

1

Understanding

GPGPU Vector Register File Usage
Mark Wyse*

wysem@cs.washington.edu

AMD Research, Advanced Micro Devices, Inc.

Paul G. Allen School of Computer Science & Engineering, University of Washington

ABSTRACT
 Graphics processing units (GPUs) have emerged as

a favored compute accelerator for workstations, serv-

ers, and supercomputers. At their core, GPUs are

massively-multithreaded compute engines, capable of

concurrently supporting over one hundred thousand

active threads. Supporting this many threads requires

storing context for every thread on-chip, and results in

large vector register files consuming a significant

amount of die area and power. Thus, it is imperative

that the vast number of registers are used effectively,

efficiently, and to maximal benefit.

 This work evaluates the usage of the vector register

file in a modern GPGPU architecture. We confirm the

results of prior studies, showing vector registers are

reused in small windows by few consumers and that

vector registers are a key limiter of workgroup dis-

patch. We then evaluate the effectiveness of previously

proposed techniques at reusing register values and

hiding bank access conflict penalties. Lastly, we study

the performance impact of introducing additional vec-

tor registers and show that additional parallelism is

not always beneficial, somewhat counter-intuitive to

the “more threads, better throughput” view of

GPGPU acceleration.

1. INTRODUCTION
 Contemporary graphics processing units (GPUs) are

incredibly powerful data-parallel compute accelera-

tors. Originally designed exclusively for graphics

workloads, GPUs have evolved into programmable,

general-purpose compute devices. GPUs are now used

to solve some of the most computationally demanding

problems, in areas ranging from molecular dynamics

to machine intelligence. The rapid adoption of GPUs

into general-purpose computing has given rise to a

new term describing these devices and use: General-

Purpose GPU (GPGPU) computing. In this context,

GPUs are no longer bound to their traditional domain

of graphics, but they are commonly viewed as the

workhorse for computationally intense applications.

 As the use of GPUs has expanded, the architecture

of GPGPU devices has evolved. GPGPUs are mas-

sively-multithreaded devices, concurrently operating

on tens to hundreds of thousands of threads. Unlike

CPUs, which target low-latency computation, GPUs

excel at high throughput computation. Achieving high

throughput requires supporting many threads, each re-

quiring on-chip context. This context typically in-

cludes shared memory space, program counters, syn-

chronization resources, and private storage registers.

Maintaining context on-chip enables multithreading

among the thousands of active threads, with single-cy-

cle context switching between groups of threads.

However, the required context consumes millions of

bytes, orders of magnitude more than the context of

the few threads present in a traditional CPU. The vec-

tor register file storage space alone is typically larger

than the L1 data caches and consumes as much as 16

MB in a state-of-the-art, fully configured AMD

Radeon™ RX “VEGA” GPU [8][9]. With a consider-

able amount of storage, die area, and energy being

consumed by the vector register files, it is important to

understand the use of this structure in GPGPU appli-

cations so that it may be optimized for performance

and/or energy-efficiency.

 This paper examines modern GPGPU architectures,

focusing on their use of vector general-purpose regis-

ters and the vector register subsystem architecture.

Our study consists of three main parts. First, we repli-

cate experiments from prior work revealing the vector

register usage patterns for a set of compute applica-

tions. We confirm the results of prior work, despite

modeling a GPGPU architecture based on products

from a different device vendor. Second, we evaluate

the effectiveness of operand buffering and register file

caching as proposed in prior work. Our experiments

show these structures to be highly effective at hiding

bank access conflict penalties and enabling vector reg-

ister value reuse. Third, we examine the potential par-

allelism and occupancy benefit of a GPGPU architec-

ture providing (physically or logically) twice the num-

ber of vector general-purpose registers. We show that

the benefit of higher wave-level parallelism and device

* This work was completed while the author was a Post-Grad

Scholar at AMD Research in Bellevue, WA

AMD, the AMD Arrow logo, Radeon, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product names

used in this publication are for identification purposes only and may
be trademarks of their respective companies.

2

occupancy is application dependent. For many devel-

opers this notion remains counter-intuitive.

 The remainder of the paper is organized as follows.

Section 2 provides background on GPGPU architec-

ture and execution. Section 3 describes our analysis

and simulation methodology. Sections 4, 5, 6, and 7

detail our experimental results. Section 8 covers re-

lated work, Section 9 provides thoughts on future re-

search directions, and we conclude in Section 10.

2. BACKGROUND
 GPUs are massively-multithreaded processing de-

vices that support over one hundred thousand active

threads. Supporting this many active threads requires

an architecture that is modular and compartmental-

ized, as well as a programming model to express data-

parallel computation. This section details the GPGPU

programming model, describes the hardware execu-

tion model, and details the specific GPU architecture

used in this study.

2.1 GPGPU Programming Model
 GPGPUs use a data-parallel, streaming computation

programming model. In this model, a program, or ker-

nel, is executed by a collection of work-items

(threads). The programming model typically uses the

single instruction, multiple thread (SIMT) execution

model. Work-items within a kernel are subdivided into

workgroups by the programmer, which are further

subdivided into wavefronts by hardware. The work-

items within a wavefront are logically executed in

lock-step. All work-items within a workgroup may

perform synchronization operations with one another.

AMD’s GCN architecture [2] also includes scalar in-

structions that are executed on the scalar ALU. These

scalar instructions are generated by the compiler,

transparent to the programmer, and are intermixed

with vector instructions in the instruction stream. Sca-

lar instructions are used for control flow or operations

that produce a single result shared by all work-items in

a wavefront.

