
Refer-to-as Relations as Semantic Knowledge
Song Feng

IBM T. J. Watson Research Center &
Stony Brook University
sfeng@us.ibm.com

Sujith Ravi, Ravi Kumar
Google

Mountain View, CA
sravi@google.com ravi.k53@gmail.com

Polina Kuznetsova
Computer Science Department

Stony Brook University
polina.sbu@gmail.com

Wei Liu, Alexander C. Berg, Tamara L. Berg
Computer Science Department

University of North Carolina at Chapel Hill
{wliu, aberg, tlberg}@cs.unc.edu

Yejin Choi
Computer Science & Engineering

University of Washington
yejin@cs.washington.edu

Abstract

We study Refer-to-as relations as a new type of seman-
tic knowledge. Compared to the much studied Is-a relation,
which concerns factual taxonomic knowledge, Refer-to-as re-
lations aim to address pragmatic semantic knowledge. For ex-
ample, a “penguin” is a “bird” from a taxonomic point of
view, but people rarely refer to a “penguin” as a “bird” in ver-
nacular use. This observation closely relates to the entry-level
categorization studied in Psychology. We posit that Refer-to-
as relations can be learned from data, and that both textual
and visual information would be helpful in inferring the re-
lations. By integrating existing lexical structure knowledge
with language statistics and visual similarities, we formulate
a collective inference approach to map all object names in
an encyclopedia to commonly used names for each object.
Our contributions include a new labeled data set, the collec-
tive inference and optimization approach, and the computed
mappings and similarities.

Introduction
We study Refer-to-as relations as a new type of semantic
knowledge. We define Refer-to-as(A,B) to denote the prag-
matic knowledge about the language use such that an object
A is typically referred to as B in vernacular use. Compared
to the much studied Is-a relations (Hearst 1992), which con-
cern strictly factual knowledge of taxonomy, Refer-to-as re-
lations aim to address pragmatic semantic knowledge that is
crucial for practical language understanding and production
systems. For example, a “cat” is a “carnivore” from a taxon-
omy point of view (Is-a(cat, carnivore) ), but people rarely
refer to a “cat” as a “carnivore” in most conversational set-
tings (¬Refer-to-as(cat, carnivore) ).

This closely relates to entry-level categories originally in-
troduced in pioneering work from psychologists including
Eleanor Rosch (Rosch 1978) and Stephen Kosslyn (Joli-
coeur, Gluck, and Kosslyn 1984). Entry-level categories are
the names people tend to associate with objects in the world.

We posit that the entry-level categorization can drive a
new type of semantic knowledge, Refer-to-as relations. Hav-
ing this knowledge at scale could provide a useful enhance-
ment to existing linguistic resources, like WordNet (Fell-
baum 1998), by adding Refer-to-as relations that comple-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ment existing Is-a (hypernym) and Has-a (meronym) rela-
tions. Automatically extracted Refer-to-as relations could
also be useful in a number of natural language applications
ranging from coreference resolution of nominal nouns, to re-
ferring expression generation in human robot interactions, to
abstractive summarization or text simplification with lexical
substitutions.

Experiments from psychology (Rosch 1978; Jolicoeur,
Gluck, and Kosslyn 1984) in the 70s and 80s have provided
insights into this natural cognitive conceptualization, which
are based on questions such as “what would you call this
object?” or “is this object a kind of X?”. However, due to
the nature of human-subject-based psycho-physical experi-
ments, these studies were relatively small in scale, consider-
ing only on the order of tens of object categories.

Computational methods for modeling entry-level catego-
rization remain largely unstudied. A notable exception is the
recent work of (Ordonez et al. 2013) who explore initial
methods to translate between encyclopedic and entry-level
categories using visual models and/or linguistic resources.
We take this idea much further in several dimensions. First,
we propose Refer-to-as relations to be studied as a new con-
ceptual problem in semantic knowledge, with the distinct
purpose of learning the relations over all object names in an
encyclopedia knowledge base. Second, we posit that natural
cognitive conceptualization is inherently a collective infer-
ence process, and propose a formulation that infers Refer-
to-as relations over all encyclopedia categories jointly. Ad-
ditionally, we make use of recent deep learning based visual
features (Krizhevsky, Sutskever, and Hinton 2012; Girshick
et al. 2013) to measure the visual similarity of concepts.

