Penberthy
IBM T.J. Watson Research Center

P.O Box 704
Yorktown Heights, NY 10598

jsp@watson.ibm.com

Daniel S. Weld
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98105

weld@cs.washington.edu

Abstract

We describe the ucpop partial order plan-
ning algorithm which handles a subset of
Pednault's ADL action representation. In
particular, ucpop operates with actions that
have conditional e�ects, universally quan-
ti�ed preconditions and e�ects, and with uni-
versally quanti�ed goals. We prove ucpop is
both sound and complete for this represen-
tation and describe a practical implementa-
tion that succeeds on all of Pednault's and
McDermott's examples, including the infa-
mous \Yale Stacking Problem" [McDermott
1991].

1 Introduction

The investigation of techniques for reasoning about ac-
tions and plans is split into two camps. One camp has
looked at formal characterizations of languages for de-
scribing change while another has attempted to build
actual planners, often losing a precise understanding of
their programs in a forest of pragmatic choices. A few
researchers have described complete algorithms rigor-
ously, but all these approaches su�er from one of two
liabilities.

� Either the planners only handle the restrictive
strips representation (e.g., tweak [Chapman
1987] and snlp [McAllester and Rosenblitt 1991]),

� or the planners represent plans as totally ordered
sequences of actions (e.g., Rosenschein's [1981]
and Kautz's [1982] bigression planners, and Mc-
Dermott's [1991] Pedestal).

Since consensus suggests that partial order planning
is preferable to total order approaches [Minton et al.
1991,Barrett et al. 1991,Barrett and Weld 1992], we
pondered the void in the space of rigorous planners.
McDermott [1991] clearly believed our quest doomed:

\if you want a completeness theorem for your planner,
you had better build a linear planner."

In this paper we show McDermott was overly pes-
simistic. We describe ucpop, a Partial Order Planner
whose step descriptions include Conditional e�ects and
Universal quanti�cation.1 Both universal and existen-
tial quanti�cation are permitted in the step precondi-
tions, e�ect preconditions, e�ect postconditions, and
goals. Although ucpop assumes a closed world (ac-
tions cannot add or delete from the �xed universe of
objects) and does not allow domain axioms or disjunc-
tive preconditions, it is considerably more expressive
than other rigorous partial order planners.

The ucpop algorithm starts with an initial, dummy
plan that consists solely of a \start" step (whose ef-
fects encode the initial conditions) and a \goal" step
(whose preconditions encode the goals). ucpop then
attempts to complete this initial plan by adding new
steps and constraints until all preconditions are guar-
anteed to be satis�ed. The main loop makes two types
of choices: supporting \open" preconditions and re-
solving \threats."

� If ucpop has not yet satis�ed a precondition (i.e.,
it is \open"), then all step e�ects that could pos-
sibly be constrained to unify with the desired
proposition are considered. ucpop chooses one ef-
fect nondeterministically2 and then adds a causal
link [McAllester and Rosenblitt 1991] to the plan
to record this choice.

� If a third step (called a \threat") might possibly
interfere with the precondition being supported
by the causal link, then ucpop nondeterministic-
ally chooses a method to resolve the threat: either
by reordering steps in the plan, posting additional
subgoals, or by adding new equality constraints.

1The name, which we pronounce as \yoo-see-pop", is
an anagram of the capitalized letters.

2In fact, domain dependent information can be used to
guide the choice. Backtracking ensures that all choices will
be eventually considered.

Once ucpop has successfully created and protected
a causal link for every goal in the plan, it halts and
returns a solution.

1.1 Money at Home, Wisdom at Work

Adopting an example from [Pednault 1988], suppose
we had a single briefcase, B, and wanted to use it to
move objects. Pednault formalizes this simple domain
with three operators: MovB(l), for moving a briefcase
and its contents, PutIn(x) for putting an item x in the
briefcase, and TakeOut(x) for removing items from the
briefcase. Our version of these operators is seen below:

TakeOut(x)

Precond : x 6= B
Effects : :In(x)

PutIn(x,l)
Precond : x 6= B ^ At(B,l) ^ At(x,l)

Effects : In(x)

MovB(m,l)

Precond : At(B,m) ^ m 6= l

Effects : At(B,l)
At(z,l) 8z j In(z)^ z 6= B

:At(B,m)

:At(z,m) 8z j In(z) ^ z 6= B

We now demonstrate how ucpop generates plans with
these actions. Since the algorithm is nondeterministic,
we assume a convenient order; in practice, some back-
tracking might be required to �nd a correct plan. Our
example begins with three items: a briefcase B, a pay-
check P , and a dictionary D. All three start at home,
with the briefcase containing the paycheck. The goal
is to have the paycheck at home and the dictionary at
the o�ce. The initial plan is depicted as follows:

At(P,home)

GoalStart At(D,office)
At(B,office)

In each diagram we use italics to represent open pre-
conditions which are treated as subgoals. When these
preconditions are still open (i.e., have not been satis-
�ed), we display them next to the step that requires
them. Steps, which are instances of operators, are
written in typeface. Arrows between steps denote
causal links, showing which subgoals a step has satis-
�ed.

ucpop selects the goal At(B,o�ce), satisfying it by
creating a new MovB(?m1,office) step and making a
causal link from it to the Goal step.3

At(B,office)

MovB(?m1,office) Goal At(D,office)
At(P,home)

Start

3Although this creates another subgoal At(B,?m1) we
have omitted it and its links for simplicity.

ucpop then selects the subgoal At(D,o�ce), creat-
ing another link from the same step used in the
previous goal. This adds a subgoal In(D) to the
MovB(?m1,office) step:

In(D)
Start GoalMovB(?m1,office)

At(D,office)

At(B,office)

At(P,home)

The next goal selected is At(P,home). Since the pay-
check is at home to begin with, ucpop can use this
fact to satisfy the �nal goal as well; ucpop records
this decision by adding a link from Start as shown:

In(D)
Start GoalMovB(?m1,office)

At(D,office)

At(B,office)

At(P,home)

The dashed link denotes a threat from the MovB step:
if the paycheck is left in the briefcase, then moving the
briefcase will negate the initial condition, At(P,home),
and jeopardize the supported goal. ucpop eliminates
the threat by posting a subgoal :In(P) which, in turn,
is satis�ed by adding Takeout(P) to the plan:

Not In(P)TakeOut(P)

Start

At(P,home)

At(B,office)

At(D,office)

MovB(?m1,office) Goal
In(D)

ucpop then selects the subgoal In(D) and creates a
causal link from another new step PutIn(D,?m1), en-
suring that the dictionary is in the briefcase before the
briefcase is moved. The new step also generates two
more subgoals to ensure that the briefcase and dictio-
nary are spatially coincident:

In(D)
GoalMovB(?m1,office)

At(D,office)

At(B,office)

At(P,home)

Start

TakeOut(P) Not In(P)

At(B,home)
At(D,home)
PutIn(D,home)

Finally, ucpop generates two more links from the
initial Start step to satisfy the preconditions of the
PutIn step. This also causes the free variable ?m1
to become bound to home. Since no more unsatis�ed
subgoals are found and since no threats are detected,
ucpop halts with the following partially ordered plan:

PutIn(D,home)

At(D,home)

At(B,home)

Not In(P)TakeOut(P)

Start

At(P,home)

At(B,office)

At(D,office)

MovB(?m1,office) Goal
In(D)

Run Time Unifies Plans
Briefcase 510 177 12
U Briefcase 670 160 11
Homeowners 580 48 24
Sussman 690 233 12
U Sussman 1810 1065 20
YSP 2410 1768 20

Figure 1: These data are taken from an implementa-
tion of ucpop on an IBM RS/6000 model 520. Times
are in milliseconds.

