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Abstract

Human vision greatly benefits from the information about
sizes of objects. The role of size in several visual reasoning
tasks has been thoroughly explored in human perception and
cognition. However, the impact of the information about sizes
of objects is yet to be determined in Al. We postulate that this
is mainly attributed to the lack of a comprehensive reposi-
tory of size information. In this paper, we introduce a method
to automatically infer object sizes, leveraging visual and tex-
tual information from web. By maximizing the joint likeli-
hood of textual and visual observations, our method learns
reliable relative size estimates, with no explicit human super-
vision. We introduce the relative size dataset and show that
our method outperforms competitive textual and visual base-
lines in reasoning about size comparisons.

1 Introduction

Human visual system has a strong prior knowledge about
physical sizes of objects in the real world (Ittelson 1951)
and can immediately retrieve size information as it recog-
nizes objects (Konkle and Oliva 2012). Humans are often
very sensitive to discrepancies in size estimates (size con-
stancy (Holway and Boring 1941)) and draw or imagine ob-
jects in canonical sizes, despite significant variations due to
a change in viewpoint or distance (Konkle and Oliva 2011).
Considering the importance of size information in human
vision, it is counter-intuitive that most of the current Al sys-
tems are agnostic to object sizes. We postulate that this is
mainly due to the lack of a comprehensive resource that can
provide information about object sizes. In this paper, we in-
troduce a method to automatically provide such information
by representing and inferring object sizes and their relations.
To be comprehensive, our method does not rely on explicit
human supervision and only uses web data.

Identifying numerical properties of objects, such as size,
has been recently studied in Natural Language Processing
and shown to be helpful for question answering and in-
formation extraction (Tandon, de Melo, and Weikum 2014;
Chu-carroll et al. 2003; Davidov and Rappoport 2010). The
core idea of the state-of-the-art methods is to design search
queries in the form of manually defined templates either
looking for absolute size of objects (e.g. “the size of a car is
* unit”) or specific relations (e.g. “wheel of a car”). The re-
sults are promising, but the quality and scale of such extrac-
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Figure 1: In this paper we study the problem of inferring sizes of
objects using visual and textual data available on the web. With no
explicit human supervision, our method achieves reliable (83.5%
accurate) relative size estimates. We use size graph, shown above,
to represent both absolute size information (from textual web data)
and relative ones (from visual web data). The size graph allows us
to leverage the transitive nature of size information by maximizing
the likelihood of both visual and textual observations.

tion has been somewhat limiting. For example, these meth-
ods predict a relatively small size for a ‘car’ because search
queries discover more frequent relations about the size of
a ‘toy car’ rather than a regular ‘car’ (Aramaki et al. 2007).
This is in part because most trivial commonsense knowledge
is rarely stated explicitly in natural language text, e.g., it is
unlikely to find a sentence that says a car is bigger than an
orange. In addition, comparative statements in text, if found,
rarely provide precisely how much one object is bigger than
the other. In this paper, we argue that visual and textual ob-
servations are complementary, and a successful size estima-
tion method will take advantage of both modalities.

In images, estimating the absolute sizes of objects re-
quires information about the camera parameters and accu-
rate depth estimates which are not available at scale. Visual
data, however, can provide informative cues about relative
sizes of objects. For example, consider the ‘cat’ that is sit-
ting by the ‘window’ in Figure 1. The relative size of the
‘cat’ and the ‘window’ can be computed using their detec-
tion boxes, adjusted by their coarse depth. A probability dis-



tribution over relative sizes of ‘cats’ and ‘windows’ can then
be computed by observing several images in which ‘cats’
and ‘windows’ co-occur. However, not all pairs of objects
appear in large enough number of images. Collecting visual
observations for some pairs like ‘sofa’ and ‘tree’ is not pos-
sible. Furthermore, it is not scalable to collect visual obser-
vations for all pairs of objects.

In this paper, we introduce a method to learn to estimate
sizes of objects, with no explicit human supervision, lever-
aging both textual and visual observations. Our approach is
to couple (noisy) textual and visual estimates and use the
transitive nature of size information to reason about objects
that don’t co-occur frequently. For example in Figure 1, our
method can establish inferences about the relative size of
‘sofa’ and ‘tree’ through a set of intermediate relations be-
tween ‘sofa’-‘cat’ and ‘cat’-‘tree’.

