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Abstract—Objective assessment of stroke survivors’
upper limb movements in ambulatory settings can provide
clinicians with important information regarding the real im-
pact of rehabilitation outside the clinic and help to establish
individually-tailored therapeutic programs. This paper ex-
plores a novel approach to monitor the amount of hand use,
which is relevant to the purposeful, goal-directed use of
the limbs, based on a body networked sensor system com-
posed of miniaturized finger- and wrist-worn accelerom-
eters. The main contributions of this paper are twofold.
First, this paper introduces and validates a new benchmark
measurement of the amount of hand use based on data
recorded by a motion capture system, the gold standard for
human movement analysis. Second, this paper introduces a
machine learning-based analytic pipeline that estimates the
amount of hand use using data obtained from the wearable
sensors and validates its estimation performance against
the aforementioned benchmark measurement. Based on
data collected from 18 neurologically intact individuals
performing 11 motor tasks resembling various activities of
daily living, the analytic results presented herein show that
our new benchmark measure is reliable and responsive, and
that the proposed wearable system can yield an accurate
estimation of the amount of hand use (normalized root mean
square error of 0.11 and average Pearson correlation of
0.78). This study has the potential to open up new research
and clinical opportunities for monitoring hand function in
ambulatory settings, ultimately enabling evidence-based,
patient-centered rehabilitation and healthcare.

Index Terms—Finger-worn ring sensor, upper limb
function, hand function, stroke, rehabilitation, remote
monitoring.

I. INTRODUCTION

S TROKE is the third most frequent cause of death and a
leading cause of disability in adults in the United States

[1]. Approximately 50% of stroke survivors suffer from upper
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limb impairments in the chronic phase, which can be more
prominent in one of the two limbs (affected vs. less affected
limbs) [2]. Upper limb impairments after stroke often lead to
limited ability to perform activities of daily living (ADL) and
negatively impact the overall quality of life [3].

In conventional clinical settings, therapists periodically meet
with patients in the clinic and prescribe appropriate rehabili-
tation exercise programs based on their evaluation of patients’
functional capacity using clinically validated motor tests, such
as Fugl-Meyer Assessment, Active Research Arm Test, or Wolf
Motor Function Test [4], [5]. Unfortunately, scientific evidence
shows that functional improvements observed and achieved in
the clinic do not always translate to patients’ home and com-
munity settings [6]. In other words, stroke survivors may show
improvement in capacity (i.e., what they are capable of do-
ing) without much change in performance (i.e., what they ac-
tually do) [6], [7]. Therefore, objective, ambulatory assessment
of motor performance of the stroke-affected upper limb has
been of paramount importance in estimating the real impact of
rehabilitation, and to support patient-driven therapy and self-
management of conditions [8].

Wrist-worn accelerometers have emerged as a potential so-
lution to unobtrusively and continuously monitor patients’ up-
per limb performance outside clinical settings for a long-term
period [9]–[11]. Wrist-worn sensors focus on quantifying the
duration and intensity (i.e., amount) of arm use based on the
counts of the acceleration magnitude [12]. Although these met-
rics provide simple and intuitive quantification, they capture
primarily gross arm movements, such as passive arm swings
during walking, which are less relevant to the goal-directed use
of the stroke-affected upper limb as part of patients’ essential
ADL [13]. Consequently, these measurements often result in
inaccurate quantification of motor performance [8], [13]. This
is considered as a major obstacle to translating research find-
ings into clinically meaningful information and facilitating their
widespread use in the therapeutic setting [8].

As an alternate approach to address this limitation of wrist-
worn accelerometers and capture more goal-directed use of the
upper limbs, researchers have proposed to monitor the hand
function during ADL. Various wearable devices, such as instru-
mented gloves and goniometers, have been introduced to assess
the hand function (i.e., amount of hand use) [14], [15]. However,
these devices are usually difficult to don and doff, uncomfortable
to wear, and socially unacceptable for long-term and contin-
uous daily use, and thus, were mainly restricted to laboratory

2168-2194 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6862-0386
https://orcid.org/0000-0002-4922-2566
https://orcid.org/0000-0003-1185-360X
https://orcid.org/0000-0001-5935-125X


600 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 2, MARCH 2019

Fig. 1. (a) The proposed body-networked sensor system composed
of a finger-worn and a wrist-worn sensor. (b) A research staff member
demonstrating a subset (e.g., cutting-putty and walking) of the 11 ADL
that was performed during our data collection.

settings [16]. More recently, Friedman et al. proposed a
wrist-worn device that can monitor daily use of the wrist
and finger joints by measuring changes in the magnetic field
produced by a magnetic ring [16]. Despite its feasibility of
use in real-world settings, this sensor might be susceptible to
ambient magnetic noise.