Building on (Ordonez et al. 2013) we present a combi-
natorial optimization formulation to jointly infer Refer-to-
as relations. The objective function encodes some of the
key aspects of entry-level conceptualization, in particular:
(1) generality (quantified via frequency) of a category name,
and (2) representativeness (quantified via semantic proxim-
ity and/or visual similarity) between an encyclopedic cate-
gory and a putative entry-level concept. For the optimiza-
tion problem, we introduce solutions based on integer lin-
ear programming and minimum-cost flow. Experimental re-
sults show that the proposed approaches outperform com-
petitive baselines, confirming our hypothesis to view entry-
level categorization as a collective inference problem over
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Figure 1: WordNet hierarchy and entry-level categories (in bold blue smaller font).

lexical structure knowledge. We are making the resulting
entry-level categories and visual similarities publicly avail-
able at http://homes.cs.washington.edu/∼yejin/refer2as/

Insights and Definitions
Insights into an Existing Taxonomy We use Word-
Net (Fellbaum 1998) as the encyclopedia knowledge base.
WordNet taxonomy, as defined by lexicographers, concerns
strictly factual knowledge, which does not always align with
commonsense or pragmatic knowledge. Figure 1 shows a
simplified hierarchical structure under the branch of “fun-
gus”. Per WordNet, “truffle” is a “fungus”, but not a “mush-
room”, because “mushroom” only appears as a descendant
of “basidiomycete”, which is a sibling of “truffle”. By study-
ing the task of learning Refer-to-as relations, we aim to com-
plement the existing taxonomies such as WordNet with prag-
matic semantic knowledge.

Encyclopedia Categories Prototype Theory in literature
has been developed primarily in the context of physical cat-
egories, as the notion of prototypes for abstract categories
(e.g., semantics, derivation) is not as obvious. We also focus
our study on the physical objects and consider all inherited
hyponyms of the physical entity.n.01 synset in WordNet 3.0,
which amounts to 39,556 categories in total.

Due to the innate structure of WordNet, each encyclope-
dia category at this point is mapped to a synset, which, in
turn, is defined as a set of words. For practical convenience,
we represent each encyclopedia category by the first word
in the synset, which generally corresponds to the word that
is used the most often for the specific sense. Conversely, in
what follows, when we need to map a word to a synset, we
choose the first synset listed under the given word.

Entry-Level Categories These correspond to a subset of
the physical entity categories that are more commonly used
as surrogates of the specific ones (encyclopedia categories).
We assume that each encyclopedia category corresponds to
at least one entry-level category, which could be the ency-
clopedia category itself.

Modeling Entry-Level Categorization
Task Definition The goal in entry-level categorization is
the following: Given a set Cencyc of encyclopedia categories
and a list Cientry of entry-level candidates for each category

i ∈ Cencyc, the task is to find an entry-level category assign-
ment σ(i) ∈ Cientry for all encyclopedia categories in Cencyc.

Quantifying Generality One of the key aspects of entry-
level categorization is the notion of generality of the con-
cept. We use word frequencies derived from Google Ngram
1T data (Brants and Franz. 2006), where the generality of
a category i is quantified as the normalized log frequency
freq(i) scaled to be ∈ [0,1].

Path-based Representativeness An entry-level category
should be conceptually representative for its encompassing
encyclopedia categories. As an approximate measure, we
use the LCH score (Leacock, Miller, and Chodorow 1998),
which quantifies the semantic proximity of two concepts
(senses) by the shortest path between them normalized by
the depth of those concepts in the taxonomy.