2.2 GPGPU Hardware Execution Model
 Modern GPU architectures execute kernels using a

SIMD (Single Instruction, Multiple Data) hardware

model. As mentioned above, a kernel is composed of

many work-items that are collected into workgroups.

The workgroup is the unit of dispatch to the Compute

Units (CUs), which is the hardware unit responsible

for executing workgroups. A CU must be able to sup-

port at least one full-sized workgroup, but may be able

to execute additional workgroups concurrently if hard-

ware resources allow. All work-items from the same

workgroup are executed on the same CU. A GPU de-

vice contains at least one CU, but it may contain more

to facilitate execution of many workgroups concur-

rently.

 Within a CU, the SIMD unit is the hardware compo-

nent responsible for executing wavefronts. Each wave-

front within a workgroup is assigned to a single SIMD

within the CU the workgroup is dispatched to. The

SIMD unit is responsible for executing all work-items

in a wavefront in lock-step. Each SIMD has access to

a scalar ALU (SALU), a branch and message unit, and

memory pipelines.

 The wavefront size is a hardware parameter that may

change across architecture generations or between de-

vices capable of executing the same Instruction Set

Architecture (ISA) generation. Programmers should

not rely on the wavefront size remaining constant

across hardware generations and should not have de-

pendencies on a specific wavefront size in their code.

2.3 Baseline GPGPU Architecture
 In this section we detail the CU architecture em-

ployed in our study. Figure 1 depicts the architecture

of the CU we model, which is capable of executing

AMD’s GCN3 ISA [3]. Without loss of generality, we

elect to use AMD’s terminology where applicable.

 The CU used in our study contains two SIMD Vector

ALUs (VALUs), two Scalar ALUs (SALUs), Vector

Register Files (VRFs), Scalar Register Files (SRFs), a

Local Data Share (LDS), forty wavefront slots, Local

Memory (LM), Global Memory (GM), and Scalar

Memory (ScM) pipelines, and the CU is connected to

scalar, data, and instruction caches. The following

subsections detail the main blocks within the CU. Note

that the Scalar Cache and I-Cache are shared between

Figure 1. Sample CU Architecture.

I-CacheScalar Cache

Compute Unit (CU)

Instruction Fetch

WF Context 1

Dependency Logic

Instruction Arbitration & Scheduler

Execution Units

Global

Memory

Pipeline

Local

Memory

Pipeline

Scalar

Memory

Pipeline

Data CacheLDS

SIMD VALU SALU

Vector RF Scalar RF

WF Context 2 WF Context N

SIMD VALU SALU

Vector RF Scalar RF

3

multiple CUs, while all other blocks are private per

CU.

2.3.1 Wavefront Context

 Each CU contains a total of forty wavefront context

slots [2]. The wavefront slots are divided equally

among the SIMD VALUs, and all instructions from a

wavefront are executed by the same SIMD/SALU pair

for the duration of the wavefront’s life. The wavefront

context consists of the program counter, register state

information, synchronization and memory counters,

and an instruction buffer.

2.3.2 SIMD VALU

 Each SIMD within the CU is a sixty-four wide Vec-

tor ALU (VALU), capable of issuing for execution one

sixty-four wide vector instruction per cycle.

2.3.3 Vector Register File Subsystem

 The Vector Register File (VRF) subsystem consists

of banked vector register files, containing 1024 64-

wide by 32-bit Vector General-Purpose Registers

(VGPRs) [3], Operand Buffers (OB) [12][15], and reg-

ister file caches (RFC) [12]. There is a private VRF,

OB, and RFC per SIMD VALU. Figure 2 depicts the

various components and operand delivery paths in the

VRF subsystem.

2.3.3.1 Banked VRF

 The vector register file associated with each SIMD

unit contains 128 KB of storage. A CU with two

VALUs and two VRFs contains 256 KB of VGPR

storage [2]. The VRF comprises multiple SRAM-

based banks. Each bank has one read port and one

write port, and both a read and a write may occur in

the same cycle. In this study, we configure the VRF to

have four banks, with each bank holding 128 VGPRs

of 64 by 32-bit values. There are 512 VGPRs distrib-

uted across the four banks per VRF, with a total of

1024 VGPRs per CU [3]. The bank width matches the

wavefront size to facilitate reading and writing an en-

tire VGPR per cycle per bank.

2.3.3.2 Operand Buffer

 The Operand Buffer (OB) [12][15] is responsible for

reading the vector source operands of each VALU in-

struction. The primary purpose of the OB is to hide

bank access conflict latency penalties. It is a FIFO

queue, and instructions enter and leave the OB in-or-

der. However, the OB may read source operands for

any instruction present in the FIFO in any cycle (i.e.,

out-of-order with respect to the execution order). In

this study, an oldest-first-then-greedy policy is used to

read source operands, but this may be changed in fu-

ture implementations. The OB attempts to read the op-

erands of the oldest instruction first, but will greedily

read operands for younger instructions to avoid bank

conflicts or if there are banks with available read ports

that contain operands for younger instructions. Source

operands are read from the VRF unless the operand

exists in the Register File Cache or will be produced

by an instruction in the VALU pipeline. Reading all

operands for an instruction may take multiple cycles

due to bank conflicts. Bank conflicts may occur both

within (intra-instruction) and between (inter-instruc-

tion) instructions.