1.2 Pragmatics and Implementation

The ucpop algorithm has been implemented in Alle-
gro Common Lisp and runs on a variety of platforms.4

Tomaintain completeness we use A* or IDA* search to
implement the exploration of nondeterministic choices.
Figure 1 shows the actual run times for the brief-
case example and others found in the literature [Mc-
Dermott 1991,Pednault 1986,Pednault 1988,Sussman
1975]. The number of uni�cations and the total num-
ber of partial plans that ucpop considered when solv-
ing a particular planning problem are also shown.

The problems in �gure 1 are summarized as follows:

� Briefcase. Pednault's conditionalized briefcase
domain. The \U" before a problem indicates the
use of universal quanti�cation in postconditions,
as described in this paper.

� Homeowners. You bought a home, turn on
the water, and water pours out of holes in the
wall. You can paste over the holes and/or �x the
plumbing. However, pasting holes before �xing
the plumbing is useless [Pednault 1991].

� Sussman. We tested on two versions of the
Sussman anomaly. The \U Sussman" problem
foregoes the clear(b) axiom and instead uses
8x :on(x; b), introducing numerous subgoals.

� YSP. McDermott's Yale Stacking Problem, a
variation of the Sussman anomaly that uses the
above predicate.

We observe that ucpop found the Yale Stacking Prob-
lem quite easy, repudiating McDermott's [1991] belief
that it would be \almost impossible for a nonlinear
planner. (p 405)" The combinatorics of handling uni-
versal preconditions and multiple interacting steps are
exempli�ed by increasing time.

1.3 Overview

In this paper we make the following contributions:

4Send mail to weld@cs.washington.edu for information
on acquiring the code.

� A clear and simple description of the ucpop plan-
ning algorithm.

� A proof of ucpop's soundness.

� A proof of ucpop's completeness.

In the next section we review Pednault's ADL (the
language ucpop uses to represent actions) and detail a
few simplifying assumptions. We then (sections 3 and
4) describe a representation for partially ordered plans
and present the ucpop algorithm. Section 5 presents
our core results: proofs of soundness and completeness.
The paper concludes with a brief discussion of related
work.

2 Representing Actions

Frustrated with the restrictive strips representation
but frightened by the prospect of implementing a plan-
ner for the full situation calculus, we gravitated natu-
rally toward Pednault's [1986,1989]Action Description
Language (ADL). ADL is essentially a reformulation
of the situation calculus into action schemata, akin to
the add and delete lists of STRIPS [Fikes and Nilsson
1971]. ADL is more expressive than STRIPS yet less
expressive than full, �rst-order logic.

2.1 Action schemata

The semantics of ADL are based on the algebraic
structures (models) used to characterize states of the
world. An action, a, in ADL is a set of state pairs
�s; t� where action a can be executed in state s to
produce state t. The association between a state s
and state description � is indicated by the \models"
symbol j= and is written s j= �. An action schema
in ADL, which more closely resembles the add and
delete lists of STRIPS, characterizes a set of possi-
ble actions. Schemata are described by four optional
groups of clauses:

1. Precond, the preconditions,

2. Add and Delete, a set of formulae describing
the set of tuples to be added (deleted) to the in-
terpretation of some relations R in the resulting
state t, and

3. Update, a set of relations describing how func-
tions change in t from s.

Pednault's version of our MovB(m,l) schema is then:

MovB(l)
Add : At(B,l)

At(z,l) 8z j In(z)^ z 6= B

Delete : At(B,m)
At(z,m) 8z j In(z) ^ z 6= B

We merge the two Add and Delete categories into
a single Effects category. The notion of \adding" a

tuple for R() is encoded as before. Deleting a tuple
from R() is encoded by asserting :R(). We note that
this technique is merely a syntactic variant of Ped-
nault's action representation. In this paper we also
forbid the use of the Update category as well as dis-
junction in preconditions.5 We insist that all neces-
sary preconditions be explicitly stated. This diverges
from Pednault's [1986] approach, where he assumed
preconditions could be inferred from the world state.
Free variables in schemata are implicitly existentially
quanti�ed, serving as placeholders for future interpre-
tations. Finally, equality constraints can only involve
variables or variables and constants. All constants
are assumed unique; their value cannot be changed
through actions.

2.2 Secondary preconditions

Pednault represents action schemata internally as sets
of causation and preservation preconditions collec-
tively known as \secondary preconditions." Intu-
itively, a causation precondition of an action A for
some relation R, �A

R, speci�es all conditions under
which A will cause R to be added to the world state.
The preservation preconditions of an action A and re-
lation R, �A

R completely specify the conditions under
which R is not deleted from the world state; hence, the
conditions that \preserve" the truth value of R. For
example, the following is a preservation condition for
At(u; v) with respect to action MovB(m,l):

�
MovB(m;l)

At(u;v)
� :[(u = B^v = m)_(u 6= B^v = m^In(u))]

The �rst disjunct above corresponds to moving the
briefcase from location m, thus a�ecting At(B; m). The
second disjunct corresponds to moving any item z

that is in the briefcase, thus a�ecting At(z; m). En-
suring that neither disjunct holds true thus preserves
the value of At(u; v) whenever a MovB is executed.

McDermott [1991] represented action schema as sec-
ondary preconditions to create a provably complete,
total-order planner for ADL. While generating these
secondary preconditions is straightforward (given the
techniques found in Pednault's thesis [1986]) the re-
sulting expressions are often unwieldy, containing mul-
tiple disjunctions, equality constraints and functionals.
McDermott simpli�ed these formulae through the use
of heuristic rules for e�ciency purposes. The resulting
algorithm, however, sacri�ced completeness and pro-
duced anomalous behavior for some simple tasks.