We introduce size graph as our representation to model
object sizes and their relations. The nodes in the size graph
correspond to the log-normal distribution of the sizes of ob-
jects and edges correspond to relative sizes of pairs of ob-
jects that co-occur frequently. The topology of the size graph
provides guidance on how to collect enough textual and vi-
sual observations to deal with the noise and sparsity of the
observations. We formulate the problem of learning the size
of the objects as optimizing for a set of parameters that max-
imize the likelihood of both textual and visual observations.
To obtain large scale visual observations we use detectors
trained without explicit annotations using webdata (Divvala,
Farhadi, and Guestrin 2014) and single image depth estima-
tors that are pretrained using few categories and have shown
to be generalizable to unseen categories.

Our experimental evaluations show strong results. On our
dataset of about 500 relative size comparisons, our method
achieves 83.5% accuracy, compared to 63.4% of a compet-
itive NLP baseline. Our results show that textual and visual
data are complementary, and optimizing for both outper-
forms individual models. If available, our model can benefit
from reliable information about the actual sizes of a limited
number of object categories. '

2 Related Work

A few researchers (Prager et al. 2003; Chu-carroll et al.
2003) use manually curated commonsense knowledge base
such as OpenCyc (Lenat 1995) for answering questions
about numerical information. These knowledge resources
(e.g., ConceptNet (Havasi, Speer, and Alonso 2007)) usu-
ally consist of taxonomic assertions or generic relations, but
do not include size information. Manual annotations of such
knowledge is not scalable. Our efforts will result in extract-
ing size information to populate such knowledge bases (esp.
ConceptNet) with size information at scale.

Identifying numerical attributes about objects has been
addressed in NLP recently. The common theme in the recent
work (Aramaki et al. 2007; Davidov and Rappoport 2010;
Iftene and Moruz 2010; Tandon, de Melo, and Weikum

'The code, data, and results are available at http://grail.
cs.washington.edu/projects/size.

2014; Narisawa et al. 2013) is to use search query tem-
plates with other textual cues (e.g., more than, at least, as
many as, etc), collect numerical values, and model sizes
as a normal distribution. However, the quality and scale
of such extraction is somewhat limiting. Similar to pre-
vious work that show textual and visual information are
complementary across different domains (Seo et al. 2015;
Chen, Shrivastava, and Gupta 2013; Izadinia et al. 2015),
we show that a successful size estimation method should
also take advantage of both modalities. In particular, our ex-
periments show that textual observations about the relative
sizes of objects are very limited, and relative size compar-
isons are better collected through visual data. In addition,
we show that log-normal distribution is a better model for
representing sizes than normal distributions.

In computer vision, size information manually extracted
from furniture catalogs, has shown to be effective in indoor
scenes understanding and reconstruction (Pero et al. 2012).
However, size information is not playing a major role in
mainstream computer vision tasks yet. This might be due to
the fact that there is no unified and comprehensive resource
for objects sizes. The visual size of the objects depends on
multiple factors including the distance to the objects and the
viewpoint. Single image depth estimation has been an ac-
tive topic in computer vision (Delage, Lee, and Ng 2006;
Hedau, Hoiem, and Forsyth 2009; Liu, Gould, and Koller
2010; Saxena, Chung, and Ng 2005; Ladicky, Shi, and Polle-
feys 2014). In this paper, we use (Eigen, Puhrsch, and Fergus
2014) for single image depth estimation.

3 Overview of Our Method

Problem Overview: In this paper, we address the problem
of identifying sizes of physical objects using visual and tex-
tual information. Our goals are to (a) collect visual observa-
tion about the relative sizes of objects, (b) collect textual ob-
servations about the absolute sizes of objects, and (c) devise
a method to make sense of vast amount of visual and tex-
tual observations and estimate object sizes. We evaluate our
method by answering queries about the size comparisons: if
the object A is bigger than the object B for every two objects
A and B in our dataset.

Algorithm 1 The overview of our method.

1: Representation: Construct Size Graph (Section 4.1).

2: > Collect Visual observations (Section 5.1)

3: for all edges (v, u) in the Size Graph do

4: Get images from Flickr in which v and w are tagged.