2.3.3.3 Register File Cache

 The register file cache (RFC) used in this work is in-

spired by the RFC proposed by Gebhart et al. [12]. The

RFC sits between the VALU and the VRF banks. It

receives results from the VALU pipeline, forwards

those results to the OB and VALU pipeline for future

instructions if needed, and lazily writes back results to

the VRF.

 The RFC holds data for one or more VGPR sized en-

tries. Each entry is one complete 64-wide by 32-bit

VGPR. The RFC is an on-demand allocation and evic-

tion cache, with strict LRU eviction and replacement.

The RFC’s primary purposes are: (a) forwarding

source operands to the OB and VALU pipeline,

thereby reducing the number of VRF reads, and (b) to

hide the latency penalty of bank write access conflicts.

 The RFC can provide up to three VGPRs of 64 32-

bit values to the instruction being dispatched from the

OB to the VALU pipeline over forwarding paths. This

path operates similar to bypass paths in traditional

computational pipelines, and allows source operands

to be delivered directly to the VALU pipeline without

waiting for the values to be read and written from the

VRF, saving access time and energy.

 Operands may also be forwarded from the RFC to

the OB as the OB attempts to read source operands for

instructions. This path is activated when an existing

RFC entry is evicted, and may further reduce source

operand reads performed from the VRF. The evicted

RFC entry is provided to every instruction in the OB

that needs it.

Figure 2. Vector Register File Subsystem Architecture.

R

eg
is

te
r

F
il

e
C

ac
h
e

O
p

er
an

d
 B

u
ff

e
r

Vector RF

Bank 0

Vector RF

Bank 3

Vector RF

Bank 1

Vector RF

Bank 2

Lane 0

Lane 63

Lane 62

Lane 61

Lane 1

Lane 2

SIMD VALU

4

2.3.4 Scalar ALU and Scalar Register File

 AMD’s GCN architecture includes a Scalar ALU

(SALU) to handle execution of scalar instructions. Un-

like vector instructions that operate on each individual

work-item in a wavefront, scalar instructions are exe-

cuted once for all work-items in a wavefront. The pri-

mary purpose of scalar instructions is to handle control

flow and perform thread independent computation for

the wavefront.

 Our CU model includes two Scalar ALUs, with each

SALU being associated to one of the VALUs. Each

SALU has a private Scalar Register File (SRF) con-

taining 800 32-bit Scalar General-Purpose Registers

(SGPRs) [3][8]. The SGPRs are assigned at dispatch

time to wavefronts being executed by the

VALU/SALU pair.

2.3.5 Memory Subsystem

 The memory subsystem used in the baseline archi-

tecture in this paper is modeled after the GCN device

architecture [2][3][8][9]. In this setup, a CU contains

a private L1 vector data cache and Local Data Share

(LDS) scratchpad memory. A CU shares a scalar data

cache and instruction cache with a collection of other

CUs in the system. All three caches (vector, scalar, in-

struction) are supported by a shared L2 cache, which

in turn connects to main memory.

 The vector L1 data cache is a 16 KB, 16-way set as-

sociative, 64-byte cache block SRAM cache [2]. The

shared instruction cache is a 32 KB, 8-way set associ-

ative, 64-byte cache block SRAM cache [2]. The L2

cache is a 512 KB, 16-way set associative, 64-byte

cache block SRAM cache [17]. The L2 cache unifies

the scalar data, vector data, and instruction caches, and

is connected to system memory.

 Each CU also contains a 64KB Local Data Share

(LDS). The LDS is a software managed cache, with 32

banks [3][8][9]. This structure provides a high-band-

width, low-latency, software managed memory and

acts as a data cache bandwidth amplifier.

3. METHODOLOGY
 This section describes the benchmark analysis and

simulation methodologies used for the experiments

presented.

3.1 Benchmark and Kernel Analysis
 In this subsection we detail the static and dynamic

analysis performed to assess register usage and de-

pendency characteristics.

3.1.1 Kernel Analysis

 To evaluate dispatch limits for the benchmarks under

study, we rely on data produced by the compiler and

disassembly tools for AMD’s GCN3 ISA [3][4]. These

tools provide the number of vector and scalar general-

purpose registers required per work-item and wave-

front, respectively. Simulation (methodology below)

provides the number of workgroups executed per ker-

nel dispatch. Combining these data with architectural

parameters of our system, we are able to determine the

resources that limit kernel and workgroup dispatch and

evaluate dispatch limits as architectural parameters are

varied.

3.1.2 Dynamic Register Profiling

 We use the gem5 simulator [14], which includes a

modified version of AMD’s APU gem5 model [7] (de-

tails below) to collect register reuse and producer-con-

sumer data. Simple implementation of the register file

system is sufficient to provide both the number of con-

sumers per value producer and the distance between

producer and consumer for all vector register values.

3.2 The gem5 Simulator
 The gem5 simulator is an execution-driven, cycle-

level microarchitecture simulator that is capable of ex-

ecuting real ISAs on simulated microarchitectures.

AMD’s recent APU extension has added support for

GPU Compute Units within the simulation framework.

The APU model is compatible with gem5’s system

call emulation (SE) mode, where system calls invoked

by simulated applications are either emulated in the

simulator or passed to the host for execution. In this

study, we use an updated version of the AMD APU

compute model that faithfully implements the GCN3

ISA and runs an unmodified, publicly-released ROCm

[6] version 1.1 software stack, with only kernel driver

functionality being emulated. We simulate an APU

with one CPU and a single CU to stress the CU and

VRF to the greatest extent.

