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ABSTRACT 
 Graphics processing units (GPUs) have emerged as 

a favored compute accelerator for workstations, serv-

ers, and supercomputers. At their core, GPUs are 

massively-multithreaded compute engines, capable of 

concurrently supporting over one hundred thousand 

active threads. Supporting this many threads requires 

storing context for every thread on-chip, and results in 

large vector register files consuming a significant 

amount of die area and power. Thus, it is imperative 

that the vast number of registers are used effectively, 

efficiently, and to maximal benefit. 

 This work evaluates the usage of the vector register 

file in a modern GPGPU architecture.  We confirm the 

results of prior studies, showing vector registers are 

reused in small windows by few consumers and that 

vector registers are a key limiter of workgroup dis-

patch. We then evaluate the effectiveness of previously 

proposed techniques at reusing register values and 

hiding bank access conflict penalties. Lastly, we study 

the performance impact of introducing additional vec-

tor registers and show that additional parallelism is 

not always beneficial, somewhat counter-intuitive to 

the “more threads, better throughput” view of 

GPGPU acceleration. 

1. INTRODUCTION 
 Contemporary graphics processing units (GPUs) are 

incredibly powerful data-parallel compute accelera-

tors. Originally designed exclusively for graphics 

workloads, GPUs have evolved into programmable, 

general-purpose compute devices. GPUs are now used 

to solve some of the most computationally demanding 

problems, in areas ranging from molecular dynamics 

to machine intelligence. The rapid adoption of GPUs 

into general-purpose computing has given rise to a 

new term describing these devices and use: General-

Purpose GPU (GPGPU) computing. In this context, 

GPUs are no longer bound to their traditional domain 

of graphics, but they are commonly viewed as the 

workhorse for computationally intense applications. 

 As the use of GPUs has expanded, the architecture 

of GPGPU devices has evolved. GPGPUs are mas-

sively-multithreaded devices, concurrently operating 

on tens to hundreds of thousands of threads. Unlike 

CPUs, which target low-latency computation, GPUs 

excel at high throughput computation. Achieving high 

throughput requires supporting many threads, each re-

quiring on-chip context. This context typically in-

cludes shared memory space, program counters, syn-

chronization resources, and private storage registers. 

Maintaining context on-chip enables multithreading 

among the thousands of active threads, with single-cy-

cle context switching between groups of threads. 

However, the required context consumes millions of 

bytes, orders of magnitude more than the context of 

the few threads present in a traditional CPU. The vec-

tor register file storage space alone is typically larger 

than the L1 data caches and consumes as much as 16 

MB in a state-of-the-art, fully configured AMD 

Radeon™ RX “VEGA” GPU [8][9]. With a consider-

able amount of storage, die area, and energy being 

consumed by the vector register files, it is important to 

understand the use of this structure in GPGPU appli-

cations so that it may be optimized for performance 

and/or energy-efficiency. 

 This paper examines modern GPGPU architectures, 

focusing on their use of vector general-purpose regis-

ters and the vector register subsystem architecture. 

Our study consists of three main parts. First, we repli-

cate experiments from prior work revealing the vector 

register usage patterns for a set of compute applica-

tions. We confirm the results of prior work, despite 

modeling a GPGPU architecture based on products 

from a different device vendor. Second, we evaluate 

the effectiveness of operand buffering and register file 

caching as proposed in prior work. Our experiments 

show these structures to be highly effective at hiding 

bank access conflict penalties and enabling vector reg-

ister value reuse. Third, we examine the potential par-

allelism and occupancy benefit of a GPGPU architec-

ture providing (physically or logically) twice the num-

ber of vector general-purpose registers. We show that 

the benefit of higher wave-level parallelism and device 
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occupancy is application dependent. For many devel-

opers this notion remains counter-intuitive. 

 The remainder of the paper is organized as follows. 

Section 2 provides background on GPGPU architec-

ture and execution. Section 3 describes our analysis 

and simulation methodology. Sections 4, 5, 6, and 7 

detail our experimental results. Section 8 covers re-

lated work, Section 9 provides thoughts on future re-

search directions, and we conclude in Section 10. 

2. BACKGROUND 
 GPUs are massively-multithreaded processing de-

vices that support over one hundred thousand active 

threads. Supporting this many active threads requires 

an architecture that is modular and compartmental-

ized, as well as a programming model to express data-

parallel computation. This section details the GPGPU 

programming model, describes the hardware execu-

tion model, and details the specific GPU architecture 

used in this study. 