5 Run object detectors of v and w on all images.

6: Observe the depth adjusted ratio of bounding box areas.
7: end for

8: > Collect Textual observations (Section 5.1)

9: for all nodes v in the Size Graph do

10: Execute search engine patterns for each object.
11: Observe the sizes found for objects.
12: end for

13: Model the size of each object with a log-normal.
14: Learning: Find the optimal parameters maximizing the likeli-
hood (Section 5.2).

Overview of Our Method: We devise a method (Algo-



rithm 1) that learns probability distributions over object sizes
based on the observations gathered from both visual and tex-
tual web, with no explicit human supervision. In order to
deal with the noise and incompleteness of the data, we in-
troduce size graph that represents object sizes (nodes) and
their relations (edges) in a connected, yet sparse graph rep-
resentation (Section 4).

We use textual web data to extract information about the
absolute sizes of objects through search query templates.
We use web images to extract information about the relative
sizes of objects if they co-occur in an image. With scalablity
in mind, we incorporate webly-supervised object detectors
(Divvala, Farhadi, and Guestrin 2014) to detect the objects
in the image and compute the depth adjusted ratio of the ar-
eas of the detected bounding boxes for objects (Section 5.1).

We formulate the problem of estimating the size as max-
imizing the likelihood of textual and visual observations to
learn distributions over object sizes (Section 5.2). Finally,
we incorporate an inference algorithm to answer queries in
the form of “Which object is bigger?” (Section 5.3).

4 Representation: Size Graph

It is not scalable to collect visual observations for all pairs
of objects. In addition, for some pairs like ‘aeroplane’ and
‘apple’, it is noisy (if at all possible) to directly collect visual
observations. We introduce size graph as a compact, well-
connected, sparse graph representation (Section 4.1) whose
nodes are distributions over the actual sizes of the objects
(Section 4.2). The properties of the size graph allows us to
collect enough visual and textual data suitable for modeling
the size distributions.

4.1 Graph Construction

Size Graph Properties: Given a list of objects V' =
{01,049, -+ ,0,}, we want to construct a graph G =
(V, E) such that there is one node for every object and there
exists an edge (O;, O;) € E only if O; and O; co-occur fre-
quently in images. In particular, the size graph should have
the following properties: (a) Connectivity, which allows us
to take advantage of the transitivity of size and propagate
any size information throughout the graph. In addition, we
require that there are at least & disjoint paths between every
two nodes in the graph in order to reduce the effect of noisy
edges in the graph. (b) Sparsity, which allows us to collect
enough visual data since it is not feasible (both computa-
tionally and statistically) to connect every two nodes in the
graph. Adding an edge between two unrelated objects like
‘apple’ and ‘bicycle’ not only increases the computational
cost, but also increases the noise of the observations.

Modeling Co-occurrence: We approximate the likelihood
of co-occurrence of two objects in images using the tag lists
of images in Flickr 100M dataset. Every image in Flickr is
accompanied with a list of tags including names of objects.
We use the co-occurrence of two objects in tag lists of Flickr
images as a proxy for how much those objects are likely to
co-occur in images. We observed that not all co-occurrences
are equally important and shorter tag lists are more descrip-
tive (compared to longer lists). We first define the descrip-

tiveness of a tag list as the inverse of the length of the list.
Then, we compute co-occurrence of objects O; and O; by
summing over the descriptiveness of the tag lists in which
both objects O; and O; co-occur.

We define the cost ¢;; of an edge e; ; = (O;, O;) in the
complete graph as the inverse of the co-occurrence of O; and
O;. Therefore, if two objects co-occur frequently in a short
list of tags, the cost of an edge is small. Let L; be the tag
list of the l;, image in Flickr 100M dataset, the following
equation formulates the cost of an edge (O;, O;):

1 : .
00, otherwise

Constructing Size Graph: Let D be the weighted com-
plete graph of objects, with edge costs define by equation 1.
According to the properties of the size graph, our goal is
to find a minimum cost subgraph of D in which there are
multiple disjoint paths between every two nodes. Such sub-
graph would be less susceptible to the noise of visual ob-
servations across edges. As a corollary to Menger’s theo-
rem (Menger 1927), there are at least £ disjoint paths be-
tween every two nodes of an arbitrary graph G if and only if
G is k-edge-connected (if we remove any k — 1 edges, the
graph is still connected). Therefore, our goal here is to find
the minimum k-edge-connected subgraph. The problem of
finding the minimum k-edge-connected subgraph, however,
is shown to be NP-hard for £ > 1 (Garey and Johnson 1990).