 The following subsections detail the instruction

readiness, dispatch, and execution flow in our Com-

pute Unit implementation. The remaining structures

(VALU, SALU, VRF, SRF, etc.) are implemented

faithfully to the descriptions provided in Section 2.3

above.

3.2.1 Wavefront and Instruction Readiness

 As described in the GCN3 architecture, each SIMD

VALU has many associated wavefronts it is responsi-

ble for executing, with our simulated architecture sup-

porting twenty wavefronts per SIMD. Every cycle,

each SIMD evaluates all wavefronts for readiness. A

wavefront is deemed ready to execute if it is active, not

waiting for a synchronization operation to complete,

has at least one instruction to execute, and all true

(RAW) register dependencies are resolved. Register

dependencies are tracked using a scoreboard indicat-

ing which, if any, source operands have not been pro-

duced yet by the various functional units (VALU,

SALU, memory pipelines) and are busy. Each wave-

front that is ready is presented to the instruction dis-

patch unit as a candidate for execution.

5

3.2.2 Instruction Dispatch and Execution

 After wavefronts are checked for readiness, the in-

struction dispatch unit selects and attempts to schedule

for execution up to one wave per execution resource.

The execution resources are the VALUs, SALUs, and

memory pipelines. Each cycle, a scheduler selects a

candidate wave for each resource, typically using an

oldest-first policy.

 To be dispatched for execution, a selected wave must

first gather all source operands from the register files.

Each non-scalar instruction is sent to the vector regis-

ter file, with VALU operations requesting a slot in the

Operand Buffer, and vector memory (VMEM) instruc-

tions requesting access to the VRF banks. VMEM in-

structions receive priority for reading VRF banks.

Once operands are read from the register files, the ap-

propriate execution resources are checked for readi-

ness. An execution resource may disallow instruction

issue due to certain conditions, such as issue period

limitations or full buffers (e.g., for vector memory co-

alescing).

 After all source operands and execution resources

are ready, an instruction is deemed ready for execu-

tion. At this point all non-vector ALU operations will

be issued for execution. VALU operations must make

one final request to the register file cache to allocate

slots for destination registers. If the RFC is unable to

allocate slots for the instruction, VALU instruction is-

sue will stall. Once the RFC accepts the destination

slot allocation request, the VALU operation will be is-

sued to the pipeline for execution.

 At the end of instruction execution, the destination

values will be written into the RFC and the scoreboard

updated to indicate result data are available for use.

Register file write-back operations occur lazily from

the RFC. Memory loads are enqueued in the memory

pipelines and return data in variable latencies depend-

ing on memory system behavior and contention. Loads

update the scoreboard and write-back results to the

VRF once data return from the memory system.

3.3 Benchmarks
 Table 1 lists the benchmarks used in this study. These

applications are obtained from the AMD compute ap-

plications GitHub [1] [5]. The applications used in this

study represent common kernels from HPC and scien-

tific computing workloads that are of interest in the

GPGPU community.

 The selected applications are written using the heter-

ogeneous compute (HC) C++ API. Source code is

compiled using the heterogeneous compute compiler

(HCC) [4], which is based on Clang and LLVM. HCC

is an open source compiler for heterogeneous compute

applications that target the ROCm stack.

4. VECTOR REGISTER USAGE
 Prior works [10] [12] have examined the usage of

vector register values in GPGPU architectures and

concluded that most values produced are consumed a

small number of times within a small instruction win-

dow from the producer instruction, and many registers

do not contain live values for significant portions of

execution.

 The authors of [12] claim up to 70% of values are

read only once, and only around 10% of values are

read more than 2 times. This prior study evaluates an

architecture modeled after those from NVIDIA, thus it

Benchmark Description

Array-BW Memory streaming

Bitonic Sort Parallel Merge Sort

CoMD DOE Molecular-dynamics algorithms

FFT Digital signal processing

HPGMG Ranks HPC systems

MD Generic Molecular-dynamics algorithms

SNAP Discrete ordinates neutral particle transport

application

SpMV Sparse matrix-vector multiplication

XSBench Monte Carlo particle transport simulation

Table 1. Description of evaluated workloads.

Figure 3. Number of reads per vector register value.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
n

t
o

f
A

ll
 V

ec
to

r
V

al
u

es

P
ro

d
u

ce
d

0 Reads 1 Read 2 Reads >2 Reads

6

is worth asking the question: do the same patterns hold

for AMD GPUs and GCN3 ISA code?

 We replicate two of their studies and find that 60-

90% (75% average) of vector values produced are read

exactly once, and 4-13% (10% average) of vector val-

ues produced are read more than twice, as shown in

Figure 3. Further, we find 24-57% (40% average) of

all values consumed were produced within 3 instruc-

tions prior, as shown in Figure 4. In both experiments,

our results are in line with prior work. While not

overly surprising, this adds confidence to the remain-

der of our evaluation and experiments, and confirms

that the codes being used for evaluation exhibit similar

behavior despite differences in implementation, com-

pilers, and ISA.

 Prior studies also examine the liveness of register

values over the course of execution [10] [11]. The au-

thors’ conclusions are that many registers are short-

lived and thus contain no live values for a significant

percentage of a kernel’s execution. We replicated their

results (data not shown) and confirm that the applica-

tions used in our study exhibit similar behavior. No

application utilized all of its compiler-allocated regis-

ters, and all applications had register usage patterns

with significant variation in the number of live register

values throughout execution.