2.1 GPGPU Programming Model 
 GPGPUs use a data-parallel, streaming computation 

programming model. In this model, a program, or ker-

nel, is executed by a collection of work-items 

(threads). The programming model typically uses the 

single instruction, multiple thread (SIMT) execution 

model. Work-items within a kernel are subdivided into 

workgroups by the programmer, which are further 

subdivided into wavefronts by hardware. The work-

items within a wavefront are logically executed in 

lock-step. All work-items within a workgroup may 

perform synchronization operations with one another. 

AMD’s GCN architecture [2] also includes scalar in-

structions that are executed on the scalar ALU. These 

scalar instructions are generated by the compiler, 

transparent to the programmer, and are intermixed 

with vector instructions in the instruction stream. Sca-

lar instructions are used for control flow or operations 

that produce a single result shared by all work-items in 

a wavefront. 

2.2 GPGPU Hardware Execution Model 
 Modern GPU architectures execute kernels using a 

SIMD (Single Instruction, Multiple Data) hardware 

model. As mentioned above, a kernel is composed of 

many work-items that are collected into workgroups. 

The workgroup is the unit of dispatch to the Compute 

Units (CUs), which is the hardware unit responsible 

for executing workgroups. A CU must be able to sup-

port at least one full-sized workgroup, but may be able 

to execute additional workgroups concurrently if hard-

ware resources allow. All work-items from the same 

workgroup are executed on the same CU. A GPU de-

vice contains at least one CU, but it may contain more 

to facilitate execution of many workgroups concur-

rently. 

 Within a CU, the SIMD unit is the hardware compo-

nent responsible for executing wavefronts. Each wave-

front within a workgroup is assigned to a single SIMD 

within the CU the workgroup is dispatched to. The 

SIMD unit is responsible for executing all work-items 

in a wavefront in lock-step. Each SIMD has access to 

a scalar ALU (SALU), a branch and message unit, and 

memory pipelines. 

 The wavefront size is a hardware parameter that may 

change across architecture generations or between de-

vices capable of executing the same Instruction Set 

Architecture (ISA) generation. Programmers should 

not rely on the wavefront size remaining constant 

across hardware generations and should not have de-

pendencies on a specific wavefront size in their code. 

2.3 Baseline GPGPU Architecture 
 In this section we detail the CU architecture em-

ployed in our study. Figure 1 depicts the architecture 

of the CU we model, which is capable of executing 

AMD’s GCN3 ISA [3]. Without loss of generality, we 

elect to use AMD’s terminology where applicable. 

 The CU used in our study contains two SIMD Vector 

ALUs (VALUs), two Scalar ALUs (SALUs), Vector 

Register Files (VRFs), Scalar Register Files (SRFs), a 

Local Data Share (LDS), forty wavefront slots, Local 

Memory (LM), Global Memory (GM), and Scalar 

Memory (ScM) pipelines, and the CU is connected to 

scalar, data, and instruction caches. The following 

subsections detail the main blocks within the CU. Note 

that the Scalar Cache and I-Cache are shared between 

 

Figure 1. Sample CU Architecture. 
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multiple CUs, while all other blocks are private per 

CU. 

2.3.1 Wavefront Context 

 Each CU contains a total of forty wavefront context 

slots [2]. The wavefront slots are divided equally 

among the SIMD VALUs, and all instructions from a 

wavefront are executed by the same SIMD/SALU pair 

for the duration of the wavefront’s life. The wavefront 

context consists of the program counter, register state 

information, synchronization and memory counters, 

and an instruction buffer. 

2.3.2 SIMD VALU 

 Each SIMD within the CU is a sixty-four wide Vec-

tor ALU (VALU), capable of issuing for execution one 

sixty-four wide vector instruction per cycle. 

2.3.3 Vector Register File Subsystem 

 The Vector Register File (VRF) subsystem consists 

of banked vector register files, containing 1024 64-

wide by 32-bit Vector General-Purpose Registers 

(VGPRs) [3], Operand Buffers (OB) [12][15], and reg-

ister file caches (RFC) [12]. There is a private VRF, 

OB, and RFC per SIMD VALU. Figure 2 depicts the 

various components and operand delivery paths in the 

VRF subsystem. 

2.3.3.1 Banked VRF 

 The vector register file associated with each SIMD 

unit contains 128 KB of storage. A CU with two 

VALUs and two VRFs contains 256 KB of VGPR 

storage [2]. The VRF comprises multiple SRAM-

based banks. Each bank has one read port and one 

write port, and both a read and a write may occur in 

the same cycle. In this study, we configure the VRF to 

have four banks, with each bank holding 128 VGPRs 

of 64 by 32-bit values. There are 512 VGPRs distrib-

uted across the four banks per VRF, with a total of 

1024 VGPRs per CU [3]. The bank width matches the 

wavefront size to facilitate reading and writing an en-

tire VGPR per cycle per bank. 

