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This paper contributes a novel method for low-cost, covert physical sensing and, by doing so, surfaces new privacy threats.
We demonstrate how a smartphone and portable speaker playing music with embedded, inaudible signals can track multiple
individuals’ locations and activities both within a room and through barriers in 2D space. We achieve this by transforming
a smartphone into an active sonar system that emits a combination of a sonar pulse and music and listens to the re�ections
o� of humans in the environment. Our implementation, CovertBand, monitors minute changes to these re�ections to track
multiple people concurrently and to recognize di�erent types of motion, leaking information about where people are in
addition to what they may be doing. We evaluated CovertBand by running experiments in �ve homes in the Seattle area,
showing that we can localize both single and multiple individuals through barriers. These tests show CovertBand can track
walking subjects with a mean tracking error of 18 cm and subjects moving at a �xed position with an accuracy of 8 cm at up
to 6 m in line-of-sight and 3 m through barriers. We test a variety of rhythmic motions such as pumping arms, jumping, and
supine pelvic tilts in through-wall scenarios and show that they produce discernibly di�erent spectrograms from walking in
the acoustic re�ections. In tests with 33 subjects, we also show that even in ideal scenarios, listeners were unlikely to detect
a CovertBand attack.
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1 INTRODUCTION

Smart devices and appliances are becoming increasingly prevalent, but as a consequence of adding these con-
nected devices such as smart TVs, phones, and hubs like the Amazon Echo [17] to our homes, there are an
increased number of connected speakers and microphones with access to our private environment. This pro-
vides a lot of value for consumers, but there are also privacy threats involved with increased connected sensing
capabilities. In this paper, we show that in the case of microphones and speakers there are privacy leaks possible
with today’s devices that go beyond the ability to simply record conversations in the home. For example, what
if an attacker could remotely co-opt your television to track you as you move around, without you knowing?
Further, what if that attacker could �gure out what you were doing in addition to where you were? Could she
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even �gure out if you were doing something with another person? A positive answer could leak information
about user activities that are inaudible to a microphone and so far have been considered to be private.
While there has been signi�cant research interest in the use of RF for localization and activity recognition

(see §6), no existing RF mechanisms using Wi-Fi hardware on commodity devices— routers, laptops, and smart-
phones— permit device-free localization of unsuspecting victims in either through-barrier or remote-attack sce-
narios. We create CovertBand, which, for the �rst time, transforms commodity devices with microphones and
speakers into active sonar systems to track users and di�erentiate between di�erent classes of motion. At a high
level, we transmit acoustic pulses in the 18-20 kHz range from the speaker and track re�ections from the human
body on the microphones. To accomplish our goals, we had to overcome two key challenges:

(1) How to perform passive localization using acoustic signals. Due to the nature of indoor environments, there
are signi�cant multipath e�ects from static re�ectors. To address this, we borrow Orthogonal Frequency-
Division Multiplexing (OFDM), a modulation technique commonly used in wireless communication sys-
tems such as Wi-Fi and LTE [36]. OFDM’s strong autocorrelative properties allow CovertBand to function
in the presence of multi-path, where a signal bounces o� multiple objects in the environment before ar-
riving at the receiver. This lets the receiver perform channel correlation to estimate the multi-path e�ects
in the transmitted signal.

(2) How to perform acoustic localization through barriers. A naïve solution to this challenge would simply
increase the volume of pulses in the 18-20 kHz range until enough su�cient energy pentrates the barrier,
re�ects o� a subject, passes through the wall, re�ects o� of a subject, and returns to the receiver. However,
CovertBand uses speakers on existing devices which are not speci�cally built to transmit in the 18-20 kHz
range at high volume. As a result, they create harmonics in audible frequency ranges. To mitigate this
e�ect, we show how to mix the harmonics with cover music. We also show how to choose OFDM symbols
that music can best conceal.