5. REDUCING THE NUMBER OF REGISTER

FILE READS
 One function of the OB and RFC is to reduce the

number of reads from the vector register file. As de-

scribed above, the RFC is able to both recycle oper-

ands to the OB and forward source operands to the

VALU pipeline at instruction dispatch. Each of these

paths reduces the number of VGPR reads performed

from the main register file by the OB. In this experi-

ment, we examine the number of reads required by the

OB for VALU instructions that can be saved by resiz-

ing the RFC, and discuss the performance and imple-

mentation implications of such changes.

 Figure 5 shows the number of reads saved for each

RFC configuration. We sweep RFC sizes from 2

through 512 total entries, with the y-axis showing the

percentage of vector sources that are provided by the

RFC to the OB, or equivalently, the number of VRF

reads saved (higher is better) for VALU instructions.

Figure 7 shows the relative performance for each RFC

configuration. The y-axis is IPC normalized to an RFC

with eight entries (higher is better).

 At small RFC sizes (2 or 4 entries), we observe that

up to 25% of all possible reads required by the OB

from the VRF are avoided. At these sizes, we observe

performance degradation, caused by the timing of

RFC entry allocation in our simulator implementation.

An RFC slot is allocated when an instruction is dis-

patched to the VALU pipeline, and because the pipe-

line latency is larger than the number of RFC slots for

small sizes, instruction issue stalls on RFC allocation.

Figure 4. Lifetime of vector register values.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
n

t
o

f
A

ll
 V

ec
to

r
V

al
u

es

C
o

n
su

m
ed

1 Inst 2 Insts 3 Insts >3 Insts

Figure 5. Number of VGPR reads saved by RFC forwarding paths.

0%

20%

40%

60%

80%

100%

Array-BW Bitonic-Sort CoMD FFT HPGMG MD SNAP SpMV XSBench

V
G

P
R

 V
R

F
 R

ea
d

s
S

av
ed

RFC-2 RFC-4 RFC-8 RFC-16 RFC-32 RFC-64 RFC-128 RFC-256 RFC-512

7

Pipeline bubbles are introduced, diminishing perfor-

mance. This behavior is an artifact of the simulator im-

plementation, and correcting it is left as future work.

 At larger RFC sizes (16 or more entries), we observe

the number of saved reads increases significantly with

RFC size. More than half of the benchmarks studied

are able to serve more than 80% of all required VGPR

operands for VALU instructions from the RFC at the

largest RFC configuration. Although the RFC is as

large as the VRF at size 512, not all source operands

will be captured for reuse by the RFC. Any value

loaded by a memory instruction into VGPRs must be

read from the VRF instead of the RFC to ensure cor-

rectness, until the physical VGPR loaded to is over-

written by a VALU instruction and the result stored in

the RFC. Additionally, some VGPR values are initial-

ized by hardware at wavefront dispatch. Until the

physical VGPRs holding these values are overwritten

by a VALU instruction, if they ever are, those values

will be read from the VRF, not the RFC. At larger RFC

sizes, no performance benefit is observed. This implies

that the RFC and OB are effective at hiding latency

penalties from bank access conflicts at default sizes of

eight RFC entries and four OB entries (details in Sec-

tion 6). Although increasing the RFC size does not

lead to better performance, it may lead to reduced VRF

access energy as more operands can be provided by

the lower energy forwarding paths. However, there are

trade-off costs in implementation (area, power, and la-

tency) as RFC size increases that may make larger

RFCs less energy-efficient.

6. REGISTER BANK CONFLICTS IN A

COMPUTE OPTIMIZED GPU ARCHI-

TECTURE
 The VGPRs are physically stored in a banked regis-

ter file to provide high-bandwidth access without the

overhead of multi-ported register files. Each bank is

the width of a GCN3 wavefront, or 64 32-bit entries,

or equivalently, one VGPR wide, and can read and

write one VGPR per cycle.

 In both the GCN3 and our simulated architecture,

both intra- and inter-instruction bank conflicts may oc-

cur. Intra-instruction read conflicts occur when two or

more source operands in the same instruction reside in

the same physical VGPR bank. Inter-instruction read

conflicts occur when multiple instructions have oper-

ands residing in the same bank and attempt to read

them in the same cycle. Given our GPU architecture

detailed above, the natural question to ask is: how ef-

fective are the RFC and OB at hiding the latency pen-

alties of bank access conflicts?

 We answer this question by performing a limit study

on the performance benefit of removing bank con-

flicts. As discussed in the Section 5, the RFC and OB

significantly reduce the number of accesses to the

Figure 6. Relative performance (IPC) for RFC sizes. Performance at sizes greater than 32 is stable at a relative IPC of 1.

0

0.2

0.4

0.6

0.8

1

Array-BW Bitonic-Sort CoMD FFT HPGMG MD SNAP SpMV XSBench

R
el

at
iv

e
IP

C
RFC-2 RFC-4 RFC-8 RFC-16 RFC-32

Figure 7. Relative performance comparing baseline archi-

tecture to a bank conflict free configuration (Note y-axis

begins at 95%).

95%

96%

97%

98%

99%

100%

101%

R
el

at
iv

e
IP

C

Baseline Bank Conflict Free

8

VRF. However, these structures are also meant to hide

the latency penalty of bank access conflicts. Specifi-

cally, the OB acts as a read buffer to opportunistically

read operands when banks become available and pre-

vent the insertion of bubbles into the VALU pipeline.

