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Abstract

We derive a probabilistic multi-scale model for contour completion based on image
statistics. The boundaries of human segmented images are used as ”ground truth”.
A probabilistic formulation of contours demands a prior model and a measurement
model. From the image statistics of boundary contours, we derive both the prior model
of contour shape and the local likelihood model of image measurements. We observe
multi-scale phenomena in the data, and accordingly propose a higher-order Markov
model over scales for the contour continuity prior. Various image cues derived from
orientation energy are evaluated and incorporated into the measurement model. Based
on these models, we have designed a multi-scale algorithm for contour completion,
which exploits both contour continuity and texture. Experimental results are shown on
a wide range of images.

1 Introduction

Traditionally there are two approaches to grouping: region-based methods and contour-
based methods. Region-based approaches, such as the Normalized Cut framework [19],
have been popular recently. Region-based methods seem to be a natural way to approach
the grouping problem, because (1) regions arise from objects, which are natural entities
in grouping; (2) many important cues, such as texture and color, are region-based; (3)
region properties are more robust to noise and clutter.

Nevertheless, contours, even viewed as boundaries between regions, are themselves
very important. In many cases boundary contour is the most informative cue in group-
ing as well as in shape analysis. The intervening contour approach [9] has provided a
framework to incorporate contour cues into a region-based framework. However, how
to reliably extract contour information, despite years of research, is largely an open
problem. Contour extraction is hard, mainly for the following reasons:

1. texture: natural scenes are often highly textured. Contour-based approaches often
have difficulty dealing with textured regions and find a lot of false positives, largely
because they do not have an inherent concept of texture.

2. low contrast: contrast varies a lot in natural scenes. For example, camouflage of
animals. In many cases, contours are perceptually salient only because they form a
consistent group.



The problem of contour completion has been studied extensively [4, 14, 17, 13, 20, 5, 18,
2]. Most of these approaches are two-stage: an early stage of detection, where hard de-
cisions are made locally and prematurely; and a later stage of linking or grouping. This
two-stage paradigm ignores the crucial fact that contour elements are not independent.
A pixel is an edge if and only if there is a contour passing through it. The probability
of a pixel being an edge is the posterior probability that there exists a contour passing
through this pixel given the image.

Based on this observation, we propose a multi-scale Bayesian approach to contour
completion and the classical problem of contour extraction. Two questions we need to
answer in a Bayesian framework: a prior model of contour shape; and a local model
of contour measurements, how the image arises from contours. These two questions
we answer by empirical measurements of contours in natural images. There have been
many recent studies on the statistics of natural images [22, 8, 7, 11, 3] . In our work we
use the database of human segmented images reported in [11]. The contours in these
segmentations are explored to understand natural scenes and to motivate our contour
completion algorithm. Driven by this empirical analysis in Section 3, higher order
Markov models are proposed as the prior model for contour shape. This is a significant
distinction in our work from the related approaches such as Mumford [13], Williams
and Jacobs [21], who used a first-order Markov model for contour shape. We also make
use of the database of human segmented images to arrive at a measurement model, in-
corporating various local cues such as orientation energy and textureness. Based on the
Markov assumption, we use dynamic programming to efficiently compute the posterior
probability. The multi-scale contour completion algorithm is presented in Section 5.
Experimental results are shown in Section 6.

2 Bayesian Contour Completion

In this section we give a formal analysis of our intuition in the introduction and motivate
our work on images statistics. The key is that how likely a pixel is an edge is quantified
by the posterior probability that there exists a contour passing through it:

Consider a pixel � in a given image � . Let�� denote the measurement, or a feature
vector, at the pixel �, and � the collection ���� for all �. Let �� � ��� �� be the
binary random variable which denotes the existence of a boundary contour at pixel �.
What we want to compute is the posterior distribution:

� ������ �
� ������

� ���
� � ������ (1)

The posterior probability of the non-contour case is determined by our background
model. If we make the simplifying assumption that �� � � does not constrain the
existence of contours at other pixels, we have

� ��� � ���� �� �� ��� � ��� ��� � ��

�� ��� � ��� ������ � ��� ��������
(2)

By the law of large numbers, the marginal probability�� can be well approximated by
an exponential function � ���� � �

���, where ��� is the number of pixels in the subset
�, and � is the expected likelihood.