We chose a di�erent approach. Our key insight was to
�rst separate the logical connectives and relations from

5While our implementation now successfully handles
disjunctive preconditions and we have almost �nished im-
plementing a class of metric updates, we have not extended
our proofs to these cases.

the metric functions and equality constraints. Next,
we realized that generating a complete, disjunctive,
secondary precondition was unnecessary in many cir-
cumstances. For example, not all disjuncts might be
required for a particular planning task. We then de-
vised an algorithm that constructed the secondary pre-
conditions dynamically, introducing constraints and
logical connectives only when absolutely necessary.

2.3 Steps and E�ects

Instead of representing an action schemata as a com-
plex set of secondary preconditions, we convert action
schemata into canonical tuples called steps and e�ects.
These tuples permit ucpop to quickly identify the rel-
evant parts of each add or delete condition when gen-
erating (or extending) a secondary precondition. We
believe this results in a considerably more e�cient re-
gression process (see the comparison to pedestal in
section 6).

De�nition A step S is a triple ��; "; �� where �,
the step preconditions, is a set of quanti�ed literals;
", the step e�ects, is a set of e�ects; and, �, the step
constraints, is a set of equality constraints on free vari-
ables in �.

The notations �S , �S and "S refer to the sets �; � and
" within step S. �S are the common preconditions
among all e�ects ". The equality constraints in � ap-
ply to all formulae used in the e�ects " as well as the
preconditions �. The binding constraints � are repre-
sented as a set of (possibly negated) pairs, either (u; v)
or :(u; v). The former indicates that the free variables
(or constants) u and v must codesignate, i.e., u and v
unify in any well-formed formula. The latter, :(u; v)
indicate non-codesignation, i.e., u and v can not unify
in any well-formed formula. The set of bindings � thus
specify an equivalence relation (written \��") on plan
variables and constants. We will say that a pair (u; v)
is consistent with a set of bindings � when u � v
holds true under the relation �� . Similarly, :(u; v) is
consistent when u � v does not hold true under �� .

Each e�ect e 2 "S is then represented as follows. The
notations �E , �E and �E refer to the sets �; � and �
within e�ect E.

De�nition An effect E is a triple ��; �; �� where
�, the e�ect preconditions, is a set of quanti�ed liter-
als; �, the e�ect postconditions, is a set of quanti�ed
literals; and �, the e�ect binding constraints, is a set
of equality constraints on free variables in � and �.

The step and e�ect tuples clearly distinguish between
the logical connectives and equality constraints re-
quired by secondary preconditions. When the ucpop
algorithm wants to generate part of a causation pre-
condition for some relation R, it looks for an e�ect
tuple e = ��; �; �� where � ` R. Recall that the cau-

sation precondition �A
R dictates all conditions under

which an action A will cause R to become true. Since
the e�ect e captures at least one possible way in which
the action A can generate R, (i.e., �e ` R), it must be
true that �e ^ �e ` �A

R. ucpop can then post the
conjuncts of �e as new subgoals and �e as new con-
straints that must be met by the plan. If the action A
were newly instantiated from an action schema into a
step s, ucpop would also post the subgoals �s and �s.
These new goals represent a nondeterministic choice
(i.e., the choice of one disjunct of �A

R), corresponding
to the decision to make sure that e�ect e will be the
true cause of R. If this later proves impossible, ucpop
backtracks.

For example, consider a step ��; "; �� describing the
action MovB(m,l). The precondition, � = fAt(B; m)g,
speci�es that the briefcase must �rst be at some lo-
cation m. The binding constraints, � = f:(m; l)g, re-
quire that the origin and destination be distinct. The
e�ects, ", specify that both the briefcase and its con-
tents move after execution of MovB(m,l). This set " is
written below, following the internal representation of
e�ects as tuples of the form ��; �; ��:�
8z �fIn(z)g; f :At(z,m); At(z,l)g; f:(z; B)g�;
�;; f:At(B,m); At(B,l)g; ;�

�

Note the use of the quanti�er 8z to indicate that the
free variable z in the �rst e�ect tuple is to be univers-
ally, not existentially, quanti�ed.

3 Representing Plans and Problems

With a totally ordered sequence of steps, it is fairly
easy to identify the �rst step that causes some propo-
sition c to be true in the world. We call this step the
source of c; if c is true in the initial world state, we
refer to the dummy step, S0, as the source. With par-
tially ordered steps, things are more complex and it
is useful to explicitly record the intended source for a
proposition during planning. Elaborating on the work
of Tate [1977], McAllester [1991], and others we de�ne:

De�nition A causal link is a quadruple

� Si; e; r; Sj �, denoted Si
e;r
!Sj , where r is a (possi-

bly negated) precondition of Sj (or a precondition of
one of its e�ects), and e is an e�ect of Si, and 9q 2 �e
such that q uni�es with r.

To aid in its decision-making, ucpop maintains a list
of causal links from e�ects of steps to goals and sub-
goals. These links represent the assumptions upon
which a plan P relies and are a crucial aspect of par-
tially ordered plans.

De�nition A plan is quadruple �S;B;O;L�, where
S is a set of steps, B is a set of binding constraints on
free variables in S, O is a set of ordering constraints
fSi < Sj j Si; Sj 2 Sg, and L is a set of causal links.

Pednault's plans [1986] only included steps and order-
ing constraints. Our representation denotes the im-
portance of separating the equality constraints from
all other logical connectives. The equality constraints
from secondary preconditions are gathered and kept in
a single set, B. No goals are ever posted for satisfying
equality constraints. Instead, they are immediately
checked against B for consistency. If at any time dur-
ing the planning process this set becomes inconsistent,
the plan is eliminated from consideration; ucpop then
backtracks. Plan tuples can be used to represent the
problem being solved as we now explain.

De�nition A planning problem � is a quadruple
��; I; U;�� where � is a set of action schemata, I is
a set of literals indicating the \initial conditions," � is
a set of quanti�ed clauses indicating the \goals," and
U is a universe of discourse for variables in �; I; and
�.

To assure systematic establishment of goals and sub-
goals that have universal quanti�ed clauses, we map
these clauses into a set of corresponding ground
clauses.

De�nition The universal base � of a �rst-order
clause is de�ned recursively as follows:

� �(�) = � if � contains no quanti�ers.

� �(9x1 . . .xn�) = 9x1 . . .xn�(�),

� �(8x1 . . .xn9y1 . . .yn�) = 9y0
1
. . .y0n�(�

0) where
�0 is a conjunction of formulae identical to �,
one for each possible interpretation of the xi un-
der a universe U . The yi are renamed to unique
names y0i.