Visual Representativeness We compute visual similarity
as another measure of representativeness, using the Ima-
geNet dataset (Deng et al. 2009) which contains images il-
lustrating 21,841 of the WordNet synsets. We build the no-
tion of synset similarity on top of an image similarity func-
tion f : (I, J) 7→ r ∈ [−1, 1] that compares pairs of images.
In order to deal with variation in appearance between ob-
ject instances we define the similarity between image sets
I and J as: 1

2 (d (I,J ) + d (J , I)), where d (J , I) =
1

5|I|
∑
I∈I

∑
k={1,...,5} f(I, J

I
k ) and JIk indicates the image

J in J with the kth largest value for f(I, J).
To compute the similarity between a pair of images,

(I, J), we use the open source Caffe (Jia 2013) software that
implements the groundbreaking convolutional neural net-
work (convnet) architecture of (Krizhevsky, Sutskever, and
Hinton 2012). In particular, to process an image I , we resize
to 256 × 256, pass it through the pre-trained Caffe model,
and extract the 6th layer response of the model, then (L2)
normalize to produce the 4096 dimensional feature descrip-
tor d(I). Then f(I, J) = 〈d(I), d(J)〉. We download and
process all (21841) synsets from the ImageNet Fall 2011 re-
lease, sampling 100 images per synset. This involves com-
puting Caffe features for over 2 million images and comput-
ing their pairwise similarities.

Candidate Entry-Level Selection We obtain a set Cientry
of candidate entry-level categories for an encyclopedia cate-
gory i as follows:



(i) Head (Chead): For an encyclopedia category whose
name corresponds to a multi-word phrase, we include the
head word whose frequency ≥ θfreq as a candidate for the
entry-level category. We set θfreq to 0.3 based on the distri-
bution of frequencies of entry-level categories in the devel-
opment dataset.

(ii) Self (Cself ): If an encyclopedia category has a gen-
erality score ≥ θfreq, we consider the category itself as an
entry-level category candidate.

(iii) Hypernyms (Chyper): Since WordNet hierarchy pro-
vides a good starting point for candidates, we include five
inherited hypernyms with the highest generality scores such
that #hyponyms ≤ θhypo = 5000.

(iv) Relatedness score (Crel): We also include top ten cate-
gories with the highest LCH scores such that #hyponyms ≤
θhypo. This allows us to include words outside the hypernym
path as candidates, mitigating the idiosyncrasy of the Word-
Net taxonomy as discussed earlier.

Combinatorial Formulation
In the entry-level categorization problem, the goal is: for
each encyclopedia category, assign an entry-level category
from its candidate list. In the assignment, we wish to simul-
taneously maximize two objectives:

(i) Representativeness: The chosen entry-level categories
should be representative of the encyclopedia categories to
which they are assigned; we model this using a semantic
similarity matrix.

(ii) Generality: The set of entry-level synsets should cap-
ture prototypes that are commonly used by humans to refer
to objects; we use a popularity measure for this purpose.

Given this, we formulate the entry-level categorization
task as a constraint optimization problem.
Formulation Let A be an m × n non-negative matrix and
let B be a non-negative vector of size n. We assume that all
the entries of A and B are in [0, 1]. The goal is to find an
assignment σ : [m]→ [n] to maximize:

m∑
i=1

Ai,σ(i) +

n∑
j=1

f
(
Bj , |σ−1(j)|

)
, (1)

where f is a fixed function. The above formulation can be
applied to a broad category of problems. Specifically, for the
entry-level categorization task, we model the semantic rep-
resentativeness and generality using A and B respectively
and carefully choose f . Note that the second component in
the objective measures something global, e.g., in our task,
depending on f , this can capture the overall popularity of
individual entry-level candidates. Without this second com-
ponent, problem (1) becomes trivial since the best assign-
ment would be to set σ(i) = argmaxj Ai,j .
The integer programming (ILP) version of (1) is:

maximize
∑
i,j

Aij · pij +
∑
j

f

(
Bj ,

∑
i

pij

)
subject to

∑
j

pij = 1,∀i; pij ∈ {0, 1},∀i, j.