We implemented CovertBand on a Samsung Galaxy S4 with common audio devices, including 4 portable speak-
ers [7–9, 31] and a home theater system [22]. To demonstrate the potential for privacy attacks on varied devices,
we implemented CovertBand on a 42 inch SHARP TV [48]. We ran experiments in �ve homes in the Seattle
area to demonstrate CovertBand’s ability to help an attacker both localize victims and leak information about
activities even in scenarios where those activities are not audible.
We summarize our experimental results below:

• CovertBand can track multiple subjects independently through barriers in a 2D plane. We ran experiments
in �ve homes to track both a single subject and multiple subjects and found that we could localize with
tracking error comparable to the state-of-the-art in RF localization [13, 34]. Speci�cally, CovertBand local-
ized walking subjects with a mean tracking error of 18 cm and subjects moving in a �xed position with a
mean tracking error of 8 cm. For comparison, WiTrack2 [13], which uses custom FMCW radar hardware,
has an accuracy of 10.9–19.2 cm when tracking moving subjects through walls.

• We evaluated CovertBand’s range through a variety of materials using a portable speaker [31], showing
that it can track at up to 6 m without barriers and 3 m in through-wall scenarios.

• CovertBand can di�erentiate between rhythmic and linear motions. We tested a variety of rhythmic mo-
tions— pumping arms, jumping, and supine pelvic tilts — in through-wall scenarios and show that they
produced discernibly di�erent spectrograms from walking.

• We compared performance in the 18-20 kHz range across multiple speakers to prove CovertBand could
work on a wide variety of hardware. We also demonstrated CovertBand on an LG G4 connected to a Sharp
TV [48] without �ne tuning our algorithms to demonstrate the possibility of sensing with diverse sets of
hardware without device-speci�c training.
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• We evaluated our ability to conceal CovertBand with music by playing unmodi�ed songs and songs with
an additional sonar signal back-to-back in random order for 33 subjects in an isolated environment. We
found that subjects could correctly di�erentiate only 58% of the pairs, which is close to random guessing,
showing that even in ideal scenarios victims are unlikely to to detect the attack.

Contributions. To the best of our knowledge, we are the �rst to demonstrate active sonar for through-barrier
sensing on a wide range of commodity devices available to standard consumers. Speci�cally:

• We demonstrate the �rst device-free localization capability on commodity devices in both through-barrier
and remote-attack scenarios. We show how to perform localization, tracking, and motion classi�cation for
multiple subjects in a 2D plane using changes in the audio channel.

• We ran experiments in �ve real homes to show that attacks are possible with our prototype. In particular,
we show through multiple scenarios that an attacker can use active sonar to glean information about
victims through walls, even when the attacker cannot see the victim nor hear any movements, and that
such an attack is feasible using many common, o�-the-shelf devices.

• We show how to conceal the attack from a victim by mixing active sonar pulses with music. We ran user
studies to evaluate our methods, showing that such an attack could be done covertly to avoid detection
even in ideal scenarios.

• We re�ect on the broader implications of this work, including privacy implications and future research
in this space. Speci�cally, we demonstrate the feasibility of potential threats through three case-studies,
including spying on: 1) multiple people in a dormitory room when they are engaging in private activities,
2) a person’s private activities in a bathroom (even when these activities are inaudible from outside), 3)
remote victims by adding CovertBand-based malware to gadgets, like phones and TVs, that are commonly
present in homes.

We note that our work intends to show the possibility of information leakage with commodity speakers
and microphones. Maximizing the range and resolution for di�erent materials and con�gurations, or building
applications to utilize this capability is beyond the scope of this paper.

2 MOTIVATION AND GOALS

We begin by considering several motivating scenarios. From these scenarios, we derive our key goals.

2.1 Scenarios

These scenarios survey the utility of understanding the feasibility of covert, through-barrier sensing. Such at-
tacks provide a new avenue for leaking information about obscured activities even in the presence of background
or cover noise.