For example, suppose that � = f9xAbove(x;A);
8y9wOn(y; w)g. Let the universe of discourse for � be
the pair of blocks, fA;Bg. The universal base �(�)
is the set of three elements:

f9xAbove(x;A); 9w0On(A;w0); 9w0On(B;w0)g

Each clause within �(�) is said to be \universally
ground." This reformation of universally quanti�ed
clauses is similar to the use of Skolem functions, y =
f(x), for existentials y and universals x. Recall that
Skolem functions eliminate universals x by replacing
existentials y with dummy functions f(x) that pro-
duce the corresponding values for each instance of a
universal. Whereas Skolem functions are applied from
the inside out, the universal base is applied from the
outside in.

The universal base of a set of clauses is isomorphic
to the image of all Skolem functions over some set of
clauses �. Instead of using y = f(x), we enumer-
ate the set ff(x0); f(x1); . . . ; f(xn)g for each xi in the
range of f(x) and then generate the appropriate set of

clauses �0 through substitution on the corresponding
universal x, then rename y to y0. Renaming prevents
name con
icts in alternating quanti�ers. We assume
that the universe, U , and hence the universal base is
�nite.

De�nition Let � = ��; I; U;�� denote a planning
problem. The goal plan of �, written g-plan(�), is
a plan �S;B;O;L� where S = fS0; S1g, O = fS0 <
S1g, B = L = ;, the initial step, S0 introduces �'s ini-
tial conditions but has no preconditions or constraints
and the goal step, S1, has �'s goals as preconditions,
but has no e�ects or binding constraints.

In the next section, we describe an algorithm, ucpop,
that takes the goal plan of a problem as input and
systematically adds steps and constraints until it �nds
one that solves the planning problem. In section 5 we
prove that ucpop is sound and complete.

4 The ucpop Planning Algorithm

At the very heart, ucpop is a theorem prover that
resolves step preconditions against e�ect postcondi-
tions. It reduces all quanti�ed formulae into univers-
ally ground propositions and then manipulates them to
create and extend secondary preconditions. These pre-
conditions are then \satis�ed" by creating causal links
and then protecting them from e�ects of other steps.
A common subroutine of ucpop is used throughout
the algorithm:

De�nition MGU(p; q) is a function that returns the
most general uni�er of literals p and q. ? is returned
if no such uni�er exists.

When � is a set of clauses, the notation �nMGU(p; q)
represents the set of clauses �0 resulting from apply-
ing the substitution �nMGU(p; q) to every clause � 2 �.
The form of a general uni�er is taken to be a set of
pairs f(u; v)g, indicating that u and v must codesig-
nate to ensure that p and q unify. This will allow us to
treat binding constraints � as a conjunction of general
uni�ers.

For example,

MGU(In(P); In(x)) = f(x; P)g
MGU(In(D); In(D)) = ;

MGU(At(x; y); In(x)) = ?

4.1 Algorithm overview

The ucpop algorithm (�gure 2) takes three inputs: a
plan �S;B;O;L�, an agenda of outstanding goals G,
and a set of action schemata �. Each entry on the goal
agenda is a pair, �c; S�, in which S denotes a plan step
and c denotes a precondition of that step [Pednault
1986]. If c is an equality constraint on variables (u; v),
we rename the variables to (us; vs) and then add the

Algorithm ucpop(P = �S;B;O;L�; G;�)

1. Termination: If G is empty, report success and
return P .

2. Goal selection: Choose a goal �c; S�2 G. If a

link Si
e;:c
! S exists in L, fail (an impossible plan).

Note that c is universally ground.

3. Operator selection: Nondeterministic-
ally choose any existing (from S) or new (instan-
tiated from �) step Ss with e�ect e and a univers-
ally ground clause p 2 �(�e) where MGU(c; p) 6=?.
If no such choice exists then fail. Otherwise, let

L
0 = L [fSs

e;c
!Sg, B0 = B [MGU(c; p) [�e [�Ss ,

O
0 = O [fSs < Sg, G0 = G� �c; S�, and let

S
0 = S [fSsg.

4. Subgoal generation: If e�ect e has not al-
ready been used to establish a link in L with
bindings MGU(c; p) then let G0 = G and for each
� 2 �(�enMGU(c; p)) add ��; Ss� to G0. If Ss 62 S,
for each � 2 �(�SnMGU(c; p)) also add ��; Ss� to
G0.

5. Causal link protection: Let l be a causal link

Si
ei;q
!Sj in L. Let Sk be any step with an e�ect

ek and postcondition p 2 �ek . Step Sk threat-
ens link l with clause �p 2 �(p) if possibly
Si < Sk < Sj when MGU(:q; �p) 6=? is consistent
with B. For all such Sk, ek, l and �p such that Sk
threatens l with �p, nondeterministically do one
of the following (or, if no choice exists, fail):

(a) Promotion If possibly Sj < Sk, let O
0 =

O [fSj < Skg.

(b) Demotion If possibly Sk < Si, let O
0 = O[

fSk < Sig.

(c) Separation Let O0 = O [fSi < Sk < Sjg
then nondeterministically

i. Choose constraints �0 on existentially
quanti�ed variables such that MGU(:q; �p)
= ? and let B0 = B

0
[�0, or

ii. Choose a precondition r 2 �(�Ek
n

MGU(:q; �p)) and let G0 = G0
[

f�:r; Sk�g.

6. Recursive invocation: If B0 is inconsistent then
fail; else call ucpop(�S0;B0;O0;L0�; G0;�).

Figure 2: The ucpop partial order planning algorithm
handles actions with universally quanti�ed precondi-
tions and e�ects as well as conditional e�ects yet is
sound and complete.

constraint to B (constants remain unchanged). Vari-
able renaming is done when an action schema is �rst
instantiated as a step in the plan (line 3 of ucpop),
following the use of \fresh variables" in [McAllester
and Rosenblitt 1991].

When used at the top level to solve a planning problem
� = ��; I; U;��, the algorithm is called with �'s goal
plan, its universally ground goals, and its schemata:
ucpop(g-plan(�);�(�);�). Note that while the goal
agenda G is a set of tuples �c; S� where c must be
achieved by step S, we sometimes use an abbreviation
for top-level goals. For example, we often write �(�)
rather than the more cumbersome

f�c; S1�j 8c 2 �(�)g

Our algorithm depends on the following assumptions:

� The initial world state is complete.

� The universe of discourse U is �xed and �nite.

� All changes to the world state are dictated by ac-
tions and explicitly stated.

� Actions are deterministic.

� Actions are consistent, i.e., no action will add
both � and :� to any consistent world state under
any condition.

� All relations R are regressively ascertainable ev-
erywhere [Pednault 1986], i.e., the truth value of
every relation R at some step Si can be deter-
mined solely by the actions and the initial state.

The ucpop algorithm continually re�nes an incom-
plete plan P until all goals and subsequent subgoals
are satis�ed. These re�nements include the addition
of new steps to S, the constraining of free variables
through additional codesignation bindings in B, and
the ordering of steps via constraints in O. Lines 3
and 4 dynamically introduce portions of causation pre-
conditions. Line 5 chooses how to create disjuncts of
preservation conditions for some relation q. These rely
heavily on the structure of e�ects and steps.