This ILP problem can be solved using highly optimized
solvers (CPLEX 2006) and the solution will yield an entry-
level assignment for our original problem. (See (Schrijver
1986) for more details on ILP.) Unfortunately, ILPs can be
expensive to solve on large problem instances. Hence, we
also consider algorithms that are computationally more ef-
ficient. (Notice that it is trivial to obtain a 2-approximation
to (1) by considering the best solution to either parts of the
objective; the first component by itself can be solved exactly
and for f ’s we will consider, we can solve the second com-
ponent exactly as well.)

One reasonable candidate for f is

f(b, s) = b · [s > 0], (2)

i.e., the second component in (1) becomes
∑
j∈range(σ)Bj .

Unfortunately, with this f the problem becomes computa-
tionally hard.
Lemma Objective (1) with (2) is NP-hard.
Proof. Consider the exact cover by 3-sets (X3C) problem:
given a universe U of m elements and a collection F of n
subsets, each of size three, cover all the elements of U by a
subset of F such that each element is covered exactly once;
this problem is NP-complete (see, for example, (Papadim-
itriou 1994)). Let k = max(m,n) + 1. Given an instance
of X3C, construct the m × n incidence matrix A where
Au,F = k if and only if u ∈ F and let b(F ) = 1 for all
F ∈ F . it is easy to see that the solution to (1) is mk+m/3
if and only if the given X3C instance has a solution. Indeed,
if the X3C instance has a solution F∗ ⊆ F , then set the as-
signment to be σ(u) = F where u ∈ F and F ∈ F∗; since
it is an exact cover (i.e., |F∗| = m/3), the value of this so-
lution is mk + m/3. Conversely, by the choice of k, any
assignment σ to (1) of value mk +m/3 will have the prop-
erty that Ai,σ(i) has to be non-zero (in fact, equal to k) for
every i. Thus, the first term of (1) will incur a contribution
of mk. Now, since B(F ) = 1, we have |range(σ)| = m/3,
which means an exact cover.
If instead we make the contribution of an entry-level cate-
gory proportional to the number of encyclopedia categories
to which it can be assigned,

f(b, s) = g(b) · s, (3)

for some g, then the problem becomes min-cost flow.
Min-Cost Flow Formulation Recall that in the min-cost
flow problem, we are given a graph where the edges have
costs and capacities and a desired flow value. The goal is
to achieve this flow with the minimum cost subject to the
capacity constraints (Ahuja, Magnanti, and Orlin 1993).

We construct the following min-cost flow instance from
A and B. The main idea is to use the value Bj to define the
cost and capacity constraints for j ∈ [n]. Specifically, we
consider the bipartite graph implied by A; the capacity of all
the edges in this bipartite graph is 1 and the cost is 1− Aij .
We add a source node s and connect to all nodes in [m] with
cost 0 and capacity 1. We add a sink node t and connect it
to all nodes in j ∈ [n] with cost 1 − g(Bj) and capacity
deg(j), which is the number of non-zero entries in the jth
column of A. Since we require an assignment, we solve for
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Figure 2: Entry-level categorization as an (s, t)-min-cost
flow problem with capacities and costs.

the minimum cost flow from s to t with value m (Figure 2).
It can be seen that the min-cost flow solves (1) with (3).

The advantage of a min-cost formulation is that it can
be solved in polynomial time. In our experiments, min-cost
flow took under a minute while yielding comparable assign-
ment quality whereas CPLEX took an order of magnitude
more time to solve an ILP instance for the same dataset.

We now comment on the choice of the function g. An ob-
vious first choice is g(b) = b. A much better choice is to
carefully model the contribution of rare versus more popu-
lar candidates with a sigmoid-style function given by

g(b) = 1− k

√
θ −min(b, θ)

a
,

where θ, a, k are parameters. The idea is to reward popular
category assignments while attenuating the contribution of
less popular entry candidates (b < θ) as a non-linear func-
tion of their popularity. We use θ = 0.5, a = 2, k = 2. This
formulation of max-flow assumes one Refer-to-as relation
for each encyclopedic category. We leave it as future work
to relax this assumption to accommodate a set of relations.