To assess the effectiveness of the OB at hiding conflict

penalties, we compare our baseline architecture to one

without bank conflicts in the VRF. We reconfigure the

simulator to place each VGPR in its own VRF bank.

By definition, two different VGPRs will not conflict

with one another in this setup.

 Figure 6 shows the results of this experiment and dis-

plays normalized performance of the baseline and

bank conflict free configurations. The y-axis is perfor-

mance in IPC, normalized to the baseline configura-

tion (higher is better). As shown, there is negligible

change in IPC between the two configurations (less

than +/- 1% typically), indicating that the RFC and OB

are well-suited at handling all bank access conflicts

encountered during dynamic execution.

 There are a few different conclusions that may be

drawn from these results. Perhaps most obvious is that

the RFC and OB are effective at hiding the latency

penalty of any conflicts that occur. This may be due to

the OB’s ability to gather operands out-of-order with

respect to instruction issue order, or that the RFC’s for-

warding paths are able to adequately reduce the num-

ber of VRF accesses required by the OB. Fewer re-

quired accesses means less register file pressure and a

lower probability of bank conflicts. Another possible

explanation is that the applications studied have lower

than expected dynamic register usage. Although most

of the applications are limited by VGPRs in dispatch

(see Section 7), the dynamic usage may not be as great

as the static demand. It is possible that codes in other

domains may have greater dynamic register usage.

7. DISPATCH LIMITS AND WAVE-LEVEL

PARALLELISM
 In this section we examine the resource requirements

for workgroup dispatch for each benchmark studied

and examine the impacts of increased resource availa-

bility in terms of performance and parallelism.

7.1 Workgroup Dispatch Limits
 Launching, or dispatching, a kernel for execution on

a GPU requires a set of resources to be available.

These resources are wavefront slots, vector registers,

scalar registers, and scratch memory. For our applica-

tions, we find that the majority are vector register lim-

ited for dispatch. Table 2 shows the results of offline

analysis on the compute kernels and lists the maxi-

mum number of workgroups that can be dispatched

per CU when only considering one resource at a time

(other resources assumed infinite). Each application

has a single compute kernel, except FFT, which has

both a forward and inverse FFT kernel. The FFT ker-

nels, however, have identical resource requirements

and are executed sequentially. The three columns give

the maximum number of workgroups per CU when

limited only by wavefront slots (WF), VGPR availa-

bility (VGPR), and SGPR availability (SGPR). The fi-

nal column (Limiter) lists which resource limits dis-

patch and prevents further workgroups from being dis-

patched. Of the nine applications we study, only Bi-

tonic-Sort and SpMV are not VGPR limited for dis-

patch.

 Because many applications are limited by VGPR

availability, it is natural to ask: does providing addi-

tional VPGRs result in improved wave-level parallel-

ism and/or performance?

7.2 Increasing Wave-Level Parallelism and

Performance with Additional VGPRs
 General-purpose registers are shown to be the limit-

ing factor in workgroup dispatch for seven of the nine

benchmarks in this study. GPGPUs are throughput ac-

celerators, and it is often thought that improving the

amount of available work or occupancy will result in

Max WG/CU by Re-

source

Application WF VGPR SGPR Limiter

Array-BW 2 1 12 VGPR

Bitonic-Sort 2 4 12 WF

CoMD 40 28 100 VGPR

FFT 40 12 66 VGPR

HPGMG 2 1 4 VGPR

MD 2 1 6 VGPR

SNAP 40 14 100 VGPR

SpMV 20 21 100 WF

XSBench 10 4 25 VGPR

Table 2. Maximum Workgroups per CU per application

when only limited by Wavefront Slots (WF), VGPRs, or

SGPRs.

Figure 8. Relative performance with 2x VGPR per SIMD.

0%

20%

40%

60%

80%

100%

120%

140%

R
el

at
iv

e
IP

C

Baseline 2x VGPR

9

improved performance. However, prior work has

shown that additional parallelism may not always be

beneficial [16].

 In this experiment, we assess the benefits of having

additional VGPRs available per SIMD VALU and

CU. For the benchmarks studied, do the additional

VGPRs (a) allow more workgroups to be dispatched

and increase the wave-level parallelism (WLP), and

(b) if WLP is increased, is there a resulting perfor-

mance benefit?

 To estimate the best-case improvement, we modify

our simulator configuration to have twice the number

of VGPRs per SIMD/CU (1024 VGPR per SIMD, 512

KB per CU), but do not modify any timing for VGPR

access. Assuming no timing penalty for a larger VRF

is optimistic, especially when the register files are as

large as those used in GPUs, but it allows us to study

the upper bound benefit of additional VGPRs.

 Figure 8 and Figure 9 show the results of our exper-

iment. Figure 8 displays relative performance in IPC,

for the baseline and 2x VRF configurations, normal-

ized to the baseline. The y-axis is improvement in IPC

over the baseline, and higher is better. Figure 9 shows

the realized wave-level parallelism (WLP) for the

baseline and 2x VRF configurations. The y-axis is the

average WLP observed normalized to the baseline

configuration, and a value greater than one indicates

greater observed WLP. We measure WLP by counting

the number of already active wavefronts when each

new wavefront is dispatched, then averaging this count

from all wavefront dispatches.