In this paper, we investigate the use of a miniaturized finger-
worn accelerometer, combined with a wrist-worn accelerometer,
to monitor hand performance in remote settings by measuring
the amount of hand use. Our main contributions are two-fold.
First, there exists no established quantitative measurement for
the true amount of hand use during the performance of ADL,
against which our sensing system needs to be validated. Hence,
we introduce a new benchmark measure of the amount of hand
use based on data obtained from an optoelectronic motion cap-
ture system, the gold standard for human movement analy-
sis. We validate the test-retest reliability and responsiveness
of the measurement during the performance of 11 motor tasks
of ADL involving different intensity of hand use in a total of
18 neurologically intact, healthy individuals. Second, we intro-
duce a machine learning-based analytic pipeline that processes
the data obtained from the proposed sensing system to estimate
the amount of hand use, and validate the accuracy against the
benchmark measurement. We also provide a detailed discussion
regarding the real-world deployment of the system, such as its
ability to enable continuous operation under different network
configurations.

II. SENSOR SYSTEM AND DATA COLLECTION

A. Networked Wearable Sensor System

This study employed a body-networked sensor system com-
posed of a miniaturized finger-worn sensor and a wrist-worn
sensor developed by our research team (Arcus, ArcSecond Inc.,
USA) [see Fig. 1(a)]. The finger-worn sensor contained a nine-
axis inertial measurement unit (IMU) that sampled data at 63 Hz,
a Bluetooth communication module, a 40 mAh battery, and an
ultra-low power 32-bit microcontroller. The wrist-worn sensor
shared the same system architecture but in a different enclosure
for its placement on the wrist.

We hypothesized that the wrist-worn sensor would mainly
capture gross arm movements (e.g., arm swing or reaching for

TABLE I
A LIST OF MOTOR TASKS WITH VARYING LEVELS OF FINE HAND AND

GROSS ARM MOTOR INVOLVEMENT THAT WERE USED IN THE EXPERIMENT

an object), whereas the finger-worn sensor would capture both
gross arm and fine hand movements (e.g., object manipulation).
Thus, we further hypothesized that we could extract information
that is specifically relevant to hand use by analytically subtract-
ing the wrist-worn sensor data from the finger-worn sensor data.

This work only leveraged the three-axis acceleration data
while disabling the gyroscope and magnetometer because previ-
ous studies support that accelerometer data can provide accurate
assessment of the amount of human upper limb movements [9],
[17], [18], and the use of a gyroscope requires approximately
10 times more power than an accelerometer. For example, our
finger-worn sensor with a 40mAh battery would support ap-
proximately 5 hours of continuous operation with a gyroscope.
This is not practical for continuous monitoring of stroke indi-
viduals throughout their daily living. Thus, our work focuses on
processing the imperfect data obtained from the two accelerom-
eters within their own coordinate frames (i.e., the orientation of
each sensor) using machine learning algorithms.

B. Data Collection

A total of 18 healthy individuals between the ages of 18 and
40 years were recruited from the University of Massachusetts
Amherst. All subjects had no major health issues that neglected
their ability to follow instructions or independently perform
motor tasks involving hand use. Once subjects arrived at the
laboratory, they were bilaterally equipped with wearable sensors
on the wrist and index finger as shown in Fig. 1. A reflective
marker was placed on each sensor for a comparative analysis
and to compute the benchmark measurement of the true amount
of hand use by using an optoelectronic motion capture system
(Miqus, Qualisys, Sweden).