4.2 E�ciency concerns

The ucpop algorithm is clearly exponential. To im-
prove e�ciency, the ucpop implementation distin-
guishes between static and dynamic propositions and
avoids copying the static world description in each par-
tial plan. The universe of discourse is implemented
as a static, typed hierarchy of lisp objects. Univer-
sal quanti�cation is handled \lazily," using an itera-
tion abstraction that dynamically expands universal
clauses to cover more and more cases (similar to the
plan transformation rule 4.11 in [Pednault 1986]). A
closed world assumption is adopted to prevent a large
"S0 that would normally have several :p e�ects. The
codesignation constraints � are implemented as mono-
tonically converging equivalence classes, similar to the

union-�nd algorithm. Partial orderings on steps are
simple lists of pairs (Si; Sj) () Si < Sj , a departure
from the current trend of complex temporal databases.
ucpop uses A� search (with the same evaluation func-
tion) on every space of partial plans. Although there
are numerous hooks for domain dependent heuristics,
we haven't yet systematically explored their use; we
believe that this avenue o�ers the greatest opportu-
nity for performance improvement.

5 Formal Properties

In this section we prove that ucpop is sound and com-
plete. We adopt the model-theoretic semantics of ADL
and refer the reader to [Pednault 1986] for a complete
description.

5.1 Formalizing Solutions

Soundness implies that every plan produced by ucpop
is a solution to the original problem. Completeness
implies that, if there is a solution to some problem �,
ucpop will �nd it. Both of these concepts rely on the
de�nition of a solution. We construct this de�nition
by starting from notions of world states, then de�ning
what it means to execute actions, execute plans, and
�nally converging on the formal concept of solution.

Recall that states s of the world are algebraic struc-
tures, i.e., models in logic. Steps, which are instances
of ADL action schemata, are modeled by a set of state
pairs �s; t� where the step can be executed in state s
to produce state t. A set of types T describes collec-
tions of objects in U . Each type ti 2 T is a �xed set
of objects fo0; o1; . . . ; ong � U . Types may overlap;
for example, block might be a type representing all
known blocks in U and physob might be a set of all
physical objects. Types play an important role when
determining the scope of universal quanti�ers.

We use a primitive state-based model of time where
all actions are atomic and cannot overlap. Thus, the
temporal history of the world is represented by a linear
sequence of states separated by single actions.

Given these concepts, we now de�ne what it means to
execute a step. We have slightly changed the de�nition
in [Pednault 1986] to correspond to our notation and
assumptions. Deterministic actions insist that every
state s exists in only one pair �s; t� in an action a.
Whereas Pednault assumed a set of initial states, we
assume one complete initial state.

De�nition Let fSig
n
i=0 be a sequence of steps Si and

let W be a state of the world. The result of exe-
cuting fSig

n
i=0 in W, written Result(fSig

n
i=0W),

is de�ned recursively as follows:

� Result(fSig
0

i=0;W) = W

� Result(fSig
n
i=0;W) = t such that

�Result(fSig
n�1
i=0 ;W); t� is a state pair in the

action Sn.

The previous de�nition says nothing about whether
it is feasible to \execute" an action in some state. It
only details what happens to a state s when the action
is applied to produce state t. We now de�ne the no-
tion of executability for partially ordered plans. First,
we de�ne a mapping from partially ordered to totally
ordered plans:

De�nition Let � = ��; I; U;�� denote a planning
problem. A totally ordered sequence of steps fSig

n
i=0 is

a ground topological sort of a plan �S;B;O;L�
if there is a bijection, f , from S to the steps in fSig

n
i=0,

f is a homomorphism with respect to the ordering con-
straints O, there exists a global substitution � that
binds all unbound variables and is consistent with B,
and for every step S in the plan, f(S) = Sn�.

Given this, we can map partially ordered plans into
sets of totally ordered plans, and then de�ne what it
means to execute each one:

De�nition A step A = ��; "; ��, representing a set
of possible actions, is executable in a state s if
and only if s j= �A and �A is consistent with s. A plan
P = �S;B;O;L� is executable in initial state I
if, for every ground topological sort fSig

n
i=0of P, each

step Si is executable in state Result(fSig
i�1
i=0; I).

Recall that a planning problem is a collection of action
schemata, initial conditions, universe, and goals.

De�nition A plan Q = �Sq ;Bq;Oq;Lq� is an en-
hancement of a plan P = �Sp;Bp;Op;Lp� for a
planning problem � = ��; I; U;�� if and only if
Sp � Sq; Op � Oq; Bp � Bq, and Lp � Lq.

De�nition A solution to a planning problem � =
��; I; U;�� is a plan P = �S;B;O;L� where P is
an enhancement of g-plan(�), P is executable in W,
and all Si 2 S are instances of action schemata in �.

Note that if P is a solution, it follows that
Result(fSig

n
i=0; I) j= � since �1 = � and S1 is

executable.

5.2 Soundness

Our proof of soundness relies heavily on Pednault's
causality theorem [1986] which is akin to a version of
Chapman's modal truth criterion [Chapman 1987] for
plans with conditional actions. We restate the causal-
ity theorem here for convenience:

Theorem 1 Pednault's Causality Theorem. A con-
dition ' will be true at a point p during the execution
of a plan if and only if one of the following holds:

1. An action a is executed prior to point p such that

(a) �a
' is true immediately before executing a.

(b) �b
' is true immediately before the execution

of each action b between a and point p.

2. ' is true in the initial state and �a
' is true imme-

diately before the execution of each action a prior
to point p.

Proving soundness means demonstrating that the
ucpop algorithm is correct, i.e., that every answer
from ucpop(g-plan(�);�(�);�) is a correct solution
to the planning problem.

We use a standard technique for recursive algorithms,
proving that a loop invariant holds before and after
every recursion. We use this to show that this invariant
holds whenever ucpop halts. The invariant we use is
de�ned as follows.

De�nition (The ucpop Loop Invariant) If the sub-
goals in the goal agenda G are satis�ed by P , then P
will be a solution to �.

Lemma 2 The ucpop loop invariant holds on the ini-
tial call to ucpop(g-plan(�);�(�);�).

Proof. Trivially, if the goalsG = �(�) are satis�ed for
step S1, then � is satis�ed and P would be a solution.
2

Lemma 3 If the loop invariant holds before an itera-
tion of ucpop, it will hold afterwards.

Proof. By corollary 3.29 of Pednault's thesis [1986],
we can replace goals in G (a subset of his \agenda")
with the causation preconditions of steps in P whose
e�ects achieve those goals and the preservation precon-
ditions of steps that might threaten the goals. Then,
by Pednault's causality theorem [Pednault 1991], if
these preconditions are satis�ed, the original goals G
are satis�ed. We now argue that ucpop correctly per-
forms these goal transformations.