In the contour case � ��� � ��, we can not make the independence assumption.
Indeed, �� � � if and only if there is a boundary contour passing through the pixel
�. Let � � ��� � is a curve passing through � � be the collection of all such contours.
Since one and only one such contour passes through � in the image � , we have

� ����� � �� �
�
���

� �����

For each such curve �,

� ����� � � �� ���� ���

What we need in this probabilistic formulation is:

1. � ���, the prior model on contour shape;
2. � �� ���, the model of local image measurements conditioned on the presence or

the absence of a contour.

3 Modeling Contour Shape

The key fact we need to keep in mind when studying contours, or any object in natural
images, is that these objects are multi-scale. This multi-scale phenomenon mainly arises
from two sources:

1. Objects in the natural world are themselves multi-scale. For example, a object has
parts: the parts in the figure of a person include nose, head, torso, arm, hand, finger,
etc., all of which are different in scale.

2. Despite the possible bias introduced by the observer, objects are usually viewed
from an arbitrary distance and angle.

3.1 Scale Invariance

Scale invariance in natural images has been reported by various authors. An in-depth
study of scale invariance in boundary contours is beyond the scope of this paper. We
study one phenomenon here: contours consist of segments, which roughly correspond
to the parts of objects or the scale of local details. We consider the decomposition
of contours at extremal points, i.e., the points whose curvatures are locally maximal.
Figure 1(a) shows some examples of this decomposition. The distribution of the length
of the resulted contour segments reveals to us properties of the underlying mechanism
which generates the contours. For example, if a first-order Markov model were accurate,
then this distribution of segment length, or the time to wait until a high curvature event
occurs, is exponential.

Figure 1 (b) shows the distribution of contour segment length. Ignoring the range
where the length is small, in which the decompositions are not reliably, we observe
from this distribution the following power law:

frequency �
�

�contour length������
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Fig. 1. Examples of the contour decomposition. High curvature points, where the contours are
segmented, are shown in the plots. The decompositions are consistent with human perception.

This power law is consistent with the distribution of region area [11], and with the
intuition that natural objects are self-similar. We can formalize this intuition and give a
simple explanation: suppose we have a contour of fixed length 	 � at a base scale. When
viewed at scale 
 ( say 
 � �where d is the distance to the observer ), its apparent length
is 	��
. At the same time, because the field of view is 
� times larger, the probability of
observing this contour increases by 
�. Hence the frequency of observing this contour
of an apparent length 	 is proportional to 
� � �	�����	

��. I.e., this contour induces a
whole distribution:


�	� �

�
�


�Æ���	
��
 �
	��
	�

We take the expectation w.r.t. 	� to obtain the overall distribution. This does not change
the structure of the power law:

�
�	� � ��
�	�� �
��	���

	�

it still decreases quadratically with contour length 	.
We can compare this inverse square law with the predictive first-order Markov

model as used by Mumford [13], Williams and Jacobs [21]. In their work, curvature
is assumed to be white noise; hence the tangent direction is a Brownian motion. That
would imply that the frequency a contour appears decreases exponentially with its
length. Exponential models are common; they have the memoryless property and are
easy to work with. We would like to assume that. However, This is not true empirically.

The next question we want to explore is self-similarity. We use region area as an
indication for the scale of the object. We study whether the distribution of the contour
segment length is the same for different ranges of region area. Our results, which we
omit here, show that the distributions are almost identical for groups of different re-
gion sizes. This result justifies the intuition that objects themselves are multi-scale and
self-similar in nature. It suggests that any algorithm for contour completion should be
intrinsically multi-scale.



3.2 Higher-Order Markov Models

We have seen in the previous section that the Markov assumption is not accurate. In
this section we extend the first-order Markov model to high-order ones, and measure
the information these higher-order Markov models convey.