National intelligence. Imagine a spy (Alice) entering a foreign country. She rents a hotel room adjacent to
an individual (Bob), whom she intends to discretely and covertly monitor. To be a good spy, Alice cannot enter
the country with dedicated surveillance hardware, and she cannot acquire any suspicious new hardware while
in-country. But she still wants to monitor her neighbor to know when he is in the bedroom or bathroom, an
ideal opportunity to enter the apartment and gather additional information). Bob does not know that he is
being monitored, or even that he is the potential target of monitoring. Alice would bene�t from using a covert
monitoring mechanism, something she could run on her phone and that would avoid arousing Bob’s suspicion.

Vigilante Justice. In some cases, revealing certain private activities can be dangerous to victims. For example,
many countries or non-government entities persecute pre-mairtal or other sexual partnerships [25, 28, 51]. We
note that in many of these cases, vigilantes do not seek conclusive evidence before condemning victims; as such,
the possibility of even circumstantial evidence could pose security threats for these individuals.
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Remote Hacking of Phones and Smart TVs. We also consider attacks that leverage devices already inside a
victim’s home. Because our attack requires access only to a speaker and microphone, an attacker can leverage
many devices that already exist in the home environment. Smart TV apps and voice assistants, like Amazon Echo
[17] and Google Home [21], already have access to speakers andmicrophones and let users install applications. A
remote adversary who compromises one of these devices, perhaps via a Trojan application in an app store or via
a remote exploit, could use our methods to remotely glean information about an individual’s home activities. An
attacker could also �nd more surreptitious ways to execute such an attack. For example, a streaming music app
with voice control has all the permissions (speaker and microphone) needed to execute our attack. As a simple
example, an attacker could utilize the advertising library embedded inside a music application to determine
whether the user is near the phone when an ad is played.

2.2 Goals and Non-goals

Inspired by the preceding scenarios, we enumerate �ve goals for our system:

(1) Major motion detection and tracking. The system should be able to detect motion and perform 2D tracking
for each of several individuals in an environment.

(2) Distinguish between movements. Our technique should be able to convey information about the type of
movement occurring.

(3) Re-purpose commonly available devices. Our technique should be implementable on devices that people
might already own for several reasons. First is cost, ensuring that our approach is a�ordable enough to
be commonly available. Second, using devices commonly found in household environments increases the
potential attack surface. Further, using such devices provides “plausible deniability": a camera installed
in an environment leaves physical evidence, and the purchase of dedicated radar equipment leaves little
ambiguity as to someone’s intended monitoring activities.

(4) Through-barrier sensing. Each of the previous capabilities should be possible despite the presence of com-
mon barriers, e.g., walls, doors, windows, etc.

(5) Not detectable to unknowing target. An unknowing target, unaware of our this type of attack, should have
a low probability of detecting our attack.

We do not attempt to avoid detection by knowing targets. If targets know that they might be the subjects of
monitoring, then they might be able to detect it by setting up sensors. Because this is true of any existing, active
through-wall imaging techniques, including radar, we argue that this is a reasonable non-goal.

To our knowledge, we are the �rst to study, demonstrate, and evaluate an attack using the preceding goals.
More speci�cally, we are unaware of any solution that performs through-barrier detection and tracking on
common devices. Note that RF-based systems that perform through-barrier device-free detection and track-
ing [12, 14, 15, 41–43, 62, 63, 69] require custom hardware, such as USRPs, or are limited to Wi-Fi chipsets
with access to channel state information (CSI) in the vicinity of the device [52, 60, 64]. Commodity smartphones
do not typically provide software-level access to CSI information. Thus, we know of no existing solution that
tracks through barriers with commodity smartphone devices.

3 COVERTBAND DESIGN

Section Outline. This section is organized as follows: §3.1 describes the attack surfaces and attacker require-
ments. §3.2 describes our choice of signal, and §3.3 describes how we play this signal and our method for ob-
scuring it. Sections §3.4 and §3.5 explain how to use the signal to calculate the distance to moving objects and
how to use that distance to perform 2D localization.
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3.1 Adversary Model

CovertBand enables two unique attack surfaces.