Eleven motor tasks with varying levels of hand and gross
arm motor involvement (e.g., passive, unimanual, and biman-
ual movements) were carefully selected to reflect ADL in
real-world environments [19], [20] (see Table I). The motor
tasks considered in our work can be categorized into two
broad categories: motor tasks that mainly involved passive vs.
goal-directed upper limb movements. Furthermore, this work
considered two types of motor tasks involving goal-directed
movements: movements that mainly involve bimanual vs.
unimanual movements. Specifically, unimanual motor tasks
were included in order to validate the proposed technologys
responsiveness towards changes in the amount of hand use
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Fig. 2. Analytic pipelines to establish the benchmark measurement of the amount of hand use during the performance of ADL based on data
obtained from a motion capture system, and to estimate the established benchmark measurement using data obtained from the proposed wearable
sensor system.

due to a manual intervention (i.e., asking subjects to make use
of their non-dominant and to complete the unimanual tasks).
Subjects were asked to repeat each motor task three times in
their most natural manner (i.e., as if they were to perform in their
daily living). For the unimanual motor tasks specifically (Tasks
#8–11), they were asked to perform the first two repetitions in
a natural manner using their dominant hand (Repetition #1 and
#2), and the last repetition by making their best efforts to use
the non-dominant hand in order to validate our measurement’s
responsiveness to an intervention (Repetition #3).

III. METHODS

A. Overview of Data Analysis

This section introduces analytic methods to 1) construct a
new benchmark measurement of the amount of hand use based
on data obtained from the motion capture system and validate
its test-retest reliability and responsiveness to an intervention,
and 2) to estimate the validated benchmark measurement using
data obtained from the wearable sensors (see Fig. 2).

B. Establishment of the Benchmark Measure of
Hand Use

The amount of comprehensive hand use (i.e., general use of
the fingers and the palm) was defined as the average change in
the distance between the proximal phalanx of the index finger
(where the finger-worn sensor was placed) and the wrist. The
three dimensional (3D) position time-series of the markers lo-
cated at the wrist and finger, denoted as ⟨xw [t], yw [t], zw [t]⟩ and
⟨xf [t], yf [t], zf [t]⟩ respectively, were filtered using the sixth or-
der Butterworth low-pass filter at a cutoff frequency of 8 Hz
to remove high frequency and non-human generated noise.
Then, the Euclidean distance d[t] was computed between the
two markers. The amount of hand use was then represented by
computing the absolute difference of the distance d[t] between
each pair of adjacent samples:

m[t] = |d[t] − d[t − 1]|. (1)

A single representative value of the amount of hand use over
the duration of each motor task was derived by computing the
mean value of m[t]. The unit of the measurement is cm/s.

C. Validation of the Benchmark Measure: Reliability and
Responsiveness

Test-retest reliability evaluates the ability of a metric to mea-
sure consistency in two tests under the same conditions [21].
In our study, the two tests were the first two repetitions of the
motor tasks performed in a natural manner by the same subject
(Repetition #1 and #2). This work hypothesized the observa-
tion of similar patterns of measurement. The level of test-retest
reliability was quantified by using the intra-class correlation co-
efficient (ICC), whose value ranges from 0 to 1 [21]. The type
of ICC used in this work was ICC (3,1). An ICC < 0.4 indicates
poor, 0.4 ≤ ICC < 0.75 indicates fair to good, and ICC ≥ 0.75
indicates excellent test-retest reliability [21].

Responsiveness examines the ability of a measurement to
detect changes that are caused by a specific intervention [22].
In our study, the intervention was to make the best efforts to
use the non-dominant hand to perform the unimanual motor
tasks during Repetition #3 as discussed in Section II-B. The
benchmark measurement of the dominant hand during Repeti-
tion #2 was compared against the following two measures using
two-sided Wilcoxon rank sum test [23]: 1) the amount of the
dominant hand use during Repetition #3 and 2) that of the non-
dominant hand during Repetition #3. This work hypothesized
to observe a statistically significant difference for the amount
of the dominant hand use during Repetition #2 and #3, whereas
the difference between the dominant hand use during Repetition
#2 and the non-dominant hand use during Repetition #3 may
depend on how differently (or similarly) subjects performed the
same tasks with the two limbs.

D. Estimation of Amount of Hand Use Using Wearable
Sensor

Fig. 2 shows the machine learning-based analytic pipeline that
estimated the validated benchmark measurement of the amount
of hand use using the accelerometer data obtained from the
finger-worn and wrist-worn sensors. We also evaluated the esti-
mation performance in different mobile network configurations
that require different data throughputs.