2.3.3.2 Operand Buffer 

 The Operand Buffer (OB) [12][15] is responsible for 

reading the vector source operands of each VALU in-

struction. The primary purpose of the OB is to hide 

bank access conflict latency penalties. It is a FIFO 

queue, and instructions enter and leave the OB in-or-

der. However, the OB may read source operands for 

any instruction present in the FIFO in any cycle (i.e., 

out-of-order with respect to the execution order). In 

this study, an oldest-first-then-greedy policy is used to 

read source operands, but this may be changed in fu-

ture implementations. The OB attempts to read the op-

erands of the oldest instruction first, but will greedily 

read operands for younger instructions to avoid bank 

conflicts or if there are banks with available read ports 

that contain operands for younger instructions. Source 

operands are read from the VRF unless the operand 

exists in the Register File Cache or will be produced 

by an instruction in the VALU pipeline. Reading all 

operands for an instruction may take multiple cycles 

due to bank conflicts. Bank conflicts may occur both 

within (intra-instruction) and between (inter-instruc-

tion) instructions. 

2.3.3.3 Register File Cache 

 The register file cache (RFC) used in this work is in-

spired by the RFC proposed by Gebhart et al. [12]. The 

RFC sits between the VALU and the VRF banks. It 

receives results from the VALU pipeline, forwards 

those results to the OB and VALU pipeline for future 

instructions if needed, and lazily writes back results to 

the VRF. 

 The RFC holds data for one or more VGPR sized en-

tries. Each entry is one complete 64-wide by 32-bit 

VGPR. The RFC is an on-demand allocation and evic-

tion cache, with strict LRU eviction and replacement. 

The RFC’s primary purposes are: (a) forwarding 

source operands to the OB and VALU pipeline, 

thereby reducing the number of VRF reads, and (b) to 

hide the latency penalty of bank write access conflicts. 

 The RFC can provide up to three VGPRs of 64 32-

bit values to the instruction being dispatched from the 

OB to the VALU pipeline over forwarding paths. This 

path operates similar to bypass paths in traditional 

computational pipelines, and allows source operands 

to be delivered directly to the VALU pipeline without 

waiting for the values to be read and written from the 

VRF, saving access time and energy. 

 Operands may also be forwarded from the RFC to 

the OB as the OB attempts to read source operands for 

instructions. This path is activated when an existing 

RFC entry is evicted, and may further reduce source 

operand reads performed from the VRF. The evicted 

RFC entry is provided to every instruction in the OB 

that needs it. 

 

Figure 2. Vector Register File Subsystem Architecture. 
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2.3.4 Scalar ALU and Scalar Register File 

 AMD’s GCN architecture includes a Scalar ALU 

(SALU) to handle execution of scalar instructions. Un-

like vector instructions that operate on each individual 

work-item in a wavefront, scalar instructions are exe-

cuted once for all work-items in a wavefront. The pri-

mary purpose of scalar instructions is to handle control 

flow and perform thread independent computation for 

the wavefront. 

 Our CU model includes two Scalar ALUs, with each 

SALU being associated to one of the VALUs. Each 

SALU has a private Scalar Register File (SRF) con-

taining 800 32-bit Scalar General-Purpose Registers 

(SGPRs) [3][8]. The SGPRs are assigned at dispatch 

time to wavefronts being executed by the 

VALU/SALU pair. 

2.3.5 Memory Subsystem 

 The memory subsystem used in the baseline archi-

tecture in this paper is modeled after the GCN device 

architecture [2][3][8][9]. In this setup, a CU contains 

a private L1 vector data cache and Local Data Share 

(LDS) scratchpad memory. A CU shares a scalar data 

cache and instruction cache with a collection of other 

CUs in the system. All three caches (vector, scalar, in-

struction) are supported by a shared L2 cache, which 

in turn connects to main memory.  

 The vector L1 data cache is a 16 KB, 16-way set as-

sociative, 64-byte cache block SRAM cache [2]. The 

shared instruction cache is a 32 KB, 8-way set associ-

ative, 64-byte cache block SRAM cache [2]. The L2 

cache is a 512 KB, 16-way set associative, 64-byte 

cache block SRAM cache [17]. The L2 cache unifies 

the scalar data, vector data, and instruction caches, and 

is connected to system memory. 

 Each CU also contains a 64KB Local Data Share 

(LDS). The LDS is a software managed cache, with 32 

banks [3][8][9]. This structure provides a high-band-

width, low-latency, software managed memory and 

acts as a data cache bandwidth amplifier. 

3. METHODOLOGY 
 This section describes the benchmark analysis and 

simulation methodologies used for the experiments 

presented. 