 Our experimental results are mixed. All seven appli-

cations that are VGPR limited for dispatch observe in-

creased average WLP. However, the performance ben-

efit of higher WLP is mixed. CoMD, MD, and

XSBench experience performance degradation, FFT

sees no performance change, and Array-BW,

HPGMG, and SNAP see improved performance.

 For the benchmarks with a performance loss, aver-

aging around 7% worse IPC, we suspect memory ac-

cess divergence is at fault. Prior analysis (data not

shown) revealed MD and XSBench have greater

memory divergence per memory instruction. These

two benchmarks also have long tails in their memory

access latency distributions compared to other appli-

cations, as shown in Figure 10. We only show a subset

of the benchmarks for clarity in the figure; however,

the benchmarks not shown have CDF’s that fall be-

tween those shown for FFT and SpMV. The diver-

gence in memory requests increases the number of

post-coalescing memory requests per instruction and

appears to cause an increase in average memory access

Figure 9. Relative WLP with 2x VGPR per SIMD.

0%

50%

100%

150%

200%

250%

300%

350%

R
el

at
iv

e
W

L
P

Baseline 2x VGPR

Figure 10. CDF of Vector Memory Access Latency - Selected Benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
D

F
 o

f
V

ec
to

r
M

em
o

ry
 A

cc
es

s
L

at
en

cy

Vector Memory Access Latency

FFT Baseline MD Baseline SpMV Baseline XSBench Baseline

FFT 2x VGPR MD 2x VGPR SpMV 2x VGPR XSBench 2x VGPR

10

latency. This issue is exacerbated when additional

wavefronts are active due to an increased VRF size.

The increased memory access time reduces the rate at

which the coalescer may issue additional requests to

the memory system, and creates backpressure on in-

struction issue, manifesting as coalescer access stalls

when attempting to dispatch instructions. It is possible

that a different organization or banking of the memory

caches could alleviate some or all of the long tail of

memory access latencies. Investigating this is left as

future work.

 In summary, we show that a subset of applications

studied achieve greater WLP when twice the VGPRs

are available per SIMD/CU. However, performance

improvement is not guaranteed under increased WLP.

8. RELATED WORK
 The most similar works, and in fact the works we at-

tempt to replicate studies from, are those of Gebhart et

al. [12], Jeon et al. [10], and Yu et al. [11].

 Gebhart et al. [12] evaluate the usage of vector reg-

isters in terms of the number of consumers per value

produced and the value lifetime of certain values. We

replicate the former, and perform a similar experiment

on vector value lifetime. Gebhart et al. also propose

the Register File Cache that we study here. Their sys-

tem includes an Operand Buffer to gather operands

from the register file and feed them to the vector ALU

pipeline. We largely confirm the results of the authors’

study.

 Jeon et al. [10] perform similar analysis for register

value lifetime. Noting that register values are short-

lived and register files are underutilized due to static

waste, the authors propose virtualizing registers to en-

able an architecture with half the number of physical

vector registers, while maintaining performance. In

contrast, we examine the potential benefits of provid-

ing twice the number of vector registers to increase

parallelism and performance.

 Yu et al. [11] propose using a register stash to re-

move the vector register dispatch limit on GPUs. Their

study also examines the usage patterns of registers and

kernel dispatch limits. Their register stash technique

claims to solve the underutilization of the register files,

enable architectures with smaller register files, and im-

prove performance when maintaining a constant reg-

ister file size. Counter to their work, we find that

providing additional registers to increase parallelism

does not always improve performance.

 The primary difference between our work and prior

work is our use of a hardware ISA (GCN3) simulator

instead of a virtual ISA (PTX) simulator. AMD’s

GCN3 ISA is available publicly, making it possible to

faithfully implement the instructions executed by

hardware devices. It is unclear how wide the gap is be-

tween PTX and the hardware microcode executed on

NVIDIA architectures, and what effect this has on the

results of these studies.

9. FUTURE DIRECTIONS AND RESEARCH
 The analysis and experiments performed in this

study provide multiple directions for future research.

First, it may be interesting to extend the study of reg-

ister value usage and lifetime to a much broader set of

applications across many domains. Second, there are

implementation details in our simulator that would

benefit from improvement. Although we do not be-

lieve the results of this study would change signifi-

cantly, confirming our intuition is worth the effort.

Lastly, we propose investigating the impact of the

compiler and generated code on the use of Operand

Buffering and Register File Caches. The inclusion of

these structures is the largest departure from the AMD

GCN architecture in our study, and it is possible that

the results of our study will change if the compiler is

aware of these structures.

 Expanding from the scope of this work, we are inter-

ested in exploring future research related to the com-

pute fabric and memory hierarchy design. Can we

eliminate software-managed scratchpads, which are

only understood by expert programmers, while main-

taining the performance of these structures? Is the

fused multiply add SIMD architecture the most advan-

tageous for GPGPU applications? How do we extract

and exploit scalar execution from data-, thread-, or

task-parallel programs? While many of these ques-

tions have been explored in some manner already, we

believe opportunities still remain.

10. CONCLUSIONS
 This paper examined modern GPGPU architectures,

focusing on their use of vector general-purpose regis-

ters. We successfully replicated results from prior

studies, showing vector register values are used only a

few times and within a short window of the producer.