The condition ' and the \point p" of the causality
theorem match the variable c and the step S from line
1 of ucpop. The action a refers to the new or existing
step Ss from line 2 of ucpop. Note that the new steps
Ss are instantiated from � and that this is the only
place where new steps are introduced. Also, note that
case 2 of the causality theorem is handled by choosing
step S0 in line 2 of ucpop.

ucpop diverges from a direct, procedural encoding of
the causality theorem as a result of the following ob-
servation. Instead of requiring that the entire cau-
sation preconditions �a

' be generated and posted as
a subgoal, it is su�cient to post another condition �
that subsumes the more complex formulae, i.e., where
� ` �a

'. These � constraints are exactly those formulae

stored in step and e�ect tuples which, mentioned ear-
lier, are syntactic transformations of action schemata.
Following the assumptions of ucpop we can translate
the causation preconditions fromPednault's thesis and
rewrite them as follows:

�a
' =

_
8e2"a j �e`'

�e ^ �e

�a
x=y = False$ x and y are unique constants;

True otherwise:
�a
x6=y = False$ x and y are the same constant;

True otherwise:

The operator selection line of ucpop chooses an e�ect
e where MGU(c; p) 6=? and p 2 �(�e). Since MGU(c; p)
returns a general uni�er and �(�e) returns a set of for-
mulae p such that �e ` p, if MGU(c; p) 6=? then �e ` c.
Thus, substituting ' for c, ucpop correctly chooses
one disjunct, for e�ect e, of the secondary precondition
�a
'. Since ucpop works with action schema, it dynam-

ically adjusts the set of actions a represented by the
schema by also introducing the constraints MGU(c; p).
Following corollary 3.29, ucpop replaces the original
goal c with �e (line 4) and records this decision as a

causal link Ss
e;c
!S.

Equality constraints a = b for the step S, which are
derived by a disjunction of �e's, are handled as follows.
ucpop renames the variables to as = bs and then adds
them to B (line 3, B0 = B [MGU(c; p) [�e [�Ss). If B
ever becomes inconsistent, at least one of the equality
\goals" is not met. This mimics the secondary precon-
dition �a

x=y = False. Otherwise, any grounding of the
free variables in a consistent set of constraints B would
satisfy the equality goals, subsuming �a

x=y = True.
Thus B is a syntactic translation of goals of the form
a = b at some step S and ucpop correctly posts this
subset of the causation preconditions for step Ss and
e�ect e. This depends upon our assumption that all
free variables are existential and that all constants are
unique. We conclude that ucpop correctly handles
case (1), subcase (a) of the causality theorem.

Case (1), subcase (b) and case (2) of the causality the-
orem require preservation preconditions for all steps b
that possibly come between step Ss and S in the plan
that requires c to be true at S. Again, we rewrite these
preconditions in terms of our assumptions and tuples,
as follows:

�a
' =

^
8e2"a j �e`'

:�e _ :�e

�a
x=y = False$ x and y are the same constant;

True otherwise:
�a
x6=y = False$ x and y are unique constants;

True otherwise:

ucpop handles subcase b as follows. It either (1) intro-
duces additional step ordering such that subcase b no

longer applies, or (2) follows the previous intuition and
posts goals :q such that :q ` �a

' for all such actions a.
Lines 5a and 5b of ucpop handle the former approach.
Line 5c, in conjunction with the conditions of line 5,
handle the latter (following the previous argument for
causation preconditions).

By [Pednault 1986, corollary 3.29], satisfying the
newly revised goal agenda G0 is equivalent to satis-
fying G. ucpop only recurses when B0 is consistent
and it only introduces new steps from �. Since the
loop invariant holds before the execution of ucpop
every ground topological sort of the original plan P
would be executable if G were satis�ed. By corollary
3.29 and the fact that the action preconditions for Ss
are introduced in line 4, P 0 must also be executable if
the new G0 were satis�ed. Since ucpop monotonically
increases the set of binding constraints, causal links
and steps, each iteration returns an enhancement of
g-plan(�). Thus, P would be a solution if G0 were
true. 2

Lemma 4 If the loop invariant holds before an iter-
ation of ucpop and then ucpop halts, the invariant
still holds.

Proof. ucpop halts in line 1 when the goal agenda G
is empty, without performing any modi�cations. Since
no structures are modi�ed the loop invariant must still
hold after ucpop halts.

Theorem 5 (Soundness) Let � = ��; I; U;�� be a
planning problem. If ucpop(g-plan(�);�(�);�) re-
turns a plan P then P is a solution for �.

Proof. The previous lemmas combine to form a sim-
ple inductive argument that the ucpop loop invari-
ant holds whenever ucpop halts provided that it is
invoked with ucpop(g-plan(�);�(�);�). Since the
goal agenda is empty when ucpop halts, no additional
conditions are required for P to be a solution. Thus,
any plan P returned by ucpop(g-plan(�);�(�);�)
must be a solution to � in and of itself. 2

5.3 Completeness

Before stating the completeness theorem, we present a
few useful corollaries of the soundness theorem.

Corollary 5.1 Let � = ��; I; U;�� be a plan-
ning problem. If fSig

n
i=0 is a solution to �

then for 2 < k < n, fSig
n
i=k is a solution to ��;

Result(fSig
k�1
i=0 ,I), U; ��.

In other words: if an n step plan is a solution to a
planning problem with initial conditions I, then the
last n � 1 steps are a solution to the modi�ed plan-
ning problem which starts with the initial conditions
derived by executing the �rst step in I.

Proof. Follows directly from the de�nition of
Result(fSig

n
i=0; I). 2

De�nition A plan P = �S;B;O;L� is fully sup-
ported if every step Si 2 S is fully supported. A step
S is fully supported in P if its preconditions �S are
fully supported. A precondition r of a step Sj is fully

supported in P if there is a causal link Si
e;r
!Sj 2 L,

Si < Sj 2 O and e�ect e is fully supported. An e�ect
e of step S is fully supported in P if S is fully sup-
ported and every precondition r 2 �e is fully supported.

Corollary 5.2 Let � = ��; I; U;�� be a planning
problem. If ucpop(g-plan(�);�(�);�) returns a plan
P then P is fully supported.

Proof. Follows from the soundness theorem. Note
that each link (line 3) records decisions made by
ucpop as to which steps and e�ects satisfy which pre-
conditions. 2

Theorem 6 (Completeness) Let � = ��; I; U;��
be a planning problem and let fSig

n
i=0 be a solution to

� with no extra steps. With the appropriate search
strategy ucpop applied to g-plan(�) will return a so-
lution, P , such that fSig

n
i=0 is a ground topological

sort of P .