1) Data Pre-processing: A sixth order Butterworth low-pass
filter with a cutoff frequency at 8 Hz was again applied to remove
any noise in the accelerometer time-series. A sliding window of
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9 s with 50% overlap was used to segment the data in each motor
task to support continuous computation of the amount of hand
use; the impact of the length of the window on the estimation
accuracy was also investigated. Each sliding window was con-
sidered as a data point containing 1) the three-axis accelerometer
data obtained from the finger-worn af [t] = ⟨ax

f [t], ay
f [t], az

f [t]⟩
and wrist-worn sensors aw [t] = ⟨ax

w [t], ay
w [t], az

w [t]⟩, and 2)
the corresponding benchmark measurement of the amount of
hand use (i.e., the mean value of m[t] within the window).

2) Feature Extraction: Features were extracted from the fil-
tered and segmented accelerometer data to capture the intensity,
smoothness, and periodicity of hand use [24]. More specifically,
the intensity was represented by the following features: 1) mean,
2) inter-quartile range (IQR), 3) minimum and maximum, and
4) root mean square of the acceleration time-series. The smooth-
ness of hand use was captured by using 5) standard deviation
and 6) the difference between the zero-phase filtered and origi-
nal accelerometer time-series was computed. The periodicity of
hand use was assessed based on 7) the dominant frequency and
8) ratio of the energy at the dominant frequency to the entire
signal energy of the time-series. Besides the features mentioned
above, we also computed the 9) skewness, 10) kurtosis, and 11)
signal entropy of the time-series. The aforementioned features
were derived from 1) signal magnitudes of acceleration time-
series that were generated by both the finger- and wrist-worn
sensors, 2) the difference of the two acceleration magnitudes,
i.e., ad [t] = |af [t]|− |aw [t]|, 3) each axis of the acceleration
time-series of the finger-worn sensor, and 4) signal envelopes of
all the aforementioned time-series. Note that features were ex-
tracted from each axis of the finger-worn sensor but not from the
wrist-worn sensor. This is due to the fact that conventional finger
movements during both gross arm and/or fine hand movements
are made within a confined space, whereas those of the wrist are
less constricted. For example, finger movements during hand
use (e.g., grasping or releasing) usually generated acceleration
in the x-axis of the sensor, whereas gross arm movements (e.g.,
passive arm swing while walking) generated acceleration in the
y-axis due to the centripetal force from pendulum-like arm swing
behaviors [25]. Wrist movements, on the other hand, could be
made relatively freely in all directions, and thus extracting fea-
tures in individual axes of the wrist-worn sensor may overfit the
regression model for the specific motor tasks considered in our
experiment. In sum, a total of 271 features potentially relevant
to the amount of hand use were extracted.

3) Feature Selection: Our study employed a Correlation-
based Feature Selection (CFS) algorithm to identify data fea-
tures that were particularly relevant to the amount of hand use
[26]. CFS focuses on finding a subset of relevant features based
on the evaluation of individual features’ predictability and the
degree of redundancy compared to others. The best-first search
was used to construct the feature search space.

4) Regression Estimation: Support Vector Regression
(SVR) was utilized to train a model that estimated the bench-
mark measurement of the amount of hand use based on the
selected features. SVR is a supervised, nonparametric learn-
ing algorithm that could provide a computationally efficient
estimation of the target variable [27], which is more suit-

TABLE II
FOUR DIFFERENT SENSOR NETWORK CONFIGURATIONS OF THE PROPOSED

SYSTEM THAT ALLOW THE OPERATION OF THE SYSTEM BASED ON A
TRADE-OFF BETWEEN THE AMOUNT OF POSSIBLE INFORMATION THAT CAN
BE EXTRACTED (OR ESTIMATION ACCURACY) AND DATA THROUGHPUT (OR

POWER CONSUMPTION)

able for resource-constrained computing environments such as
our miniaturized wearable devices. We employed Radial Basis
Function (RBF) as the kernel function to transform the fea-
ture space [28]. The hyperparameters were optimized based
on work by Shevade et al. [29]. The performance of the
model was evaluated using Normalized Root Mean Square
Error (NRMSE):

NRMSE =

√
1
N

∑N
n=1(α̂n − αn )2

max ([α1 , . . . ,αN ]) − min ([α1 , . . . ,αN ])
,

where α̂n and αn respectively represent the estimated and
benchmark measurements of the amount of hand use within
a sliding window of index n. N represents the total number
of windows (data points) within the testing dataset. Note that
αn = (1/T )

∑T
t mn [t], where T is the length of the sliding

window, and mn [t] represents the measurement in (1). All the
analyses were performed using leave-one-subject-out cross val-
idation (LOSOCV) to provide a fair evaluation without individ-
ual bias and/or over-fitting.