Evaluation Design
Because entry-level categorization has not been studied be-
fore as a lexical semantic knowledge problem, we develop
a suitable dataset for evaluation. It is worthwhile to discuss
the labeled dataset of (Ordonez et al. 2013) first. As their
study was driven by visual recognition, rather than seman-
tic knowledge, a natural design of human annotation was to
show sample images of an ImageNet node, and ask what are
present in those images. However, due to the inherent am-
biguities in what these images contain and represent, care
should be taken in interpreting the resulting labels as Refer-
to-as relations. For example, for the ImageNet node “volley-
ball net”, half of the images contain volleyball players, while
others look like desolate beach scenes, misleading turkers to
identify “people” or “beach” as the entry-level categories of
“volleyball net”. Removing this ambiguity is important in
our study, as we intend to draw more explicit connections
between labeled entry-level names to a specific encyclope-
dia concept as Refer-to-as relations. For this reason, in all

our human annotation studies, we present sample images to-
gether with the textual descriptions (gloss) for each node.

Using Amazon Mechanical Turk (AMT), we collect two
different types of human annotations: (I) Fill-in-the-blank
and (II) Multiple-choice:

LabelSet-I: Fill-in-the-blank For each encyclopedic ob-
ject name, we ask turkers to think of commonly used names
(i.e., how people would generally refer to the given object
in real life scenarios). Considering that turkers may be un-
familiar with some of the encyclopedic object names, e.g.,
“basidiomycete”, we provide the following set of informa-
tion to help defining the concept: (1) the name of the ency-
clopedic category; (2) the definition of the encyclopedic ob-
ject obtained from WordNet (Fellbaum 1998), and (3) five
corresponding images obtained from ImageNet (Deng et al.
2009). For each encyclopedic category, we ask five turkers
to provide up to three labels. This results in an average of
3.5 unique names for each category.

LabelSet-II: Multiple-choice The potential problem of
fill-in-the-blank type labels is that it is hard to collect a com-
plete set of valid names. Therefore, when a system identifies
an entry-level name not specified by a turker, we cannot be
certain whether it is an invalid choice or a good choice that
turkers forgot to include. We therefore also include multiple-
choice annotation. The set of choices includes any potential
name that any of the systems can output for a given ency-
clopedia category. For each category, we ask three turkers
to choose one of the following: (1) “Yes, I would use this
term”, (2) “Possibly yes, though I would use a more general
(or specific, given as a separate option) term”, (3) “No”, and
(4) “I don’t know”.

Baseline-QA This baseline helps us gain empirical in-
sights into how solutions to Is-A relations perform on a
related, but very different task of learning Refer-to-as rela-
tions. Based on the work of (Prager, Radev, and Czuba 2001)
for “what is” question-answering in the context of keyword-
based search, we first obtain the co-occurrence information
of a term and its hypernyms from Google Ngram 1T corpus.
∼12,000 out of ∼40,000 encyclopedia terms have non-zero
co-occurrence with at least one hypernym. For those cases,
we calculate a score by normalizing the co-occurrence by the
“level number” as described in (Prager, Radev, and Czuba
2001), and then select the hypernym with highest score as
entry-level category (the answer of “what is” question).

Baseline-QA-Self The baseline described above performs
poorly in large part because it does not allow “self” as
the potential answer to the query term. (There is no co-
occurrence statistics for “self”.) Therefore, we augment the
above baseline to assign the term with relatively high Google
frequency (freq(i) ≥ 0.5) as the entry-level category for it-
self (BASELINE-QA-SELF).

Upper Bound There are 90.1% of encyclopedia cate-
gories whose candidates match at least one entry-level
names in LabelSet-I while the rest matches none.



METHODOLOGY PRECISION

BASELINE-QA 56.14
BASELINE-QA-SELF 69.49
ORDONEZ ET AL.3 64.07
BASELINE 65.02
FLOW(τ ) 69.29
FLOW(ν) 71.03
FLOW(τ, ν) 71.16
ILP(τ ) 61.51
ILP(ν) 64.19
ILP(τ, ν) 62.66
ILP(τ )C 70.40
ILP(ν)C 69.31
ILP(τ, ν)C 69.76

Table 1: Evaluation with LabelSet-I.1
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Figure 3: Accuracy vs. #entry-level categories.