(1) The �rst is a remote attack where an attacker compromises speakers and microphones already in a vic-
tim’s home. This may be as innocuous as a music or video application with access to the microphone and
speakers on a smartphone, Amazon Echo, or a Smart TV. Because CovertBand uses common devices, it can
use an over-permissioned or malicious application, a common and well-known problem with mobile ap-
plications [44], to monitor an individual’s location and activity. In principle, the hardware need only have
multiple microphones and a single speaker, a con�guration common in smarthphones and home assistants
(e.g., Amazon Echo has a 7-microphone array). The attacker can likely reference hardware speci�cations
to get information about speaker locations and microphones but must make some assumptions about de-
vice location. An Amazon Echo and television, for example, are unlikely to move. Thus, if attackers learn
their location (for example, in a bedroom), they could use that information to breach privacy. State-of-the-
art RF approaches generally do not permit such remote attacks because through-wall approaches require
specialized hardware (USRPs and FMCW radar arrays) not present in a victim’s home [13, 43]. Other ap-
proaches use common Wi-Fi access points but require multiple access points and multiple devices in the
environment at known locations and under attacker control. Further, they require a training phase that
may demand victim cooperation [35, 45, 47, 65].

(2) The second attack is a through-wall scenario where the attacker places a speaker and microphones near a
barrier to sense obscured activities. Though this attack works best when victims are in the forward direc-
tion relative to the speaker, it: (1) does not require any particular speaker and microphone placement, (2)
can be executed with a diverse combination of speakers and microphones, and (3) can be placed anywhere
along (or up) the barrier as long as the victim iswithin range. Existing sonar approaches for through-barrier
sensing require more specialized hardware and setups. For example, the DoD funded a through-wall sonar
detector [12] with specialized hardware, which was meant for presence detection, not localization. Finally,
while the principles in our paper can generalize to two (stereo) or more speakers and a single microphone
or a synthetic aperture by moving the speakers in a line, demonstrating these generalizations are beyond
the scope of this paper.

3.2 Strong Autocorrelative Signal

CovertBand leverages autocorrelation to identify the beginning of an echo from a human. For this reason, we
selected OFDM signals for our sonar pulses. OFDM, a modulation technique commonly used in wireless com-
munication systems including Wi-Fi [26] and LTE [36], has strong autocorrelative properties. These properties
let it work in the presence of multi-path re�ections, where a signal bounces multiple objects in the environment
before arriving at the receiver. The receiver can thereby perform channel correlation to estimate the multi-path
e�ects in the transmitted signal.

3.3 Signal Generation at the Speaker

CovertBand generates OFDM symbols in the upper audible range (18-20 kHz), which we play through a con-
nected portable speaker. Since our phones’ microphones accept samples at 48 kHz, by the Nyquist condition, the
e�ective bandwidth is 24 kHz. We divide this bandwidth into 64 subcarriers, each with a width of 375 Hz. We
assign random data (either 1 or -1) to the seven subcarriers between 48 and 54 that correspond to the frequen-
cies of 18 to 20 kHz and perform an IFFT on these 64 values to generate a 200-sample OFDM symbol in the time
domain. When sampling at 48 kHz, a 200 sample OFDM symbol forms a pulse that spans 4.2 ms. Though radios
have oscillators that let them transmit quadrature and in-phase components, and hence transmit the complex
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Fig. 1. The figure plots the frequency spectrum of the signal

recorded in a smartphone when the speaker plays a 19 kHz

tone. While playing it creates sub-harmonics in lower frequencies.

Recorded in a quiet lab environment by placing a speaker directly

in front of a smartphone microphone.