Notably, we confirmed their results on an architecture

based on AMD’s latest offerings instead of NVIDIA’s

architecture. We then examined the effectiveness of

operand collection and caching structures proposed in

prior literature. Our experiments concluded that these

structures are highly effective at hiding bank access

conflict penalties and reducing the number of required

register file reads through the use of operand forward-

ing. Last, we studied the limiting resources for

workgroup dispatch and evaluate the performance and

parallelism impact of having additional vector gen-

eral-purpose registers. We found that some applica-

tions effectively utilize the additional registers to in-

crease wave-level parallelism, but not all applications

that do so are able to improve performance with in-

11

creased parallelism. We concluded the work with sug-

gestions for future research related specifically to this

work and to the field of general-purpose compute ac-

celeration.

ACKNOWLEDGMENT
 Many thanks are due to my mentors and colleagues

at AMD Research, specifically Brad Beckmann, Tony

Gutierrez, and John Kalamatianos, for their insights,

feedback, and overall helpfulness throughout this pro-

ject.

11. REFERENCES
[1] AMD. Compute Applications. GitHub Repository,

2017. http://github.com/AMDComputeLibrar-

ies/ComputeApps. Accessed: February 27, 2017.

[2] AMD. Graphics Core Next (GCN) Architecture.

AMD Whitepaper, 2012. http://amd.com/Docu-

ments/GCN_Architecture_witepaper.pdf. Accessed:

September 20, 2017.

[3] AMD. Graphics Core Next Architecture, Generation

3. AMD Technical Manual, 2016.

http://gpuopen.com/wp-content/up-

loads/2016/08/AMD_GCN3_Instruction_Set_Archi-

tecture_rev1.1.pdf. Accessed: September 20, 2017.

[4] AMD. HCC. https://www.github.com/RadeonO-

penCompute/hcc/wiki. Accessed: September 20,

2017.

[5] AMD. HCC Sample Applications, GitHub Reposi-

tory, 2016. http://github.com/RadeonOpenCom-

pute/HCC-Example-Application. Accessed: Septem-

ber 20, 2017.

[6] AMD. “ROCm: Platform for Development, Discov-

ery and Education Around GPU Computing”.

http://gpuopen.com/compute-product/rocm. Ac-

cessed: September 20, 2017.

[7] AMD. The AMD gem5 APU Simulator: Modeling

Heterogeneous Systems in gem5.

http://www.gem5.org/wiki/im-

ages/f/fd/AMD_gem5_APU_simulator_mi-

cro_2015_final.pptx. 2015.

[8] AMD. “Vega” Instruction Set Architecture Refer-

ence Guide. http://developer.amd.com/word-

press/me-

dia/2017/08/Vega_Shader_ISA_28July2017.pdf.

Accessed: Sept. 20, 2017.

[9] AMD Radeon Technologies Group. Radeon’s next-

generation Vega architecture.

http://radeon.com/_downloads/vega-whitepaper-

11.6.17.pdf. Accessed: Oct. 3, 2017

[10] H. Jeon, G.S. Ravi, N. S. Kim, M. Annavaram. GPU

Register File Virtualization. MICRO-48. December

2015.

[11] L. Yu, Y. Pei, T. Chen, M. Wu. Architecture Sup-

ported Register Stash for GPGPU. JPDC, 89, pp. 25-

36. 2016.

[12] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keck-

ler, W. J. Dally, E. Lindholm, K. Skadron. Energy-

efficient Mechanisms for Managing Thread Context

in Throughput Processors. ISCA’11. June 2011.

[13] M. Gebhart, S. W. Keckler, W. J. Dally. A Compile-

Time Managed Multi-Level Register File Hierarchy.

MICRO’11. December 2011.

[14] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt,

A. Saidi, A. Basu, J. Hestness, D.R. Hower, T.

Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M.D. Hill, and D.A. Wood. The gem5

Simulator. SIGARCH Computer Architecture News,

39(2), pp. 1–7, 2011.

[15] NVIDIA. NVIDIA’s Next Generation CUDA Com-

pute Architecture: Fermi.

https://www.nvidia.com/con-

tent/PDF/fermi_white_pa-

pers/NVIDIA_Fermi_Compute_Architec-

ture_Whitepaper.pdf. Accessed: Sept. 19, 2017.

[16] V. Volkov. Better Performance at Lower Occu-

pancy. NVIDIA GTC, September 22, 2010.

http://www.nvidia.com/content/GTC-

2010/pdfs/2238_GTC2010.pdf. Accessed: Oct. 10,

2017.

[17] Walton, Mark. “Sixth time lucky: AMD details the

Carrizo APU.” https://arstechnica.com/information-

technology/2015/06/sixth-time-lucky-amd-details-

the-carrizo-apu/. Accessed: Dec. 8, 2017.

http://github.com/AMDComputeLibraries/ComputeApps
http://github.com/AMDComputeLibraries/ComputeApps
http://www.gem5.org/wiki/images/f/fd/AMD_gem5_APU_simulator_micro_2015_final.pptx
http://www.gem5.org/wiki/images/f/fd/AMD_gem5_APU_simulator_micro_2015_final.pptx
http://www.gem5.org/wiki/images/f/fd/AMD_gem5_APU_simulator_micro_2015_final.pptx
http://developer.amd.com/wordpress/media/2017/08/Vega_Shader_ISA_28July2017.pdf
http://developer.amd.com/wordpress/media/2017/08/Vega_Shader_ISA_28July2017.pdf
http://developer.amd.com/wordpress/media/2017/08/Vega_Shader_ISA_28July2017.pdf
http://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf
http://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

