RGB-D Flow: Dense 3-D Motion Estimation Using Color and Depth
   Evan Herbst, Xiaofeng Ren, and Dieter Fox, at ICRA 2013



Abstract

3-D motion estimation is a fundamental problem that has far-reaching implications in robotics. A scene flow formulation is attractive as it makes no assumptions about scene complexity, object rigidity, or camera motion. RGB-D cameras provide new information useful for computing dense 3-D flow in challenging scenes. In this work we show how to generalize two-frame variational 2-D flow algorithms to 3-D. We show that scene flow can be reliably computed using RGB-D data, overcoming depth noise and outperforming previous results on a variety of scenes. We apply dense 3-D flow to rigid motion segmentation.