Fig. 2. The figure shows the sonar OFDM signals (18-20 kHz)

mixed with the cover music (sub-10 kHz). Generated in so�ware to

show the separation in frequency space between the OFDM sym-

bols and the cover music.

numbers output by the IFFT, speakers only accept 16-bit real numbers, so we transmit the amplitude of the IFFT
samples and discard the phase.
Although not all adults can hear frequencies at 18-20 kHz, when played through an o�-the-shelf portable

speaker at high volume there are audible sub-harmonics at lower frequencies. Fig. 1 shows the spectrogram
of a 19 kHz tone played from a JBL portable Bluetooth speaker and recorded using a smartphone. The plot
shows sub-harmonics in the 11 kHz range. To hide these sub-harmonics, we combine the OFDM symbols with
an audible song (see Fig. 2). Speci�cally, we play music continuously in the 0.1-8 kHz range and transmit the
OFDM symbol every 105 ms, i.e., about 9.6 OFDM symbols every second. Since the song and OFDM symbols use
di�erent frequency ranges, we can isolate the OFDM symbol at the receiver with a high pass �lter, removing
both our song and any environmental or cover noise below the 18-20 kHz band.
We note two key points about our design. First, we generated a number of random OFDM symbols and found

that each symbol has di�erent audibility level when played on a speaker. When we compared the structure of
the OFDM symbol with its audibility level, we found that OFDM symbols that do not ramp up to full volume
near the beginning or end of the signal are much less audible than symbols with a sudden change in amplitude
(i.e., a crescendo and decrescendo, rather than immediate spikes at the beginning or end of the symbol). We use
one such symbol in our design, though we did not excessively optimize OFDM symbols for this purpose.

Second, the songs selected e�ected the detectability of our sonar signal. We found that songs with more
percussive events easily obscured the sonar signal but songs and speeches with many silent pauses were unable
to mask certain elements of the signal. In our design, attackers can modify the ratio of song volume to sonar
signal volume to better hide the OFDM signal. We found that song volumes higher than a quarter of the sonar
signal volume were su�cient to our ears. That is, songs played at much lower volumes than the signal proved
su�cient to mask it in our tests. See§4.5 for the evaluation of covertness.

3.4 Computing Distance from Microphone

When the speaker plays our sonar signal, sound waves re�ect o� both static objects in the environment and
moving persons before being reaching the microphone. To �nd the distance of the people from the microphone,
CovertBand performs to steps. It: (1) estimates the channel correlation for each transmitted OFDM symbol to
�nd all re�ectors, and (2) compares consecutive correlation pro�les in time to seek moving re�ectors, which we
assume to be humans (but could be other moving objects).

Step 1: Generating the channel correlation pro�le. To generate the correlation pro�le, we pass the recorded signal
through a high-pass �lter to remove the song and isolate sonar signal re�ections. Fig. 3 shows a sample correla-
tion pro�le at a speci�c time instance. Each peak corresponds to an object’s echo. We can �nd the distance to the
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Fig. 3. The figure plots an example correlation profile for a time

instance recorded through a door in one of our five home experi-

ments. The peaks represent all the major reflectors including the

static objects and the human subject present at the corresponding

distances.

Fig. 4. The figure plots an example correlation profile at two time

instances t1 and t2 also recorded in a real home environment. The

peaks shi� farther to a distance of 0.45 m when the person moves

away from the smartphone.

object using the speed of sound and the observed time delay. Since OFDM has strong autocorrelation properties,
the correlation pro�le is accurate within a range of 2 to 3 samples (1-2 cm sampling at 48 kHz).

Step 2: Identifying the echo from the person.When a humanmoves, the resulting echo occurs at di�erent distances
over time. Fig. 4 shows the correlation pro�le at two time instances separated by 0.02 s when the subject moves
from 0.45 m to 0.5 m. We clearly see the change in the echo’s position. We extract this change by performing a
consecutive subtraction of the channel correlation pro�les every 110 ms. We should note that the consecutive
subtraction operation removes the constant echo from all the static objects in the environment. During human
motion, we see a signi�cant change in echoes mainly at the distance corresponding to the individual’s location.
This change occurs in a range of distances corresponding to the human pro�le (height and weight). However,
we also see some minor changes at slightly large distances due to the dynamic multi-path i.e. a multi-path that
changes when the human moves. For example an echo from the human might reach a nearby strong static
re�ector �rst before reaching the receiver. In most cases, the dynamic multi-path causes small changes at larger
distance than the direct path and hence we identify the smallest distance at which the di�erence is above a
relative threshold to identify the new location of the human. CovertBand uses 60% of the maximum change as
the minimum threshold. The dynamic multipath causes larger changes in the echo only when there is a strong
re�ector very close to the human subject. Since the re�ector is basically in contact with the human subject, this
leads only to a small error of less than 10 cm.
To perform the correlation, enough energy must pass through the barrier, regardless of path, and re�ect back