Let���� be the representation of the curve. This could be an intrinsic representation,
e.g., curvature parameterized by curve length. Or, in the context of contour completion,
to make the computation easier we represent the curve by its tangent directions param-
eterized by time. We adopt the random process view of contour generation, in which
we predict ���	 �� based on the information we have up to time �.

We extend the basic Markov model over scale. Let � ��� � � be a curve � at the
base scale. ����� � � � � ������ are the scaled versions of the original curve �. Define the
�-th Markov model over scales to be:

� �������	 ����� � � �������	 ����������� �������� � � � � ���������� (3)

Figure 2 shows the information gain when we extend the Markov model over scales.
We observe that there is a substantial gain from combining orientation information at
coarser scales. The use of higher-order Markov models is empirically justified by cross-
validation ( Figure 2 (b) ). The intuition is that scaled curves, at coarser scales, combine
information in a neighborhood. For example, if� ������ is to the left of�������, it makes
a left turn at � and therefore � �����	 �� is more likely to turn to the left. This intuition
has been confirmed empirically from samples of conditional distributions, which we
omit here. Since long-range dependencies in contours is likely caused by interactions at
coarser scales, these models over scales are a natural choice for local contour modeling.
This is not intended to be a global model of contours, since in these models there is no
notion of topological constraints, such as closure and no self-intersection; nevertheless,
it is sufficient for our purpose of contour completion.
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Fig. 2. (a) Information gain as the order of our Markov models increase. The model of order �
corresponds to the traditional Markov model. (b) ��-fold cross validation of higher-order Markov
models. The log-likelihood is normalized by the length of contours.



4 Local Measurement Model

We have seen the use of higher order Markov models to represent the prior distribution
of contour shape. In this section we turn to the images themselves. We study how the
contours locally give rise to image measurements. We formalize the problem as com-
puting the local posterior distribution of contour elements. In Section 4.1 we derive the
posterior model of local contour detection from image statistics of both the orientation
energy and textureness. In Section 4.2 we derive a probabilistic model of positional un-
certainty to go beyond the assumption of conditional independence. And in Section 4.3
we derive in a similar fashion a model of local orientation uncertainty.

4.1 Detection Uncertainty

The use of orientation energy ( e.g., [12, 16] ) has been an essential part of computer
vision. The orientation energy at an angle � is defined as:

���
	 � �� 	 
�
	�

� 	 �� 	 
�
	�
� (4)

where 
�
	 and 
�
	 are the second Gaussian derivative and its Hilbert pair oriented at
the angle �. It has roots in biological vision, and it has proven to be extremely successful
in both contour and texture analysis. However, people have also realized the difficulties
which come with the success. One major problem is the wide existence of textured
regions, which typically have high responses to traditional contour-based techniques.
Recently people have started to look into the interaction of texture cues with contour
cues ( e.g., Malik et. al. [10]). They introduced the notion of � ��
����, based on the ��

distance of texton histograms ( see detailed explanations in their paper ):

���
���� � �

�

����
����� 
 �����
(5)

They target at suppressing�� responses in homogeneous texture regions, by multiply-
ing ����, a non-linear transform of ��, by ���
����. In this paper we extend the notion
of ���
���� to be orientation dependent; i.e., ���� is computed for each angle �. Let
����
	 � �
 ����
��	����� as in [10] . We gate ����
	 with ���
����
	 separately in
each angle �

��
	 � ����
	 	 ��
 ���
����
	� (6)

After the gating, we take the maximum ��� � 
�� ��
	. Let �� denote the angle where
��
	 achieves the maximum, i.e., ��
	� � ��� .

In Figure 3, we show the power of this cue combination. At the back of the zebra, the
orientation energy is strong in the vertical direction. This is not the true direction of the
boundary contour ( in the scale where the human segmentations are done ). However,
���
���� is low only at the horizontal direction. This enables us to locally detect the
maximum ��� in the correct direction.