Here, we introduce our algorithm to find a k-edge-
connected subgraph whose cost is an approximation of the
optimal cost. Our approximation algorithm is to iteratively
find a minimum spanning tree (MST) 77 C D, and remove
its edges from D, and then continue with finding another
MST of the remaining graph. Repeating this iteration for k
times results in k disjoint spanning trees 77,75, - - - , T. The
final subgraph G = T1 U - - - U T}, is then derived by com-
bining all these spanning trees together. The subgraph G is
k-edge-connected, and its cost is an approximation of the
optimal cost.

Lemma 1. Every graph H = T U- - - U T}, which is a union
of k disjoint spanning trees is k-edge-connected.

Proof. In order to make H disconnected, at least one edge
should be removed from each spanning tree. Since spanning
trees are disjoint, at least £ edge removals are required to
disconnect the graph H. O

Lemma 2. Given a graph G = (V, E), and the subgraph
H =T, U---UTy where T; is the isp, MST of G. The total
cost of H is at most % times the cost of the optimal k-edge-
connected subgraph, where m and M are the minimum and
the maximum of edge costs, respectively.

Proof. Let OPT denote the optimal k-edge-connected sub-
graph. The minimum degree of O PT should be at least k.
Hence, OPT must have at least % edges, each of which
with the cost of at least m. Therefore "™ < cost(OPT).
On the other hand, the subgraph H has exactly k(n — 1)
edges, each of which with the cost of at most M. Hence,
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4.2 Log-normal Sizes

There are many instances of the same object in the world,
which vary in size. In this paper, we argue that the sizes
of object instances are taken from a log-normal distribu-
tion specific to the object type i.e., the logarithm of sizes
are taken from a normal distribution. This is different from
what has been used in the previous work in NLP (Davidov
and Rappoport 2010) where the sizes of objects are from a
normal distribution.

Let’s assume the actual size of an apple comes from a nor-
mal distribution with ¢ = 5 and o = 1. The first problem is
a non-zero pdf for z < 0, but physical objects cannot have
negative sizes (probability mass leakage). The second prob-
lem is that the probability of finding an apple with a size less
than 0.1 (% of an average apple) is greater than finding an
apple with a size greater than 10 (twice as big as an average
apple), which is intuitively incorrect.Using log-normal sizes
would resolve both issues. Assume size of an apple comes
from a log-normal distribution with parameters ;4 = In 5 and
o = 1. With this assumption, the probability of finding an
apple of negative size is zero. Also, the probability of finding
an apple twice as big as an average apple is equal to seeing
an apple whose size is half of an average apple.

It is very interesting to see that the log-normal represen-
tation is aligned well with recent work in psychology that
shows the visual size of the objects correlates with the log of
their assumed size (Konkle and Oliva 2011). In addition, our
experimental results demonstrate that the log-normal repre-
sentation improves the previous work.

5 Learning Object Sizes
5.1 Collecting Observations

Visual Observations: We collect visual data to observe in-
stances of relative sizes of objects. For each edge e =
(0;,0;) in the size graph, we download multiple images
from Flickr that are tagged with both O; and O; and run the
corresponding object detectors. These detectors are trained
by a webly-supervised algorithm (Divvala, Farhadi, and
Guestrin 2014) to maintain scalability. Let box; and boxo
be the top predicted bounding boxes for the first and the sec-
ond objects respectively. If the score of both predictions are

above the default threshold of each detector, we record r =
area(boxy) depth(boxy)?
area(boxz) depth(box2)?°
size 53;%8,% . Here, depth(box;) is the average depth of box;
computed from the depth estimation of (Eigen, Puhrsch, and
Fergus 2014), used according to Thales’ theorem to normal-
ize the object distances. Note that our method does not use
any bounding box information neither for detector training
nor for depth estimation. We have used LEVAN (Divvala,
Farhadi, and Guestrin 2014) detectors which are trained on
google images with no human supervision. Depth estimator
is pre-trained on Kinect data and has shown to generalize
well for web images.