Experimental Results
We experiment with varying composition of Ai,j in (1) as:

Ai,j = τ · Stextual
i,j + ν · Svisual

i,j +Kj

where τ, ν ∈ {0, 0.5, 1}, and Kj ← 1 if j ∈ Chead.

Evaluation with LabelSet-I Table 1 shows the cross-
validated performance based on LabelSet-I. (τ ) and (ν) in-
dicate that the terms corresponding to the textual and vi-
sual similarities are activated respectively. Flow algorithms
achieve the best performance, with a substantial margin over
the baseline approaches.

How Many Entry-Level Names for WordNet? The ILP
formulation allows us to set a hard constraint C on the total
number of entry-level categories selected by the solver. As
shown in Table 1, this constraint improves the performance
significantly over counterparts. Figure 3 shows a common
trend across various configurations ofAi,j such that the peak
performances are achieved forC ∈ [19000, 22000]. For flow
algorithms, we do not have the cardinality constraint. Inter-
estingly, the best performing flow variant also selects about
21,000 as entry-level categories. This indicates that there
might be a natural range of cardinality for entry-level cat-
egories for all encyclopedia names in WordNet.

1Note that the comparison against (Ordonez et al. 2013) is not
apple-to-apple in that their methods are not tuned for our task and
evaluation.
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Figure 4: Examples of system output.

FLOW(τ ) > FLOW (ν) FLOW(ν) > FLOW(τ )
shrub.n.01 substance.n.07
bird.n.01 food.n.01
vehicle.n.01 instrument.n.01
consumer goods.n.01 solid.n.01
commodity.n.01 mammal.n.01
woody plant.n.01 container.n.01
fish.n.01 structure.n.01
aquatic vertebrate.n.01 plant organ.n.01
invertebrate.n.01 plant part.n.01

Table 2: The subsets of categories with greatest difference in
performance for FLOW algorithm.

Visual Similarities as Lexical Similarities: We further
examine the contribution of textual and visual semantic sim-
ilarities for entry-level categorization over different regions
of the WordNet hierarchy. As shown in Table 2, in some cat-
egories, visual similarities yield better results than textual
similarities, and vice versa. These results suggest the poten-
tial utility of visual similarities as a surrogate to quantifying
lexical similarities.

Evaluation with LabelSet-II Table 3 shows the eval-
uation based on LabelSet-II.2 The numbers under HU-
MAN shows the evaluation of human labels from LabelSet-I
against LabelSet-II configuration, which can be considered
as a reference upper bound.

We report the results based on all cases (ALL) and after
discarding those cases (MAJORITY AGREES) in which none
of the turkers agrees with each other, which corresponds to
26% cases.

2LabelSet-II has been collected one time, after we finalized all
the algorithmic development.



METHODOLOGY
ALL MAJORITY AGREES

YES, but should be more YES, but should be more
∪ YES YES GENERAL SPECIFIC NO ∪ YES YES GENERAL SPECIFIC NO

BASELINE-QA 83.43 43.46 19.56 20.41 16.58 84.85 57.74 12.72 14.39 15.15
BASELINE-QA-SELF 88.44 52.73 19.38 16.33 11.56 91.18 71.14 11.98 8.06 8.82
HUMAN 92.17 57.17 20.65 14.35 7.82 94.38 75.57 13.03 5.78 5.61
FLOW(τ, κ) 91.35 54.83 21.34 15.18 8.65 93.87 73.26 13.48 7.13 6.13
FLOW(ν, κ) 90.86 54.02 22.1 14.74 9.14 93.62 72.28 14.5 6.84 6.39
ILP(τ, κ) c 90.5 54.58 21.42 14.5 9.51 93.59 73.97 13.43 6.19 6.41
ILP(ν, κ)c 89.1 52.9 21.45 14.75 10.9 91.65 70.79 13.87 6.99 8.34
Ordonez et al. 88.88 52.18 20.97 15.73 11.12 90.39 71.26 11.65 7.48 9.62

Table 3: Evaluation with LabelSet-II.