3.1 Benchmark and Kernel Analysis 
 In this subsection we detail the static and dynamic 

analysis performed to assess register usage and de-

pendency characteristics. 

3.1.1 Kernel Analysis 

 To evaluate dispatch limits for the benchmarks under 

study, we rely on data produced by the compiler and 

disassembly tools for AMD’s GCN3 ISA [3][4]. These 

tools provide the number of vector and scalar general-

purpose registers required per work-item and wave-

front, respectively. Simulation (methodology below) 

provides the number of workgroups executed per ker-

nel dispatch. Combining these data with architectural 

parameters of our system, we are able to determine the 

resources that limit kernel and workgroup dispatch and 

evaluate dispatch limits as architectural parameters are 

varied. 

3.1.2 Dynamic Register Profiling 

 We use the gem5 simulator [14], which includes a 

modified version of AMD’s APU gem5 model [7] (de-

tails below) to collect register reuse and producer-con-

sumer data. Simple implementation of the register file 

system is sufficient to provide both the number of con-

sumers per value producer and the distance between 

producer and consumer for all vector register values. 

3.2 The gem5 Simulator 
 The gem5 simulator is an execution-driven, cycle-

level microarchitecture simulator that is capable of ex-

ecuting real ISAs on simulated microarchitectures. 

AMD’s recent APU extension has added support for 

GPU Compute Units within the simulation framework. 

The APU model is compatible with gem5’s system 

call emulation (SE) mode, where system calls invoked 

by simulated applications are either emulated in the 

simulator or passed to the host for execution. In this 

study, we use an updated version of the AMD APU 

compute model that faithfully implements the GCN3 

ISA and runs an unmodified, publicly-released ROCm 

[6] version 1.1 software stack, with only kernel driver 

functionality being emulated. We simulate an APU 

with one CPU and a single CU to stress the CU and 

VRF to the greatest extent. 

 The following subsections detail the instruction 

readiness, dispatch, and execution flow in our Com-

pute Unit implementation. The remaining structures 

(VALU, SALU, VRF, SRF, etc.) are implemented 

faithfully to the descriptions provided in Section 2.3 

above. 

3.2.1 Wavefront and Instruction Readiness  

 As described in the GCN3 architecture, each SIMD 

VALU has many associated wavefronts it is responsi-

ble for executing, with our simulated architecture sup-

porting twenty wavefronts per SIMD. Every cycle, 

each SIMD evaluates all wavefronts for readiness. A 

wavefront is deemed ready to execute if it is active, not 

waiting for a synchronization operation to complete, 

has at least one instruction to execute, and all true 

(RAW) register dependencies are resolved. Register 

dependencies are tracked using a scoreboard indicat-

ing which, if any, source operands have not been pro-

duced yet by the various functional units (VALU, 

SALU, memory pipelines) and are busy. Each wave-

front that is ready is presented to the instruction dis-

patch unit as a candidate for execution.  
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3.2.2 Instruction Dispatch and Execution 

 After wavefronts are checked for readiness, the in-

struction dispatch unit selects and attempts to schedule 

for execution up to one wave per execution resource. 

The execution resources are the VALUs, SALUs, and 

memory pipelines. Each cycle, a scheduler selects a 

candidate wave for each resource, typically using an 

oldest-first policy. 

 To be dispatched for execution, a selected wave must 

first gather all source operands from the register files. 

Each non-scalar instruction is sent to the vector regis-

ter file, with VALU operations requesting a slot in the 

Operand Buffer, and vector memory (VMEM) instruc-

tions requesting access to the VRF banks. VMEM in-

structions receive priority for reading VRF banks. 

Once operands are read from the register files, the ap-

propriate execution resources are checked for readi-

ness. An execution resource may disallow instruction 

issue due to certain conditions, such as issue period 

limitations or full buffers (e.g., for vector memory co-

alescing). 

 After all source operands and execution resources 

are ready, an instruction is deemed ready for execu-

tion. At this point all non-vector ALU operations will 

be issued for execution. VALU operations must make 

one final request to the register file cache to allocate 

slots for destination registers. If the RFC is unable to 

allocate slots for the instruction, VALU instruction is-

sue will stall. Once the RFC accepts the destination 

slot allocation request, the VALU operation will be is-

sued to the pipeline for execution. 

 At the end of instruction execution, the destination 

values will be written into the RFC and the scoreboard 

updated to indicate result data are available for use. 

Register file write-back operations occur lazily from 

the RFC. Memory loads are enqueued in the memory 

pipelines and return data in variable latencies depend-

ing on memory system behavior and contention. Loads 

update the scoreboard and write-back results to the 

VRF once data return from the memory system.  