Figure 4 shows the statistics of ����
	 and ���
����
	. The likelihood ratio in Part (a)
is used in our contour completion algorithm. Part (c) and (d) justifies the multiplicative
form of our definition of ��
	. We also empirically measure the information gain of
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Fig. 3. Illustration of ����������. (a) a patch from a zebra image; we consider the pixel at the
center. (b) the distribution of raw ��	
�� ( not gated with �������� ), maximal in the verti-
cal direction. (c) � � ����������, maximal in the horizontal direction. (d) the product ���� �
��	
����� �����������, sharply peaked in the horizontal direction.

the cues from histograms of the joint distribution. In our experiments, the marginal
entropy of ��, edge vs. non-edge, is ��
��
 ( in bits ); the information gain of � ���
	 is
����
�; and the information gain of ���
����
	 over ����
	 is ������. These information-
theoretic measures illustrate the relative importance of these local cues.

4.2 Positional Uncertainty

So far in our local model, the posterior probability � �� is estimated independently at
each pixel. We have ignored the important relationship: the correlation between neigh-
boring pixels. Traditionally this is done by non-maximum suppression. However, due
to image noise we can never be certain about the contour localization. There is always a
positional uncertainty. To be consistent with our philosophy of avoiding local hard deci-
sions, we again make use of image statistics to derive a probabilistic model of positional
uncertainty, which serves as a soft non-maximum suppression.

We base our analysis on the quadratic model originally proposed in [15]. Empiri-
cally we have found it to perform well on real images. Their approach is to fit a parabola
in a local neighborhood, and use the information from the parabola fitting, such as �, the
distance to the center of the parabola, and �, the curvature of the parabola. Details are
omitted here. In Figure 5 (a)-(c) we show the statistics of the various outputs from this
parabola fitting. In this study of non-maximum suppression, we compare the statistics
of edge pixels to near-edge pixels ( i.e., pixels that are within a distance of � from a
human marked contour ). The results are qualitatively different from what we have seen
in the previous section, where we compare edge pixels to non-edge pixels. � �� alone
is not a good cue for non-maximum suppression. Instead, both the distance � and the
curvature � are informative. For edge pixels, the curvature tends to be negative, and the
distance to the center of the parabola tends to be small. In this work we choose �, the
distance , for our model of positional uncertainty. We observe the following relationship

� ������� ��� � � �������
� ����������

� �������
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Fig. 4. Image statistics of orientation energy ( ��	
�� ) and textureness ( ���������� ). (a) the
marginal distributions of ��	
��, both the edge case and non-edge case. (b) the marginal distri-
butions of the �� distance used in Equation eqrefeq:ptexture to produce of ����������. (c) the
contour plot of the likelihood ratio � ����
���

� ���
	
��
���
. (d) the contour plot of the multiplicative cue

combination ( Equation (6) ).

Accordingly we collect the statistics for the ratio � ������� ��� � ��
Æ
� �����

�
� ��� � ��

, as shown in Figure 5 (d). Motivated by this statistics , we choose the following model
to update ��� :

��� � ���

�
��� 	 ����

�������
�

�

�
(7)

In this parametric model, when � is large the multiplicative factor is small, and � �� is
suppressed. This suppression is more significant when ��� is large.

4.3 Orientation Uncertainty

In the previous sections we have studied the posterior probability of � �, i.e., the exis-
tence of a boundary contour at a pixel, as a function of � ���
	, ���
����
	, and � ( the
distance to the center of a local parabolic fit ). However, due to image noise and fur-
ther complications such as junctions, the true contour might not be oriented at � �, the
maximum ��
	 orientation. We represent the orientation uncertainty with a distribution
��	� over � at each pixel. We further assume that this distribution is Gaussian, and � �

is an unbiased estimate of the peak. We use two features to estimate the variance � �	 : ���
and �	� . �	� is defined as follows: if �� is the angle of the maximum ��
	, we choose the
angle �	 perpendicular to �� and define �	� � ��
	� . Figure 6 (a) shows the statistics
of the variance of local orientation for each ���� � �

	
� � pair. Motivated by this statistics,
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Fig. 5. Image statistics for probabilistic non-maximum suppression. (a) the marginal distributions
of ����, edge vs. non-edge. Note here we are comparing edge pixels with near-edge pixels,
hence the orientation energy alone gives us little information. (b) the marginal distributions of the
distance � in parabola fitting. c) the marginal distributions of the curvature � in parabola fitting.
(d) the distributions of the likelihood ratio, as a function of the distance �, conditioned on ��� .