Proof. We use induction on the number of steps
in the totally ordered solution. To �nesse issues of
search control, we use fSig

n
i=0 as an oracle to guide

the construction of the partially ordered plan; McDer-
mott [1991] refers to this as a clairvoyant algorithm.
A* or IDA* search [Korf 1985] is used to maintain
completeness in our implementation.

Base Case: fSig
k
i=0 ^ k = 2.

This means that no plan steps (besides the dummy
initial and goal steps) are necessary to achieve the
goal, i.e., I ` �. Thus a call to clairvoyant
ucpop(g-plan(�);�(�);�) will result in operator se-
lection (step 3) consistently choosing S0 as the estab-
lishing step and making causal links solely to this ini-
tial step. Since no new steps are added, none of the
links can be threatened. Thus ucpop will terminate
with a solution, P , that has no additional steps, satis-
fying our need to have the sequence be a ground topo-
logical sort of P .

Inductive Step: fSig
k
i=0 ^ k > 2.

Given a solution fSig
n
i=0 with at most k�1 steps, i.e.,

n < k, we assume inductively that clairvoyant ucpop
correctly generates a solution, P , such that fSig

n
i=0 is a

ground topological sort of an enhancement of P . Now
consider the solution fSig

k
i=0 to the planning problem

��; I; U;��; we show that ucpop �nds a correspond-
ing solution here as well.

Let �0 be the planning problem ��; Result(S1; I);
U; ��. By inductive assumption and corollary 5.1,

clairvoyant ucpop(g-plan(�0); �(�); �) will return a
solution Pa = �Sa;Ba;Oa;La� when given the k � 1
step sequence fSig

k
i=2 as guidance. Pa is very close to

the plan that we are seeking, but the initial step of
Pa is doing double duty | it is acting as the source
for propositions that either S0 or S1 provide in the
original totally ordered solution. To distinguish these,
we de�ne three subsets of the causal links in La.

We �rst denote a set L0 of links whose source propo-
sitions c remain unchanged from the original initial
conditions I until after the step S1 is executed. Thus,
S1 does not delete any of these propositions (al-
though it may add duplicates which are absorbed by
Result(S1; I)):

� L0 = fSi
e;c
!Sj j i = 0 ^ I j= c ^

Result(S1; I) j= c g.

Another, distinct subset of links Ladd contains links
whose source propositions must be added by the exe-
cution of step S1. If a proposition c is not in the initial
conditions I, but is in Result(S1; I), and since S1 is
the only step executed between these two situations, c
can only be caused by some e�ect e in S1:

� Let Ladd = fSi
e;c
!Sj j i = 0 ^ I 6j= c ^

Result(S1; I) j= cg

A third set Ldel contains links whose source proposi-
tions must be \deleted" by the execution of step S1.
If a proposition c was contained in the initial condi-
tions I, but is absent in Result(S1; I), then c must
be deleted by one of S1's e�ects since S1 is the only
step executed between these two situations:

� Let Ldel = fSi
e;c
!Sj j i = 0 ^ I j= c ^

Result(S1; I) 6j= cg

Now consider the execution trace of all choices made
by ucpop in constructing Pa. We can use this trace,
in conjunction with the above sets of links, to care-
fully guide ucpop in solving the original problem �,
producing a plan with n+ 1 = k steps. The only dif-
ference between �0 and � is in the initial state, I. We
will thus have to intervene, guiding ucpop whenever
it wants to create a link from the initial state. Other-
wise, all goals and threat elimination can proceed as
in the execution trace of Pa.

Whenever a link was chosen from L0 for Pa, ucpop
is guided to create a link from the original, initial
conditions captured by an e�ect in S0. Whenever a

link S0
e;c
!Sj was chosen from Ladd or Ldel to create Pb,

ucpop is guided to create a corresponding link S1
e;c
!Sj

from a new step, S1, which is identical to the step S1
in the sequence fSig

k
i=0. All other links can proceed as

before. Finally, after the execution trace from Pa is ex-
hausted, ucpop will have additional goals of the form

�c; S1�. Since S1 was executable in Result(S0; I),
these can be satis�ed by links from the initial state
I without posing new threats. ucpop is then guided
to create these links. The �nal result is an enhance-
ment of g-plan(�) and it must executable in the initial
state since it is nearly identical to Pa, except for the
step S1, which we know is executable. Thus, we have
constructed a solution to � that contains a ground
topological sort fSig

k
i=0. Thus, ucpop is complete. 2

6 Related Work

Our work was directly motivated by that of Chap-
man [1987] and McAllester and Rosenblitt [1991] on
the foundations of partial order strips planning. The
basic SNLP algorithm [Barrett et al. 1991], based on
the work of McAllester, was derived from Chapman's
TWEAK [1987] and Tate's NONLIN [1977]. These
partial-order planners use action representations based
on the STRIPS formalism. Chien [Chien and De-
Jong 1992] introduced conditionals into TWEAK and
proved an incremental convergence to soundness. The
work is parallel to our e�orts on proving ucpop sound.

Pednault provides an elegant theoretical foundation
for total order planning with ADL in [Pednault
1986,Pednault 1988]. This work is extended to han-
dle partial order plans in [Pednault 1991]. Although
ucpop was developed independently from [Pednault
1991], pages 243{244 of that document provide an in-
formal description of lines 3{5 of our algorithm. Ped-
nault's theory of planning and action transcend our
implementation as it encompasses incomplete initial
states, nondeterministic actions, functional updates,
and disjunctive preconditions. While Pednault did
pose a rule-based, plan enhancement algorithm, no
complete implementation of his theory has yet been
attempted. We have selected a large subset of this
language, but are still far from total coverage.

McDermott's Pedestal [1991] was the �rst implemen-
tation of a planner using ADL, but Pedestal used a
total order plan representation. McDermott proved a
simple version of his algorithm complete, but frustra-
tion with performance issues led him to pursue heuris-
tic variations that sacri�ced completeness. We believe
that the fundamental problem with Pedestal is its
brute force generation of entire preservation and cau-
sation preconditions at runtime. Since these formulae
tend to be fraught with redundant formulae and con-
straints, heuristic simpli�cation is the only recourse.

Instead of generating the entire secondary precondi-
tions as suggested by Pednault [Pednault 1986] and
implemented by McDermott [1991], ucpop divides
these preconditions into separate logical, equality, (and
in our current extensions) metric functional aspects;
this allows specialized solvers to deal with the con-
straints in an optimized fashion.

Our work follows that of Collins and Pryor [1992]

where they extended SNLP to handle conditional ef-
fects. They did not, however, consider universal quan-
ti�cation in either preconditions or e�ects nor did they
prove soundness or completeness.