3.3 Benchmarks 
 Table 1 lists the benchmarks used in this study. These 

applications are obtained from the AMD compute ap-

plications GitHub [1] [5]. The applications used in this 

study represent common kernels from HPC and scien-

tific computing workloads that are of interest in the 

GPGPU community. 

 The selected applications are written using the heter-

ogeneous compute (HC) C++ API. Source code is 

compiled using the heterogeneous compute compiler 

(HCC) [4], which is based on Clang and LLVM. HCC 

is an open source compiler for heterogeneous compute 

applications that target the ROCm stack.  

4. VECTOR REGISTER USAGE 
 Prior works [10] [12] have examined the usage of 

vector register values in GPGPU architectures and 

concluded that most values produced are consumed a 

small number of times within a small instruction win-

dow from the producer instruction, and many registers 

do not contain live values for significant portions of 

execution. 

 The authors of [12] claim up to 70% of values are 

read only once, and only around 10% of values are 

read more than 2 times. This prior study evaluates an 

architecture modeled after those from NVIDIA, thus it 

Benchmark Description 

Array-BW Memory streaming 

Bitonic Sort Parallel Merge Sort 

CoMD DOE Molecular-dynamics algorithms 

FFT Digital signal processing 

HPGMG Ranks HPC systems 

MD Generic Molecular-dynamics algorithms 

SNAP Discrete ordinates neutral particle transport 

application 

SpMV Sparse matrix-vector multiplication 

XSBench Monte Carlo particle transport simulation 

Table 1. Description of evaluated workloads. 

 

Figure 3. Number of reads per vector register value. 
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is worth asking the question: do the same patterns hold 

for AMD GPUs and GCN3 ISA code? 

 We replicate two of their studies and find that 60-

90% (75% average) of vector values produced are read 

exactly once, and 4-13% (10% average) of vector val-

ues produced are read more than twice, as shown in 

Figure 3. Further, we find 24-57% (40% average) of 

all values consumed were produced within 3 instruc-

tions prior, as shown in Figure 4. In both experiments, 

our results are in line with prior work. While not 

overly surprising, this adds confidence to the remain-

der of our evaluation and experiments, and confirms 

that the codes being used for evaluation exhibit similar 

behavior despite differences in implementation, com-

pilers, and ISA.  

 Prior studies also examine the liveness of register 

values over the course of execution [10] [11]. The au-

thors’ conclusions are that many registers are short-

lived and thus contain no live values for a significant 

percentage of a kernel’s execution. We replicated their 

results (data not shown) and confirm that the applica-

tions used in our study exhibit similar behavior. No 

application utilized all of its compiler-allocated regis-

ters, and all applications had register usage patterns 

with significant variation in the number of live register 

values throughout execution. 

5. REDUCING THE NUMBER OF REGISTER 

FILE READS 
 One function of the OB and RFC is to reduce the 

number of reads from the vector register file. As de-

scribed above, the RFC is able to both recycle oper-

ands to the OB and forward source operands to the 

VALU pipeline at instruction dispatch. Each of these 

paths reduces the number of VGPR reads performed 

from the main register file by the OB. In this experi-

ment, we examine the number of reads required by the 

OB for VALU instructions that can be saved by resiz-

ing the RFC, and discuss the performance and imple-

mentation implications of such changes. 

 Figure 5 shows the number of reads saved for each 

RFC configuration. We sweep RFC sizes from 2 

through 512 total entries, with the y-axis showing the 

percentage of vector sources that are provided by the 

RFC to the OB, or equivalently, the number of VRF 

reads saved (higher is better) for VALU instructions. 

Figure 7 shows the relative performance for each RFC 

configuration. The y-axis is IPC normalized to an RFC 

with eight entries (higher is better). 

 At small RFC sizes (2 or 4 entries), we observe that 

up to 25% of all possible reads required by the OB 

from the VRF are avoided. At these sizes, we observe 

performance degradation, caused by the timing of 

RFC entry allocation in our simulator implementation. 

An RFC slot is allocated when an instruction is dis-

patched to the VALU pipeline, and because the pipe-

line latency is larger than the number of RFC slots for 

small sizes, instruction issue stalls on RFC allocation. 

 

Figure 4. Lifetime of vector register values.  

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
n

t 
o

f 
A

ll
 V

ec
to

r 
V

al
u

es
 

C
o

n
su

m
ed

1 Inst 2 Insts 3 Insts >3 Insts

 

Figure 5. Number of VGPR reads saved by RFC forwarding paths. 
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Pipeline bubbles are introduced, diminishing perfor-

mance. This behavior is an artifact of the simulator im-

plementation, and correcting it is left as future work.  