5) Network Configurations: The proposed body sensor sys-
tem can support different network configurations allowing the
operation of the system based on a trade-off between the amount
of possible information that can be extracted (or estimation
accuracy) and data throughput (or power consumption). This
study considered four different network configurations, which
are summarized in Table II.

Configuration #1 investigated a network structure where raw
accelerometer time-series from the two sensors were transmit-
ted to the mobile gateware of our sensor network. The mobile
gateware (e.g., smartphone or smartwatch) represents a node
within the body network that collects data from the sensor nodes
and pushes them to the cloud. This configuration would allow
the maximum flexibility in sensor data processing and feature
engineering as it provides access to the raw accelerometer time-
series of both sensors. Configuration #2 investigated a more
constrained network structure where the features were com-
puted locally on the sensing node and then transmitted to the
gateware at the end of each sliding window. This would sub-
stantially reduce the power consumption on the sensor nodes
by eliminating the need for real-time data streaming. On the
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Fig. 3. Scatter plot for the average amount of dominant hand use during
two repetitions of motor tasks (test-retest reliability). The black line (y =
x) indicates the perfectly identical amount of hand use.

other hand, it may also diminish the estimation accuracy as it
prohibits the extraction of potentially important data features,
e.g., features extracted from ad [t]. Configurations #3 and #4 em-
ploy only a single sensor node (either the finger- or wrist-worn
sensor) to estimate the amount of hand use. We investigated
the estimation performance of these network configurations by
eliminating features that were not possible within the corre-
sponding configuration while keeping the rest of the analytic
pipeline identical.

IV. RESULTS

A. Validation of the Benchmark Measure of Hand Use

Fig. 3 shows a scatter plot of the proposed benchmark measure
when subjects were asked to repeat the entire motor tasks in their
natural manner (Repetitions #1 and #2). This yielded an ICC of
0.86, which indicates excellent test-retest reliability [21].

Fig. 4 graphically summarizes the responsiveness of the
benchmark measurement when subjects were asked to perform
the unimanual motor tasks 1) in a natural manner (Repetition
#2) and 2) under an intervention to use their non-dominant
hand (Repetition #3). The amount of the dominant hand use
during Repetition #2 was compared against the amount of
the dominant as well as the non-dominant hand use during
Repetition #3. Two-sided Wilcoxon rank sum test showed
statistically significant differences for the two comparisons:
p < 1.74 × 10−13 for the amount of dominant hand use in
Repetition #2 and #3, and p < 2.91 × 10−9 for the amount
of dominant hand use in Repetition #2 and non-dominant
hand use in Repetition #3. The significant difference between
the amount of dominant hand use in Repetition #2 and the
non-dominant hand use in Repetition #3 was caused by patients
not performing the unimanual motor tasks naturally with their
non-dominant hand. We observed that subjects used their

Fig. 4. Results of responsiveness when subjects were asked to use
their non dominant hand to perform unimanual motor tasks. The plot
shows the amount of dominant hand use during Repetition #2 and the
amount of dominant/non-dominant hand use during Repetition #3.

dominant hand more actively in Repetition #2, with which they
were more comfortable executing the motor task.

B. Estimation of the Amount of Hand Use

Fig. 5(a) compares the amount of hand use estimated by the
proposed algorithm (y-axis) to the validated benchmark mea-
surement (x-axis). A sliding window of 9 s was used to generate
the data points in this figure; the effect of the window size on the
estimation accuracy will be discussed later in this section. The
average value of NRMSE computed over the LOSOCV (across
all subjects’ data) was 0.11 with a standard deviation of 0.024.
The average Pearson coefficient was 0.78 with a standard devi-
ation of 0.10. The estimated amount of hand use for all subjects
showed statistically significant correlations to the benchmark
measurement with the overall p-value < 5.6 × 10−204 . The
bias and limit of agreement of the Bland-Altman plot [Fig. 5(b)]
were −8.7 × 10−3 and 0.67, respectively. The results presented
herein support that our wearable system can produce a reliable
and accurate estimation of the amount of hand use during ADL.

