Toward Fast and Accurate Neural Discourse Segmentation

Yizhong Wang Sujian Li Jingfeng Yang

MOE Key Laboratory of Computational Linguistics, Peking University

Discourse Segmentation

• Segmenting text into Elementary Discourse Units (EDU)

... [Mr. Rambo says]_{e1} [that a 3.2-acre property]_{e2} [overlooking the San Fernando Valley]_{e3} [is priced at \$4 million]_{e4}[because the late actor Erroll Erroll Flynn once lived there.]_{e5} ["If Flynn hadn't lived there,]_{e6}[the property might have been priced \$1 million lower,"]_{e7} [says Mr. Rambo,]_{e8} [noting]_{e9} [that Flynn's house has been bulldozed,]_{e10} [and only the pool remains.]_{e11}...

• The first step in RST-style discourse parsing and can be used for many downstream tasks, such as sentence compression or document summarization.

Traditional Feature-based Approach

- Good performance with syntactic features:
 - Part-of-speech tags
 - Parse trees
- These features are important since EDUs are initially designed to be determined with lexical and syntactic clues

Efficiency is the Major Concern!

- Discourse segmentation is a fundamental step in the NLP pipeline.
- But extracting syntactic features takes a long time!

So, why not try Pure Neural Methods?

- Inferior performance without prior knowledge of syntax.
- Labeled data is limited in size to train a large model.

	# of Articles	# of Sentences	# of EDUs
Train Set	347	6132	18765
Test Set	38	991	2346

Our Neural Discourse Segmentor

• Remove all syntactic features!

⇒ Speedup!

- Transfer word representations learned from large corpus.
 For data insufficiency.
- Use self-attention to model long-range information.

 \implies Improve the capacity of our model!

• Restrict the self-attention to a neighborhood.

 \implies avoid unnecessary faraway noises.

BiLSTM-CRF for Discourse Segmentation

• Encoding the text with Bi-LSTM:

 $\mathbf{h}_t = \mathrm{BiLSTM}(\mathbf{h}_{t-1}, \mathbf{e}_t)$

$$p(\mathbf{y}|\mathbf{h}; \mathbf{W}, \mathbf{b}) = \frac{\prod_{i=1}^{n} \psi_i(y_{i-1}, y_i, \mathbf{h})}{\sum\limits_{y' \in \mathcal{Y}} \prod_{i=1}^{n} \psi_i(y'_{i-1}, y'_i, \mathbf{h})}$$
$$\psi_i(y_{i-1}, y_i, \mathbf{h}) = \exp(\mathbf{w}^T \mathbf{h}_i + b)$$

Transferring Representations from LM (ELMo)

• Concatenate ELMo embeddings r_t with GloVe word embeddings e_t :

$$\mathbf{r}_t = \gamma^{\mathrm{LM}} \sum\nolimits_{l=0}^{3} s_l^{\mathrm{LM}} \mathbf{h}_{t,l}^{\mathrm{LM}}$$

7

Restricted Self-Attention within a Window

 Compute similarity between current word and nearby words within window K:

$$s_{i,j} = \mathbf{w}_{attn}^T [\mathbf{h}_i, \mathbf{h}_j, \mathbf{h}_i \odot \mathbf{h}_j]$$

 Attention vector a_i is a weighted sum of nearby words:

$$\alpha_{i,j} = \frac{e^{s_{i,j}}}{\sum_{k=-K}^{K} e^{s_{i,i+k}}}$$
$$\mathbf{a}_i = \sum_{j=-K}^{K} \alpha_{i,i+k} \mathbf{h}_{i+k}$$

• Fuse the vectors with another BiLSTM.

Performance on RST Discourse Treebank

Table 2. Performance of our model and other systems

Model	Tree	P(%)	R(%)	F1(%)
SPADE	Gold	84.1	85.4	84.7
NNDS	Gold	85.5	86.6	86.0
CRFSeg	Gold	92.7	89.7	91.2
Reranking	Gold	93.1	94.2	93.7
CRFSeg	Stanford	91.0	87.2	89.0
CODRA	BLLIP	88.0	92.3	90.1
Reranking	Stanford	91.5	90.4	91.0
Two-Pass	BLLIP	92.8	92.3	92.6
Our Model	No	92.9	95.7	94.3
Human	No	98.5	98.2	98.3

- SOTA performance
- F1 + 0.6, compared with methods with gold parse tree
- F1 + 1.7, compared with methods with predicted parse tree

Speed Comparison

Table 3. Speed of our model and two open-source segmentors

System	Speed (Sents/s)	Speedup	
Two-Pass	1.39	1.0x	
SPADE	3.78	2.7x	
Ours (Batch=1)	9.09	6.5x	
Ours (Batch=32)	76.23	54.8x	

Note: These systems are tested on the same machine (CPU: Intel Xeon E5-2690, GPU: NVIDIA Tesla P100)

Further Analysis

Table 4. Ablation Study

Model	Tree	P(%)	R(%)	F1(%)
Our Model	No	92.9	95.7	94.3
- Attention	No	92.4	94.8	93.6
- ELMo	No	87.9	84.5	86.2
- Both	No	87.0	82.8	84.8
Human	No	98.5	98.2	98.3

Table 5. Performance with different window size

Window Size	1	5	10	∞
F1-score	94.0	94.3	94.2	93.8

Conclusion

- A pure neural discourse segmentor with:
 - SOTA performance
 - Great speedup
- We show that:
 - Transferred word representations is very useful!
 - Restricted self-attention to a neighborhood can improve the performance.
- Our EDU segmentor is released at:

https://github.com/yizhongw/neural-edu-segmentation

Thank you!