 At larger RFC sizes (16 or more entries), we observe 

the number of saved reads increases significantly with 

RFC size. More than half of the benchmarks studied 

are able to serve more than 80% of all required VGPR 

operands for VALU instructions from the RFC at the 

largest RFC configuration. Although the RFC is as 

large as the VRF at size 512, not all source operands 

will be captured for reuse by the RFC. Any value 

loaded by a memory instruction into VGPRs must be 

read from the VRF instead of the RFC to ensure cor-

rectness, until the physical VGPR loaded to is over-

written by a VALU instruction and the result stored in 

the RFC. Additionally, some VGPR values are initial-

ized by hardware at wavefront dispatch. Until the 

physical VGPRs holding these values are overwritten 

by a VALU instruction, if they ever are, those values 

will be read from the VRF, not the RFC. At larger RFC 

sizes, no performance benefit is observed. This implies 

that the RFC and OB are effective at hiding latency 

penalties from bank access conflicts at default sizes of 

eight RFC entries and four OB entries (details in Sec-

tion 6). Although increasing the RFC size does not 

lead to better performance, it may lead to reduced VRF 

access energy as more operands can be provided by 

the lower energy forwarding paths. However, there are 

trade-off costs in implementation (area, power, and la-

tency) as RFC size increases that may make larger 

RFCs less energy-efficient.  

6. REGISTER BANK CONFLICTS IN A 

COMPUTE OPTIMIZED GPU ARCHI-

TECTURE 
 The VGPRs are physically stored in a banked regis-

ter file to provide high-bandwidth access without the 

overhead of multi-ported register files. Each bank is 

the width of a GCN3 wavefront, or 64 32-bit entries, 

or equivalently, one VGPR wide, and can read and 

write one VGPR per cycle. 

 In both the GCN3 and our simulated architecture, 

both intra- and inter-instruction bank conflicts may oc-

cur. Intra-instruction read conflicts occur when two or 

more source operands in the same instruction reside in 

the same physical VGPR bank. Inter-instruction read 

conflicts occur when multiple instructions have oper-

ands residing in the same bank and attempt to read 

them in the same cycle. Given our GPU architecture 

detailed above, the natural question to ask is: how ef-

fective are the RFC and OB at hiding the latency pen-

alties of bank access conflicts? 

 We answer this question by performing a limit study 

on the performance benefit of removing bank con-

flicts. As discussed in the Section 5, the RFC and OB 

significantly reduce the number of accesses to the 

 

Figure 6. Relative performance (IPC) for RFC sizes. Performance at sizes greater than 32 is stable at a relative IPC of 1. 
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VRF. However, these structures are also meant to hide 

the latency penalty of bank access conflicts. Specifi-

cally, the OB acts as a read buffer to opportunistically 

read operands when banks become available and pre-

vent the insertion of bubbles into the VALU pipeline. 

To assess the effectiveness of the OB at hiding conflict 

penalties, we compare our baseline architecture to one 

without bank conflicts in the VRF. We reconfigure the 

simulator to place each VGPR in its own VRF bank. 

By definition, two different VGPRs will not conflict 

with one another in this setup. 

 Figure 6 shows the results of this experiment and dis-

plays normalized performance of the baseline and 

bank conflict free configurations. The y-axis is perfor-

mance in IPC, normalized to the baseline configura-

tion (higher is better). As shown, there is negligible 

change in IPC between the two configurations (less 

than +/- 1% typically), indicating that the RFC and OB 

are well-suited at handling all bank access conflicts 

encountered during dynamic execution. 

 There are a few different conclusions that may be 

drawn from these results. Perhaps most obvious is that 

the RFC and OB are effective at hiding the latency 

penalty of any conflicts that occur. This may be due to 

the OB’s ability to gather operands out-of-order with 

respect to instruction issue order, or that the RFC’s for-

warding paths are able to adequately reduce the num-

ber of VRF accesses required by the OB. Fewer re-

quired accesses means less register file pressure and a 

lower probability of bank conflicts. Another possible 

explanation is that the applications studied have lower 

than expected dynamic register usage. Although most 

of the applications are limited by VGPRs in dispatch 

(see Section 7), the dynamic usage may not be as great 

as the static demand.  It is possible that codes in other 

domains may have greater dynamic register usage.  

7. DISPATCH LIMITS AND WAVE-LEVEL 

PARALLELISM 
 In this section we examine the resource requirements 

for workgroup dispatch for each benchmark studied 

and examine the impacts of increased resource availa-

bility in terms of performance and parallelism.  

7.1 Workgroup Dispatch Limits 
 Launching, or dispatching, a kernel for execution on 

a GPU requires a set of resources to be available. 