The size of the sliding window could affect the accuracy of
the estimation algorithm based on SVR (see Fig. 6). A relatively
short window size (e.g., 1 s–5 s) could provide estimations in
near real-time, but the quality of data features extracted from
such a short duration may not be sufficient to make an accu-
rate estimation. For example, the estimation of the benchmark
measure (i.e., a measure of changes in distance over a window,
whose unit is in cm/s) by using the sensor data (i.e., a measure
of acceleration in m/s2) could not be performed effectively as
the conversion from an acceleration to a distance measure fun-
damentally requires a sufficiently large number of data points –
a process that resembles double integration. On the other end,
a relatively long window (e.g., >15 s) may contain multiple
activities of varying intensity of hand use, which makes it dif-
ficult to find unique patterns in data features that are associated
with the amount of hand use, resulting in a lower estimation
accuracy. Fig. 6 shows that a window size of 9 s could minimize
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Fig. 5. (a) A scatter plot between the estimated amount of hand use based on our proposed work and the benchmark measurement (NRMSE of
0.11 and Pearson coefficient of 0.78), and (b) the corresponding Bland-Altman plot (bias of −8.7 × 10−3 and limit of agreement of 0.67).

Fig. 6. Results of searching for the optimal window size. The plot shows
that 9 s is the window size corresponding with the highest accuracy of
estimation in terms of NRMSE.

the overall estimation error in terms of NRMSE computed over
the LOSOCV, i.e., an average NRMSE of 0.11 and an average
Pearsons coefficient of 0.78.

Table III summarizes the eight most important features
relevant to the amount of hand use. Since the evaluation was
performed using the LOSOCV technique, the feature selection
algorithm was performed on different training data and selected
different feature subsets throughout the iterations of the
LOSOCV. For example, in our analysis, 20 to 30 different fea-
tures were selected (out of 271 features) in different iterations.
Thus, we report the most frequently selected features from the
iterations of the LOSOCV in order to summarize the important
features [30]. The eight features in Table III were selected 100%
in all iterations. It is not surprising that most of these features
were derived directly from or partially involved the finger-worn
sensor data, as we hypothesized that the finger sensor could
capture information regarding the use of the hand. When we
constructed the estimation model with these eight features, we
obtained an NRMSE of 0.12 and Pearson coefficient of 0.74.

TABLE III
A LIST OF EIGHT DATA FEATURES THAT ARE MOST RELEVANT TO

ESTIMATING THE AMOUNT OF HAND USE

This result shows that we can achieve near-optimal regression
performance using only eight features when compared to
using the entire feature set selected by the CFS algorithm
(i.e., NRMSE of 0.11 and Pearson coefficient of 0.78). This
is particularly important for the system’s ability to support
continuous monitoring – these features need to be computed
for every sliding window.

Fig. 7 summarizes the estimation performance for the
four sensor network configurations investigated in this work.
Configurations #1 and #2 produced similar estimation accuracy
(i.e., NRMSE and Pearson coefficient of ⟨0.11 and 0.78⟩ vs.
⟨0.11 and 0.77⟩, respectively). This result supports that the
features extracted from the difference time-series of the finger
and wrist accelerations ad [t] make minimal contributions to the
overall estimation accuracy, which was also reflected on the
feature selection results in Table III. Configuration #3, which
employed only the wrist-worn sensor, showed significantly
inferior performance compared to the other configurations.
The achieved NRMSE and Pearson coefficient were 0.15 and
0.44, respectively. This observation suggests that wrist-worn
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Fig. 7. The estimation performance of the proposed algorithm under
different mobile configurations. Configuration #1, #2, and #4 provided a
comparable estimation accuracy whereas Configuration #3 (wrist sensor
only) showed significantly inferior performance.

accelerometers alone cannot capture important information
regarding hand performance during ADL. On the other hand,
Configuration #3, which employed only the finger-worn sensor,
produced comparable estimation accuracy to Configurations #1
and #2. This result concurs with our feature selection summary
(Table III) that shows important features contributing to the
estimation involved data obtained from the finger-worn sensor.

V. DISCUSSION AND CONCLUSION

The results presented in this paper show that accelerometer
recordings obtained from the proposed body-networked sensor
system composed of a finger-worn and a wrist-worn sensor can
be used to estimate the amount of hand use during ADL. The pro-
posed machine learning-based analytic pipeline could provide
an average error rate of 0.11 in terms of NRMSE and support
continuous monitoring (e.g., producing estimations every 9 s).
This paper also introduced and validated a new benchmark mea-
surement of the amount of hand use based on data obtained from
an optoelectronic motion capture system. The implementation
and validation of this measurement can serve as robust ground
truth for future studies that aim to quantify the amount of hand
use using on- and/or off-body sensors.