we use a simple parametric model as shown in Figure 6 (b) :

��	 � ����
�
���

�	� 	 �
� (8)

When ��� is large, the uncertainty is low; similarly when �	� is large, the uncertainty
is high. This simple parametric model has the desired properties; clearly other models
could be used as well. Once we obtain an estimate of � �	 , we distribute the probability
mass ��� over � according to the uncertainty.

There are three important cases here: (1) when the contrast is high, we have a re-
liable estimate of local orientation; (2) when the contrast is low, local orientation can
be arbitrary; (3) at a junction, the ��
	 profile is complicated. Building a local junction
detector is extremely difficult. Our approach is to make a soft decision locally, and let
contour completion to find the most probable orientation. This frees us from searching
for a precise solution for the distribution of orientation �� 	�.

5 Multi-Scale Contour Completion

To motivate the multi-scale model from a practical viewpoint, Figure 7 shows the output
of a single-scale contour completion algorithm on the same image scaled to different
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Fig. 6. The uncertainty of local orientation ��� as a function of ��� and ��� . (a) the statistics from
real images. (b) fitting the parametric model ( Equation (8) ).

sizes. The results are dramatically different. At finer scales, the algorithm is unable to
complete contours over a long distance in the image. At coarser scales, the algorithm
is unable to properly detect and enhance curved contours. For any model based on the
Markov assumption and the underlying preference for straight lines, no matter how the
parameters are tuned, it only works at a certain scale, therefore unable to handle the
wide range of scales existing in natural images.

Fig. 7. A synthetic image and the outputs of a single-scale contour completion algorithm on this
image at different sizes. The figures correspond to completion over increasingly coarse scales.

We will start with a single-scale version of our probabilistic contour completion
algorithm and then extend it to multi-scale. The multi-scale property comes in two
ways: (a) contour propagation is done at each scale and the results are combined to
produce the final estimate; (b) prior models at finer scales are conditioned on the results
from coarser scales.

5.1 Single-Scale Version

We represent a curve � by ������ � ����, where ���� denote the locations and � ��� the
tangent directions of � at ����. Let �length��� be the distribution of contour lengths and
��� the length of the curve �.The prior probability of � can be written as

� ��� � �length������ �� ����� ������� ���� (9)

The conditional probability

� �� ��� � � ��������
�
�

� ��� �� ���� (10)



We approximate� �������� by ��������, where � is the expected likelihood in Section 2.
Apply the Markov assumption here; let

	�� � ��	����	
�
��� ���
���� 
 ����

	�� � ��	����	
�
��� ���
���� 
 ����

��� � ���
��
��
 ��� ���
 ����

��� � ���
��
��
 ��� ���
 ����

�� � ����������
��������
 ������

Then we have the likelihood ratio:

������ �
� �����

� ����� � ��
� � ���

� ��� ���

� ��� ������ � ��

��length������ �
 ����
� ����
 ����

� ������ � ��

�
�
���

	�����
�
�����

�
���

	�����
�
�����

(11)

This is a Hidden Markov Model with ���� and � ��� as hidden variables. Because of
the one-dimensional nature of contours, we can apply dynamical programming to solve
this computational problem, which is essentially the same as the alpha-beta algorithm or
the stochastic completion approach in [21]. The details are omitted here. Let � � denote
the partial contour ������ �  ��, and �� for ������ � ! ��. Let "��� �� �� be the sum
of the messages arriving at ��� �� at step �. We maintain:

"���
�� �� � � ��� �� through ��� �� s.t. ���� � ��

"��� �� �� � � ��� �� through ��� �� s.t. ���� � ��

"��� �� �� are recursively computed using propagation and diffusion as in [21, 20]. Given
", we can calculate the likelihood ratio #� �

� ��
��	��
� ��
��	��

as:

#� �
�
	

� �� ��� � ��� ����� ��� � ��



�
���

�
�length���

����
�	�

"��� �� ��"���
�� � 
 � 
 ��

� (12)

With this probabilistic interpretation, we can incorporate contour cues, avoid mak-
ing premature hard decisions, and readily extend the model to multi-scale.