These resources are wavefront slots, vector registers, 

scalar registers, and scratch memory. For our applica-

tions, we find that the majority are vector register lim-

ited for dispatch. Table 2 shows the results of offline 

analysis on the compute kernels and lists the maxi-

mum number of workgroups that can be dispatched 

per CU when only considering one resource at a time 

(other resources assumed infinite). Each application 

has a single compute kernel, except FFT, which has 

both a forward and inverse FFT kernel. The FFT ker-

nels, however, have identical resource requirements 

and are executed sequentially. The three columns give 

the maximum number of workgroups per CU when 

limited only by wavefront slots (WF), VGPR availa-

bility (VGPR), and SGPR availability (SGPR). The fi-

nal column (Limiter) lists which resource limits dis-

patch and prevents further workgroups from being dis-

patched. Of the nine applications we study, only Bi-

tonic-Sort and SpMV are not VGPR limited for dis-

patch. 

 Because many applications are limited by VGPR 

availability, it is natural to ask: does providing addi-

tional VPGRs result in improved wave-level parallel-

ism and/or performance?  

7.2 Increasing Wave-Level Parallelism and 

Performance with Additional VGPRs 
 General-purpose registers are shown to be the limit-

ing factor in workgroup dispatch for seven of the nine 

benchmarks in this study. GPGPUs are throughput ac-

celerators, and it is often thought that improving the 

amount of available work or occupancy will result in 

 
Max WG/CU by Re-

source 
 

Application WF VGPR SGPR Limiter 

Array-BW 2 1 12 VGPR 

Bitonic-Sort 2 4 12 WF 

CoMD 40 28 100 VGPR 

FFT 40 12 66 VGPR 

HPGMG 2 1 4 VGPR 

MD 2 1 6 VGPR 

SNAP 40 14 100 VGPR 

SpMV 20 21 100 WF 

XSBench 10 4 25 VGPR 

Table 2. Maximum Workgroups per CU per application 

when only limited by Wavefront Slots (WF), VGPRs, or 

SGPRs. 

 

Figure 8. Relative performance with 2x VGPR per SIMD. 
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improved performance. However, prior work has 

shown that additional parallelism may not always be 

beneficial [16]. 

 In this experiment, we assess the benefits of having 

additional VGPRs available per SIMD VALU and 

CU. For the benchmarks studied, do the additional 

VGPRs (a) allow more workgroups to be dispatched 

and increase the wave-level parallelism (WLP), and 

(b) if WLP is increased, is there a resulting perfor-

mance benefit? 

 To estimate the best-case improvement, we modify 

our simulator configuration to have twice the number 

of VGPRs per SIMD/CU (1024 VGPR per SIMD, 512 

KB per CU), but do not modify any timing for VGPR 

access. Assuming no timing penalty for a larger VRF 

is optimistic, especially when the register files are as 

large as those used in GPUs, but it allows us to study 

the upper bound benefit of additional VGPRs. 

 Figure 8 and Figure 9 show the results of our exper-

iment. Figure 8 displays relative performance in IPC, 

for the baseline and 2x VRF configurations, normal-

ized to the baseline. The y-axis is improvement in IPC 

over the baseline, and higher is better. Figure 9 shows 

the realized wave-level parallelism (WLP) for the 

baseline and 2x VRF configurations. The y-axis is the 

average WLP observed normalized to the baseline 

configuration, and a value greater than one indicates 

greater observed WLP. We measure WLP by counting 

the number of already active wavefronts when each 

new wavefront is dispatched, then averaging this count 

from all wavefront dispatches.  

  Our experimental results are mixed. All seven appli-

cations that are VGPR limited for dispatch observe in-

creased average WLP. However, the performance ben-

efit of higher WLP is mixed. CoMD, MD, and 

XSBench experience performance degradation, FFT 

sees no performance change, and Array-BW, 

HPGMG, and SNAP see improved performance. 

 For the benchmarks with a performance loss, aver-

aging around 7% worse IPC, we suspect memory ac-

cess divergence is at fault. Prior analysis (data not 

shown) revealed MD and XSBench have greater 

memory divergence per memory instruction. These 

two benchmarks also have long tails in their memory 

access latency distributions compared to other appli-

cations, as shown in Figure 10. We only show a subset 

of the benchmarks for clarity in the figure; however, 

the benchmarks not shown have CDF’s that fall be-

tween those shown for FFT and SpMV. The diver-

gence in memory requests increases the number of 

post-coalescing memory requests per instruction and 

appears to cause an increase in average memory access 

 

Figure 9. Relative WLP with 2x VGPR per SIMD. 
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Figure 10. CDF of Vector Memory Access Latency - Selected Benchmarks. 
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latency. This issue is exacerbated when additional 

wavefronts are active due to an increased VRF size. 