as an observation for the relative

Textual Observations: We collect textual data to observe
instances of absolute sizes of objects. In particular, we col-
lect numerical values for the size of each object by exe-
cuting search queries with the patterns of “[object] * x *
[unit]”, “[object] is * [unit] tall”, and “[object] width is
* [unit]”. These patterns are taken from previous works
in the NLP community (Davidov and Rappoport 2010;
Aramaki et al. 2007). Each search result might contain mul-
tiple numerical results. We compute the geometric mean of
the multiple numerical values within each search result. Af-
ter scaling numerical results with respect to the unit used in
each pattern we record them as observations for size(O;).

5.2 Learning

As discussed in section 4.2, we assume that log of ob-
ject sizes comes from a normal distribution i.e., g; =
log size(O;) ~ N(u;,0?). The goal of the learmng step
is to find parameters ; and o; for every object O; that max-
imizes the likelihood of the observations.

Let J:( ") denote the ., binary visual observation for the

‘”ZBEg ; and let x(r) denote the 7, unary tex-

(r _

relative size

tual observation for size(O;). We define variables y;;
(r) (r _ (r)

logz;;” and y; * = logx; * as the logarithms of the obser-
vations a:( ") and a:( ") , respectively. This implies y; ~ ¢; and
Yij ~ Gi — Gj- Assuming that the observations are indepen-

dent, ghe log-likelihood of all observations is as follows:

Z Zlng( i — 95 = yz])|gl ~ N(/J‘“Uz)vgj ~ N(,u]-,cr?))
(i,j)eE r=1
ng
+ 33 " log f(gi = v |gs ~ N(i, 07)) @
1€V r=1
where n; is the number of textual observations for the 7’th
node, n;; is the total number of visual observations for the
edge (0;,0;), and E is the set of edges in size graph. The
first and the second summation terms of equation 2 refer to
the log-likelihood of the visual and textual observations, re-
spectively.

We solve the above optimization by coordinate ascent. At
each step we update parameters p; and o; from the values
of other parameters, assuming all the other parameters are
fixed. For p; there is a closed form update rule; however,
there is no closed form update for o;. To update o;, we do
gradient ascent with the learning rate 1. The update rule for
u; and o;, assuming all the other parameters are ﬁxed are:

(r)
nij Yij + g Y,
Zj:(i,j)eE Zr:71 g]2+o-2 + Zr 1 2
i = = G)
Y jiig)eE 77 oTor T

ot =oll 40 3 (s

i,j)EE r=1 Gzt) +U)
(®) (r)

ni;jo; ) - (g =) )
e R D e @)
o’(t)2 + 0'J2« —1 01@3 UZ@

3

2
yz]) + 05 — ft) )

The log likelihood (equation 2) is not convex. As a result,
the coordinate ascent converges to a local optima depending
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Figure 2: The accuracy of models for objects in our dataset. Objects are sorted by the accuracy of our model.

on the initialization of the parameters. The non-convexity is
due to the first summation; the second summation is con-
vex. In practice, we initialize u; and o; with the mean and
the standard deviation of ¥; = {y{")|1 < r < n;}, which
maximizes the second summation.

5.3 Inference

After learning the parameters p; and o; for all objects in our
test set, we are able to infer if object O; is bigger than O;
from the probability distributions of object sizes.Any linear
combination of normal distributions is also a normal distri-
bution; hence:

P(size(O;) > size(0;)) = P(log size(O;) — log size(O;) > 0)
Hj — Hi )

/52 2
o; + 05

®(x) is the cumulative distribution function of the stan-
dard normal distribution and can be approximated numeri-
cally (Hart 1978; Marsaglia 2004).