5.2 Multi-Scale Version

At the coarsest scale, the single-scale version of the contour completion algorithm is
applied. Suppose we have obtained the posterior distributions � �� ���

� � ��� ���� and

� ��
���
� �� ���� for scales 
 � �� � � � � � 
 �. ( note

�
	 � ��

���
� � ��� ���� � � ��

���
� �

��� ����. )



The prior distributions in Equation (9) is now all conditioned on the coarser scales.
We see that the message passing algorithm remains the same, except that the prior of
tangent directions �tangent��


��� now becomes

�
���
tangent��

���� � �
��

���
� �����

�
�tangent��

���� �
 ���
� � � � ��

�
(13)

We refer to this multi-scale processing as multi-scale conditioning. In practice, we
simplify the computation by conditioning � ���

tangent at scale � only on � �����
� at scale

�
 �, and use the maximum-probability direction � ����
� to replace the expectation over

all the possible directions �� ���
� �. Some results obtained by the multi-scale algorithm

are shown in the next section. Finally, to combine the results from individual scales, we
have

� ����� � �� �
�
�

�scale�
��
�������� � ��

where we use the self-similar ��
� distribution in Section 3.1 for �scale.

6 Experiments and Evaluation

Figure 8 shows our results on a few simple synthetic images with subjective contours.
Figure 9 shows the use of multi-scale completion on a synthetic image. Figure 10 shows
the use of multi-scale conditioning for real images. Figure 11 shows the completion
results at various scales. And Figure 13 contains more completion results. Please see
the interpretations therein.

Fig. 8. Results on a few classical synthetic images.

We have quantitatively evaluated the performance of our algorithm on a large set
of images. We again turn to the ground truth from our segmentation database. The
problem of edge detection by itself is a classification problem. We define the following
two performance measures: hit rate, the number of correctly labeled edge pixels divided
by the total number of edge pixels; and false rate, the number of labeled pixels which
are not true edges divided by the total number of labeled pixels. Figure 12 shows our
results. The plots correspond to two different tolerance thresholds on localization error.
We declare a hit when a labeled pixel is within a distance of � from a true contour. We
can observe from the curves, that our algorithm consistently outperforms the raw ��
cue. This advantage increases when the threshold � increases.

In summary, this paper has made the following contributions:



(a) (b) (c) (d)

Fig. 9. A synthetic example of the use of multi-scale conditioning. (a) the original input. (b) the
completion at the coarse scale. (c) the completion at the fine scale without using the conditioning
in Equation (13). (d) the completion with the conditioning.
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Fig. 10. A further example of the use of multi-scale conditioning. It is a patch extracted from the
penguin image in Figure 11. (a) the original image. (b) the completion at the coarse scale. (c) the
completion at the fine scale without conditioning. (d) the completion with conditioning. (e) the
posterior log-likelihood at the pixels along the central low-contrast contour. Both algorithms suc-
cessfully complete the low-contrast contour in the middle of the patch. The signal is significantly
enhanced by the use of multi-scale conditioning at low-contrast locations.

Fig. 11. A complete example of multi-scale contour completion. The completion is done at three
distinct scales, from coarse to fine. We notice that the results are qualitatively different. At the
coarse scale, large gaps of low contrast contours are easily completed, and noise are generally
suppressed. But there are some details which we can only see at fine scales.
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Fig. 12. ROC-like curves for performance evaluation. (a) with � � � ( see text ). (b) with � � �.

1. use ground truth on human segmented images to establish prior and measurement
models for boundary contours in natural scenes;

2. propose a multi-scale probabilistic model for contour completion;
3. evaluate the power of our contour completion algorithm on a wide range of images.

In this paper we made somewhat ad hoc choices of parametric forms for the terms
in the local model of image measurements. These can be replaced by suitable non-
parametric estimates.
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