The increased memory access time reduces the rate at 

which the coalescer may issue additional requests to 

the memory system, and creates backpressure on in-

struction issue, manifesting as coalescer access stalls 

when attempting to dispatch instructions. It is possible 

that a different organization or banking of the memory 

caches could alleviate some or all of the long tail of 

memory access latencies. Investigating this is left as 

future work. 

 In summary, we show that a subset of applications 

studied achieve greater WLP when twice the VGPRs 

are available per SIMD/CU. However, performance 

improvement is not guaranteed under increased WLP. 

8. RELATED WORK 
 The most similar works, and in fact the works we at-

tempt to replicate studies from, are those of Gebhart et 

al. [12], Jeon et al. [10], and Yu et al. [11]. 

 Gebhart et al. [12] evaluate the usage of vector reg-

isters in terms of the number of consumers per value 

produced and the value lifetime of certain values. We 

replicate the former, and perform a similar experiment 

on vector value lifetime. Gebhart et al. also propose 

the Register File Cache that we study here. Their sys-

tem includes an Operand Buffer to gather operands 

from the register file and feed them to the vector ALU 

pipeline. We largely confirm the results of the authors’ 

study. 

 Jeon et al. [10] perform similar analysis for register 

value lifetime. Noting that register values are short-

lived and register files are underutilized due to static 

waste, the authors propose virtualizing registers to en-

able an architecture with half the number of physical 

vector registers, while maintaining performance. In 

contrast, we examine the potential benefits of provid-

ing twice the number of vector registers to increase 

parallelism and performance. 

 Yu et al. [11] propose using a register stash to re-

move the vector register dispatch limit on GPUs. Their 

study also examines the usage patterns of registers and 

kernel dispatch limits. Their register stash technique 

claims to solve the underutilization of the register files, 

enable architectures with smaller register files, and im-

prove performance when maintaining a constant reg-

ister file size. Counter to their work, we find that 

providing additional registers to increase parallelism 

does not always improve performance. 

 The primary difference between our work and prior 

work is our use of a hardware ISA (GCN3) simulator 

instead of a virtual ISA (PTX) simulator. AMD’s 

GCN3 ISA is available publicly, making it possible to 

faithfully implement the instructions executed by 

hardware devices. It is unclear how wide the gap is be-

tween PTX and the hardware microcode executed on 

NVIDIA architectures, and what effect this has on the 

results of these studies. 

9. FUTURE DIRECTIONS AND RESEARCH 
 The analysis and experiments performed in this 

study provide multiple directions for future research. 

First, it may be interesting to extend the study of reg-

ister value usage and lifetime to a much broader set of 

applications across many domains. Second, there are 

implementation details in our simulator that would 

benefit from improvement. Although we do not be-

lieve the results of this study would change signifi-

cantly, confirming our intuition is worth the effort. 

Lastly, we propose investigating the impact of the 

compiler and generated code on the use of Operand 

Buffering and Register File Caches. The inclusion of 

these structures is the largest departure from the AMD 

GCN architecture in our study, and it is possible that 

the results of our study will change if the compiler is 

aware of these structures. 

 Expanding from the scope of this work, we are inter-

ested in exploring future research related to the com-

pute fabric and memory hierarchy design. Can we 

eliminate software-managed scratchpads, which are 

only understood by expert programmers, while main-

taining the performance of these structures? Is the 

fused multiply add SIMD architecture the most advan-

tageous for GPGPU applications? How do we extract 

and exploit scalar execution from data-, thread-, or 

task-parallel programs? While many of these ques-

tions have been explored in some manner already, we 

believe opportunities still remain. 

10. CONCLUSIONS 
 This paper examined modern GPGPU architectures, 

focusing on their use of vector general-purpose regis-

ters. We successfully replicated results from prior 

studies, showing vector register values are used only a 

few times and within a short window of the producer. 

Notably, we confirmed their results on an architecture 

based on AMD’s latest offerings instead of NVIDIA’s 

architecture. We then examined the effectiveness of 

operand collection and caching structures proposed in 

prior literature. Our experiments concluded that these 

structures are highly effective at hiding bank access 

conflict penalties and reducing the number of required 

register file reads through the use of operand forward-

ing. Last, we studied the limiting resources for 

workgroup dispatch and evaluate the performance and 

parallelism impact of having additional vector gen-

eral-purpose registers. We found that some applica-

tions effectively utilize the additional registers to in-

crease wave-level parallelism, but not all applications 

that do so are able to improve performance with in-
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creased parallelism. We concluded the work with sug-

gestions for future research related specifically to this 

work and to the field of general-purpose compute ac-

celeration. 
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