= P(gij > Olgij ~ N(pi — pj, 00 +07)) =1 — &

6 Experiments

We use Flickr 100M dataset (Thomee et al. 2015) as the
source of tag lists needed to construct the size graph (Sec-
tion 4.1). We model size graph as a 2-edge-connected sub-
graph since it is still sparse, the total cost of edges is small,
and it does not get disconnected with the removal of an
edge. For each edge (O;, O;) in the size graph, we retrieve
a maximum of 100 images from Flickr. We collect visual
observations from the retrieved images and prune the out-
liers. To collect textual observations for the nodes, we ex-
ecute our set of patterns on Google Custom Search Engine
(Section 5.1). The code, data, and results can be found in the
project website at http://grail.cs.washington.edu/
projects/size

6.1 Dataset

It is hard, if possible, to evaluate our model with object
categories absolute sizes, since there is no single absolute
size for a category (i.e. the size of car varies from small-
est mini cars to biggest SUVs). Therefore, we compiled a
dataset of size comparisons among different physical ob-
jects. The dataset includes annotations for a set of object
pairs (O;,0;) for which people agree that size(O;) >
size(Oj;). The list of objects are selected from the 4869 de-
tectors in LEVAN (Divvala, Farhadi, and Guestrin 2014)

that correspond to 41 physical objects. To annotate the size
comparisons, we deployed a webpage and asked annotators
to answer queries of the form “Which one is bigger, O; or
O;?” and possible answers include three choices of O;, O;,
or ‘not obvious’. Annotators selected ‘not obvious’ for non-
trivial comparisons such as “Which one is bigger, bird or
microscope?”.

We generated comparison surveys and asked each anno-
tator 40 unique comparison questions. The annotators have
shown to be consistent with each other on most of the ques-
tions (about 90% agreement). We only kept the pairs of ob-
jects that annotators have agreed and pruned out the com-
parisons with ‘not obvious’ answers. In total, there are 11
batches of comparison surveys and about 350 unique com-
parisons. To complete the list of annotated comparisons,
we created a graph of all the available physical objects and
added a directed edge from O; to O; if and only if people
has annotated O; to be bigger than O;. We verified that the
generated graph is acyclic. We finally augmented the test set
by adding all pairs of objects (O;, O;) where there’s a path
from O; to O; in the graph.

Our final dataset includes a total of 486 object pairs be-
tween 41 physical objects. On average, each object appears
in about 24 comparison pairs where ‘window’ with 13 pairs
has the least, and ‘eye’ with 35 pairs has the most number of
pairs in the dataset.

6.2 Comparisons

Language-only baseline: We re-implement (Davidov and
Rappoport 2010; Aramaki et al. 2007) by forming and ex-
ecuting search engine queries with the size patterns men-
tioned in section 5.1. For every query, we record a size value
after scaling the numerical results with respect to their units.
The size of each object is then modeled with a normal dis-
tribution over observations.?

Our model (textual only): This is a variant of our model
that only uses textual observations. This model maximizes
the second production term of log likelihood (equation 2).

Vision-only baseline: This is built on using the relative size
comparisons directly taken from the visual data. For each

2Our experiments have shown that textual observations about
the relative sizes of physical objects are very limited. It is unlikely
to find a sentence that says a car is bigger than an orange. In ad-
dition, comparative statements in text, if found, rarely provide pre-
cisely how much one object is bigger than the other.



Model Accuracy
Chance 0.5
Language only 0.634
Vision only 0.724

Our model (textual only) 0.753
Our model (visual only) 0.784
Our model 0.835

(a) The accuracy of our model against base-
lines and ablations on estimating relative size
comparisons. Our model outperforms competi-
tive language-based and vision-based baselines
by large margins. Our model benefits from both
visual and textual information and outperforms
language-only and vision-only ablations.
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(b) Our model can propagate infor-
mation about true size of objects, if
available. This figure shows an ex-
ample case, where adding true es-
timates of the size information for
about 10 objects results in near per-
fect size estimates.
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(c) Precision vs. declaration rate in
estimating the relative size infor-
mation in our dataset. The curves
are traced out by thresholding on
|P(A > B) — 0.5]. Our model
outperforms baselines in all decla-
ration rates.

edge in the complete graph, we collect visual observations
and set their relative size as the geometric mean of all the
observations. To compute the relative size between any ob-
ject pair, we multiply all the relative sizes of object pairs in
the shortest path between them.

Our model (visual only): This is a variant of our model
that only uses visual observations. This model maximizes
the first production term of log likelihood (equation 2). The
difference between this model and vision-only baseline is
on the representation (using size graph instead of complete
graph) and also maximizing the likelihood, which involves
observations altogether to estimate the objects’ size distribu-
tions, instead of relying only on the shortest path edges.