7 Future Plans

We have enhanced the algorithm to handle disjunctive
preconditions and have almost completed the exten-
sion which allows Updates of monotonic metric func-
tions. A high priority is to extend our formal results
to the augmented algorithm. We also wish to allow
actions that create and destroy objects in the universe
of discourse U .

We are surprised by ucpop's performance on the sim-
ple problems on which we have tested it and we plan
to investigate performance issues more thoroughly.
Doubtlessly, ucpop's speed is largely a function of
the simplicity of the classic test problems. Although
we have described our algorithm nondeterministically,
any actual implementation of it must search. It is
manifest that good search techniques are the key to
e�cient planning. As a result, we believe that ucpop
a�ords an excellent platform for experimentation with
search control heuristics [Barrett 1992,Knoblock 1991]
and speed-up learning techniques [Minton 1988,Et-
zioni 1990b,Etzioni 1990a]. We have therefore devel-
oped a model and language for supporting search con-
trol heuristics in ucpop (similar to that in prodigy
[Minton et al. 1989]). Although fully implemented,
our model for search control is still being tested; we
plan to report our �ndings in the near future.

8 Conclusions

This paper presents a clean and elegant algorithm for
partial order planning with an expressive action rep-
resentation. ucpop handles a large subset of ADL,
including actions with conditional e�ects, universally
quanti�ed preconditions and e�ects, and universally
quanti�ed goals. We prove that ucpop is sound and
complete and brie
y describe our full implementation.
We believe that ucpop's simplicity and e�cient im-
plementation makes it an excellent vehicle for further
research on planning and learning.

ACKNOWLEDGMENTS

This research was funded in part by National Science
Foundation Grant IRI-8957302, O�ce of Naval Re-
search Grant 90-J-1904, and a grant from the Xerox
corporation. Ed Pednault made many detailed and
helpful suggestions; we also acknowledge useful discus-
sions with Tony Barrett, Benjamin Grosof, and Steve
Hanks.

References

[Barrett and Weld 1992] A. Barrett and D. Weld.
Partial Order Planning: Evaluating Possible E�-
ciency Gains. Technical Report 92-05-01, Univer-
sity of Washington, Department of Computer Sci-
ence and Engineering, July 1992.

[Barrett et al. 1991] A. Barrett, S. Soderland, and
D. Weld. The E�ect of Step-Order Representations
on Planning. Technical Report 91-05-06, Univer-
sity of Washington, Department of Computer Sci-
ence and Engineering, June 1991.

[Barrett 1992] A. Barrett. Search-Control Heuristics
and Abstraction in Least-Commitment Planning.
In Proceedings of the 1992 Workshop on Problem
Reformulation and Representation Change. NASA
technical Report FIA-92-06, May 1992.

[Chapman 1987] D. Chapman. Planning for Conjunc-
tive Goals. Arti�cial Intelligence, 32(3):333{377,
July 1987.

[Chien and DeJong 1992] S. Chien and G. DeJong.
Incremental Reasoning in Explanation-based Learn-
ing of Plans: A Method and Evaluation. In Proceed-
ings of AAAI-92, August 1992.

[Collins and Pryor 1992] G. Collins and L. Pryor.
Achieving the functionality of �lter conditions in a
partial order planner. In Proceedings of AAAI-92,
August 1992.

[Etzioni 1990a] Oren Etzioni. A Structural Theory of
Explanation-Based Learning. PhD thesis, Carnegie
Mellon University, 1990. Available as technical re-
port CMU-CS-90-185.

[Etzioni 1990b] Oren Etzioni. Why Prodigy/EBL
works. In Proceedings of the Eighth National Con-
ference on Arti�cial Intelligence, 1990.

[Fikes and Nilsson 1971] R. Fikes and N. Nilsson.
STRIPS: A new Approach to the Application of
Theorem Proving to Problem Solving. Arti�cial In-
telligence, 2(3/4), 1971.

[Kautz 1982] H. Kautz. A �rst order dynamic logic
for planning. Tech Rept CSRG-144, Department of
Computer Science, University of Toronto, 1982.

[Knoblock 1991] C. Knoblock. Automatically Gener-
ating Abstractions for Problem Solving. PhD thesis,
Carnegie Mellon University, 1991. Available as tech-
nical report CMU-CS-91-120.

[Korf 1985] R. Korf. Depth-�rst iterative deepening:
An optimal admissible tree search. Arti�cial Intel-
ligence, 27(1), 1985.

[McAllester and Rosenblitt 1991] D. McAllester and
D. Rosenblitt. Systematic Nonlinear Planning. In
Proceedings of AAAI-91, pages 634{639, July 1991.

[McDermott 1991] D. McDermott. Regression plan-
ning. International Journal of Intelligent Systems,
6:357{416, 1991.

[Minton et al. 1989] Steven Minton, Jaime G. Car-
bonell, Craig A. Knoblock, Daniel R. Kuokka, Oren
Etzioni, and Yolanda Gil. Explanation-based learn-
ing: A problem-solving perspective. Arti�cial In-
telligence, 40:63{118, 1989. Available as technical
report CMU-CS-89-103.

[Minton et al. 1991] S. Minton, J. Bresina, and
M. Drummond. Commitment Strategies in Plan-
ning: A Comparative Analysis. In Proceedings of
IJCAI-91, August 1991.

[Minton 1988] S. Minton. Quantitative Results Con-
cerning the Utility of Explanation-Based Learning.
In Proceedings of AAAI-88, pages 564{569, August
1988.

[Pednault 1986] E.P.D. Pednault. Toward a mathe-
matical theory of plan synthesis. PhD thesis, Stan-
ford University, December 1986.

[Pednault 1988] E.P.D. Pednault. Synthesizing plans
that contain actions with context-dependent e�ects.
Computational Intelligence, 4(4):356{372, 1988.

[Pednault 1989] E.P.D. Pednault. Adl: Exploring the
middle ground between strips and the situation cal-
culus. In Proceedings Knowledge Representation
Conf.,, 1989.

[Pednault 1991] E.P.D. Pednault. Generalizing non-
linear planning to handle complex goals and ac-
tions with context-dependent e�ects. In Proceedings
IJCAI-91, July 1991.

[Rosenschein 1981] S.J. Rosenschein. Plan synthesis:
A logical perspective. In Proceedings of IJCAI-81,
August 1981.

[Sussman 1975] G. Sussman. A Computer Model of
Skill Acquisition. American Elsevier, New York,
1975.

[Tate 1977] A. Tate. Generating Project Networks. In
Proceedings of IJCAI-77, pages 888{893, 1977.

[Weld and de Kleer 1989] D. Weld and J. de Kleer,
editors. Readings in Qualitative Reasoning about
Physical Systems. Morgan Kaufmann, San Mateo,
CA, August 1989.