A machine learning algorithm was necessary to process the
body sensor data and make an accurate estimation of the amount
of hand use. The most straightforward approach to estimate
the amount of hand use without utilizing machine learning
algorithms may be the computation of counts of the difference
in acceleration magnitudes of the two sensors – a conventional
approach to convert accelerometer data into a measurement of
activity intensity in clinical research [11], [12]. This is intuitive
since the wrist-worn sensor is assumed to capture mainly
gross arm movement whereas the finger-worn sensor would
capture both gross arm and fine hand movements. However,
the estimation results based on this approach produced a
poor estimation accuracy (NRMSE of 0.16) compared to the
proposed machine learning-based mechanism. We believe that
this is due the non-linear relationship between the accelerations
measured by the finger- and the wrist-worn sensors during
pendulum-like arm movement [25]. The sensor on the finger

is more distal compared to the wrist and thus, the acceleration
measured by the two sensors may vary significantly.

The proposed study validated the use of finger-worn sensors
to estimate the amount of hand use based on a series of mo-
tor tasks associated with ADL. Thus, it is conceivable that the
presented technologies could be translated to individuals’ home
settings to continuously monitor their abilities to function in
daily life. The proposed system provides activity-independent
quantification of the amount of hand use (i.e., does not require
the classification of performed activities). Furthermore, the use
of a machine learning algorithm (SVR with RBF kernel) capa-
ble of generating the estimations in a computationally efficient
manner (with as few as 8 features) makes the system suitable
for continuous monitoring in an environment with constrained
resources, e.g., on the computing unit of our wearable sensors.

This study contains some limitations worth noting. First, our
experiment involved a relatively small number of subjects (18
subjects) performing a set of 11 motor tasks. Thus, the results
presented in this paper may not be generalized to the general
healthy or stroke populations. However, all the analyses were
performed in a LOSOCV manner, which produced an unbi-
ased, fair evaluation rather an optimistic one. Second, the pro-
posed method that estimates the amount of hand use does not
provide information regarding the type of upper limb move-
ments (e.g., passive vs. unimanual vs. bimanual vs. stabiliza-
tion movements). Although accurate classification of upper limb
movements based on machine learning algorithms could provide
clinically relevant information regarding the functional level of
patients with motor impairments (e.g., stroke survivors) [9], it
is technically challenging to realize in practice. It is especially
difficult to define the perfect classes of upper limb movements
that could be performed in free living conditions based on a
number of factors, such as the goal-directedness or whether it is
unimanual or bimanual [8]. For example, the acceleration of the
arm during sit-to-stand is mainly generated by the lower limb
(standing up) and could be considered as a passive movement.
However, reaching out both arms to balance on the armrest,
could be considered an active (bimanual) movement. This also
indicates that accurate classification would necessitate the un-
derstanding of the context of activities such that the accelerom-
eter data could be properly segmented. Thus, the proposed work
focused on quantifying the hand function (i.e., amount of hand
use) that could capture relevant information regarding the goal-
directed use of the upper limb, which also has been suggested by
other work in the field [14], [15]. Lastly, the proposed technol-
ogy cannot capture the use of the hands for stabilizing objects
(e.g., holding a cup or stabilizing a piece of steak with a fork)
as it focuses on estimating the amount of hand movement. Sta-
bilization is an important category of hand function, however,
we assume that capturing hand movements during ADL could
provide more accurate information regarding the goal-directed
use of the hands, especially for individuals with hemiparesis,
when compared to conventional wrist-worn accelerometers.

We ultimately envision future scenarios in which stroke sur-
vivors can be continuously monitored in the free-living setting
using the proposed wearable technology. The proposed tech-
nology supports a minimally obtrusive means to understand
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patients’ functionality, which may reflect individual responses
to rehabilitation. This would allow clinicians the opportunity to
provide individually-tailored rehabilitation and therapeutic pro-
grams – potentially transforming the current stroke healthcare
into evidence-based, person-centered care.
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[12] M. Noorkõiv, H. Rodgers, and C. I. Price, “Accelerometer measurement
of upper extremity movement after stroke: A systematic review of clinical
studies,” J. Neuroeng. Rehabil., vol. 11, no. 1, pp. 1–11, 2014.