“∪YES” denotes the sum over all variants of YES. For
this collective yes (∪YES), the accuracy reaches to 93.87%,
close to human performance, achieved by FLOW(τ ). For
clean yes,3 the accuracy reaches to 73.97%, which again is
close to 75.57% of HUMAN.

Discussion with Examples Examples of the system out-
put are given in Figure 4. While ILP performed reasonably
well we can still see a few examples where ILP made a
mistake (such as “blunderbuss” or “ceratopsian”), while the
min-cost flow guessed the entry-level categories correctly
(“gun”, “dinosaur”). However, there were a number of cases,
when both methods made mistakes. Some errors were due
to strange cases in WordNet and ImageNet hierarchy. E.g.,
“fraise”, which is also a French word for “strawberry” in En-
glish is defined as “sloping or horizontal rampart of pointed
stakes”. For this synset, however ImageNet provides pic-
tures of strawberries, even its definition in WordNet is ac-
cording to English sense of the word. Another interesting ex-
ample of an erroneous output is “fungus” vs. “mushroom”.
As we can see from Figure 1 some entities of fungus synset
look very much like mushroom, which results in human la-
bel “mushroom” for these entities. In a way, there is a dis-
agreement between intrinsic properties of such an entity (its
classification in WordNet) and its extrinsic features (visual
similarity to mushroom).

Related Work
Cognitive Conceptualization of Categories Although
naming is an important aspect of how people communi-
cate in natural language and has been studied extensively in
Psychology (Rosch 1973; 1978; Lakoff 1987; Taylor 2003),
there is little large-scale computational work on finding
entry-level categories. Our work is preceded only by a re-
cent work of (Ordonez et al. 2013), but the overall goals,
problem formulations, and end results are different. Our end
goal is to find natural names for all object names in WordNet
and perform naming as a collective inference over all words
simultaneously by recognizing the combinatorial nature in
the naming assignment. In addition, we explore the new per-
spective of viewing entry-level categories as a type of lexical
semantics and explore the viability of learning entry-level
categorization based only on dictionary knowledge and lan-
guage statistics. In contrast, their work was motivated from

3We assign an entry-level category with a clean yes label if any
turker assigned this label.

the perspective of reusing various visual recognizers and im-
proving object recognition of a given query image. There-
fore, instead of targeting all object names in WordNet, they
mainly operated with a subset of nodes for which reliable
visual recognizers are available.
Categorization in Language Acquisition Another line of
research that touches on the notion of cognitive concep-
tualization of natural language words is that of child lan-
guage acquisition (Saffran, Senghas, and Trueswell 2001).
The main difference is that we aim to learn how humans
name the extensive list of objects in the world, while con-
ceptualization in early language acquisition focuses on much
different linguistic aspects such as syntactic categorization
and clustering of similar words with respect to a very lim-
ited vocabulary of a child.
Hypernyms The task of learning entry-level categories
has a conceptual commonality with that of learning hyper-
nyms (Is-a relation). For the latter, there has been a great
deal of previous work (Snow, Jurafsky, and Ng 2004).

The key difference is that Is-a relations are ”exhaustive”
and ”taxonomic” relations. For example, for any given leaf-
level word in WordNet, there are more than a dozen different
hypernyms. In contrast, Refer-to-as relations are much more
”selective” and ”pragmatic” relations. Selecting one of these
spuriously many hypernyms appears to be repeated efforts
across many downstream NLP tasks.

Conclusions
In this paper we presented the first computational linguistic
study that explores Refer-to-as relations as a lexical seman-
tics problem. We first explore constraint optimization based
on Integer Linear Programming, which can be computation-
ally expensive. We then present a min-cost flow algorithm
that attains as good or better results while solving the op-
timization exactly and in polynomial time. The key aspect
of both these approaches is that they assign Refer-to-as re-
lations over all object names collectively while incorporat-
ing insights discussed in Prototype Theory in Psychology.
Our study confirms the viability of computational and data-
driven entry-level categorization, and encourages additional
research along this line.
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