Interactive 3D Modeling of Indoor Environments with a Consumer Depth Camera
   Hao Du, Peter Henry, Xiaofeng Ren, Marvin Cheng, Dan B Goldman, Steven M. Seitz, Dieter Fox, at Ubicomp 2011


Detailed 3D visual models of indoor spaces, from walls and floors to objects and their configurations, can provide extensive knowledge about the environments as well as rich contextual information of people living therein. Vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges that only a few experts understand, let alone solve. In this work we utilize (Kinect style) consumer depth cameras to enable non-expert users to scan their personal spaces into 3D models. We build a prototype mobile system for 3D modeling that runs in real-time on a laptop, assisting and interacting with the user on-the-fly. Color and depth are jointly used to achieve robust 3D registration. The system offers online feedback and hints, tolerates human errors and alignment failures, and helps to obtain complete scene coverage. We show that our prototype system can both scan large environments (50 meters across) and at the same time preserve fine details (centimeter accuracy). The capability of detailed 3D modeling leads to many promising applications such as accurate 3D localization, measuring dimensions, and interactive visualization.