[13] K. Leuenberger, R. Gonzenbach, S. Wachter, A. Luft, and R. Gassert, “A
method to qualitatively assess arm use in stroke survivors in the home
environment,” Med. Biol. Eng. Comput., vol. 55, no. 1, pp. 141–150,
2017.

[14] N. Carbonaro, G. D. Mura, F. Lorussi, R. Paradiso, D. D. Rossi, and A.
Tognetti, “Exploiting wearable goniometer technology for motion sensing
gloves,” IEEE J. Biomed. Health Informat., vol. 18, no. 6, pp. 1788–1795,
Nov. 2014.

[15] N. P. Oess, J. Wanek, and A. Curt, “Design and evaluation of a low-cost
instrumented glove for hand function assessment,” J. Neuroeng. Rehabil.,
vol. 9, no. 1, pp. 1–11, 2012.

[16] N. Friedman, J. B. Rowe, D. J. Reinkensmeyer, and M. Bachman, “The
manumeter: A wearable device for monitoring daily use of the wrist and
fingers,” IEEE J. Biomed. Health Informat., vol. 18, no. 6, pp. 1804–1812,
Nov. 2014.

[17] X. Liu, S. Rajan, G. Hollander, N. Ramasarma, P. Bonato, and S. I. Lee,
“A novel finger-worn sensor for ambulatory monitoring of hand use,” in
Proc. 2017 IEEE/ACM Int. Conf. Connected Health: Appl., Syst. Eng.
Technol., Jul. 2017, pp. 276–277.

[18] S. Rajan, X. Liu, N. Ramasarma, P. Bonato, and S. Lee, “A finger-
worn ring sensor to capture hand movements in an ambulatory set-
ting,” Archives Phys. Med. Rehabil., vol. 98, no. 10, 2017, Art. no.
e26. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0003999317306287

[19] R. R. Bailey, J. W. Klaesner, and C. E. Lang, “An accelerometry-based
methodology for assessment of real-world bilateral upper extremity activ-
ity,” PloS One, vol. 9, no. 7, 2014, Art. no. e103135.

[20] S. M. Waller and J. Whitall, “Bilateral arm training: Why and who bene-
fits?” NeuroRehabilitation, vol. 23, no. 1, pp. 29–41, 2008.

[21] B. Rosner, Fundamentals of Biostatistics, 7th ed. Boston, MA, USA:
Brooks/Cole, 2011.

[22] Y.-W. Hsieh, C.-Y. Wu, K.-C. Lin, Y.-F. Chang, C.-L. Chen, and J.-S.
Liu, “Responsiveness and validity of three outcome measures of motor
function after stroke rehabilitation,” Stroke, vol. 40, no. 4, pp. 1386–1391,
2009.

[23] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[24] S. Patel et al., “A novel approach to monitor rehabilitation outcomes in
stroke survivors using wearable technology,” Proc. IEEE, vol. 98, no. 3,
pp. 450–461, Mar. 2010.

[25] B. Gutnik, H. Mackie, G. Hudson, and C. Standen, “How close to a
pendulum is human upper limb movement during walking?” HOMO—J.
Comparative Human Biol., vol. 56, no. 1, pp. 35–49, 2005.

[26] M. A. Hall, “Correlation-based feature subset selection for machine
learning,” Ph.D. dissertation, Univ. Waikato, Hamilton, New Zealand,
1998.

[27] S. M. Clarke, J. H. Griebsch, and T. W. Simpson, “Analysis of support
vector regression for approximation of complex engineering analyses,” J.
Mech. Des., vol. 127, no. 6, pp. 1077–1087, 2005.

[28] B. Scholkopf et al., “Comparing support vector machines with gaussian
kernels to radial basis function classifiers,” IEEE Trans. Signal Process.,
vol. 45, no. 11, pp. 2758–2765, Nov. 1997.

[29] S. Shevade, S. Keerthi, C. Bhattacharyya, and K. Murthy, “Improvements
to the SMO algorithm for SVM regression,” in IEEE Trans. Neural Netw.,
vol. 11, no. 5, pp. 1188–1193, Sep. 2000.

[30] S. I. Lee et al., “A prediction model for functional outcomes in spinal
cord disorder patients using gaussian process regression,” IEEE J. Biomed.
Health Informat., vol. 20, no. 1, pp. 91–99, Jan. 2016.