6.3 Results

Overall Accuracy in Size Comparisons: We report the
accuracy of our model in inferring size comparisons in
our dataset in Figure 3a. For inference, we compute
P(size(A) > size(B)) (Section 5.3) and infer A is big-
ger than B if and only if P(size(A) > size(B)) > 0.5.
The accuracy is the number of correctly inferred pairs over
all the pairs in the dataset.

Our model achieves significant improvement over all the
other models. The results confirm that visual and textual in-
formation are complementary and our model can take ad-
vantage of both modalities. In addition, our model (textual
only) achieves significantly higher performance compared to
the language-only baseline. This supports the superiority of
our representation that sizes are represented with log-normal
distributions. Finally, our model (visual only) achieves sig-
nificantly higher accuracy compared to the vision-only base-
line. This confirms that maximizing the likelihood removes
the noise that exists in individual visual observations.

Per-object Accuracy: Figure 2 shows that our model
achieves higher accuracy than the baselines for most ob-
jects. For objects like giraffe, motorbike, and house the tex-
tual data are less noisy and contribute more to the accuracy
of our model, while for others like watermelon, apple, and
donkey the visual data is more informative.

Precision vs. Declaration Rate: All models (except the
vision-only model) infer A is bigger than B if and only
if P(size(A) > size(B)) > 0.5. We define the confi-
dence of an estimation as the difference between the prob-

.
Small Window / Big Clock

Figure 4: Relative size estimates can lead to inferences about atyp-
ical instances.

ability P(size(A) > size(B)) and 0.5. Figure 3c shows
the precision of the models vs. declaration rate (Zhang et al.
2014). Declaration rate is the proportion of the test queries
on which the model outputs a decision. To calculate preci-
sion at a specific declaration rate dr, we first sort the queries
in ascending order of each model’s confidence, and then re-
port precision over top dr proportion of the test queries and
discard the rest. Our results show that our model consistently
outperforms other models at all declaration rates. It is worth
mentioning that the precision of the language-only model
drops at high confidence region (dr > 0.5), suggesting that
the probabilistic model of this baseline is inaccurate.

Sparse Supervision from True Sizes: For a small number
of objects, one might posses reliable size information. Our
model can incorporate these information by fixing the size
estimates for those objects and optimize the log-likelihood
(equation 2) with respect to other objects’ parameters. Our
model is able to propagate information about the true object
sizes to the uncertain nodes. Figure 3b shows the increase in
accuracy when the true values of few objects are provided.
Qualitative Results: Size information is an important at-
tribute for referring expressions and commonsense ques-
tion answering (Mitchell, van Deemter, and Reiter 2011;
Hixon, Clark, and Hajishirzi 2015) and can lead to infer-
ences about size abnormalities in images. For example, Fig-
ure 4 shows examples of objects with unexpected relative
size estimates. Rich statements, such as big clock/small win-
dow in Figure 4 can be used in image captioning or even
pruning false positives in object detection.

The project website includes the size graph constructed
using our method. The topology of the size graph reveals
interesting properties about transitivity of the size infor-
mation. For example, the size of chairs would be mainly
affected by the estimates of the size of cats or the best



way to estimate the size of a sofa is through dogs and
cats. Moreover, our method is able to estimate statisti-
cal size comparisons between objects which are not easy
to compare by humans. For example, our method pre-
dicts that P(window>motorbike)=0.3, P(tree>SUV)=0.34,
or P(shoe>face)=0.49.

7 Conclusion

In this paper, we introduced a fully automated method to in-
fer information about sizes of objects using both visual and
textual information available on the web. We evaluated our
method on estimates of relative sizes of objects and show
significant gain over competitive textual and visual base-
lines. We introduced size graph and showed its benefits in
leveraging transitive nature of the size problem. Future work
involves application of inferred size information in object
detection in images and diagrams (Seo et al. 2014), single
image depth estimation, and building commonsense knowl-
edge bases. This paper is a step toward the important prob-
lem of inferring the size information and can confidently de-
clare that, yes, elephants are bigger than butterflies!
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