to the microphone. We �nd this to be the case in our real-world experiments. Our intuition is that, in normal
environments, su�cient gaps and holes (light switches, power outlets, door frames, windows, etc.) let sound
propagate and return to the microphone for sensing.

Multipath. In cases where the wall is not permeable to our sonar signal, the large correlation will correspond
to an indirect path that over-estimates distance. This would cause error in our experiments. However, our exper-
iments in realistic environments with various con�gurations show that some energy does pass in a su�ciently
direct path to moving re�ectors. Although the direct path may not be the highest energy re�ection, we can see
that it moves in the same way as do the higher energy re�ections, indicating that it is a shorter path to the same
moving object. We use the lowest-distance re�ection to get an upper bound on the individual’s distance.
In principle, we can infer the actual position of an individual even without any energy traveling along the

direct path. One potential technique would build on [67], which uses angle of arrival to locate the source of
re�ections even if the direct path is fully blocked. We did not need to do this for our proof of concept information
leakage demonstration because su�cient energy passed directly perform sensing.
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Multiple people. When multiple people move in an environment, consecutive subtraction of correlation pro-
�les will show changes at distances corresponding to each human. We record on two microphones so multiple
people at the same distance from one microphone are likely to show up as distinct re�ectors on the other mi-
crophone, unless they are, in fact, in the same position. To identify each individual, we �rst scan through the
entire correlation pro�le and attribute each distance where the di�erence in the correlation pro�le exceeds the
minimum threshold to a single person. In our implementation, we attribute motions that occur within a distance
of 20 cm to the same person. We use the distance that corresponds to the maximum di�erence in the correlation
pro�le in each group to compute the individual’s location. Note that multi-path re�ections corresponding to a
single subject move at a �xed rate and distance. Using this, we can disambiguate between re�ections from di�er-
ent subjects. In some theoretical situations where two subjects are in precise locations and move in concert at
the same time, we will see only one change in the correlation pro�le and thus recognize one person even when
there are two separate individuals. This highly unlikely situation is beyondthe scope of a commodity system
such as CovertBand.

3.5 Tracking with Multiple Microphones

We can track an individual’s location using the distance from multiple microphones. Note that the distance
measured in the previous step sums of the distance from the speaker to the individual and the distance from
the individual back to the microphone. In a two dimensional space, given this distance, the human can be at
any point in the 2D plane along an ellipse with the locations of the speaker and microphone as the foci and
the measured distance being twice the length of the major axis. Thus, each microphone creates an ellipse; the
intersection of the ellipses frommultiple microphones provides the individual’s location in the plane. In the case
where one cannot assume the subject is moving in a 2D plane, we would need a third microphone (for example,
one plugged into the audio jack) or a di�erent device to do trilateration in 3D. For example, the Amazon Echo
has a 7 speaker array [27] that would help immensely for 3D localization.
Since the phone has two microphones, the individual’s position can be at any location that occurs at the

intersection of the two corresponding ellipses. While two ellipses can intersect at four di�erent points, in our
case both ellipses share a common focus (i.e., location of the speaker). Hence, they intersect at only two points
that are symmetrical along the line joining the two microphones on the smartphone. These two points lie on
either side of the barrier and can therefore be used to disambiguate the motion on either side.

4 EXPERIMENTAL EVALUATION

Here we evaluate CovertBand’s ability to achieve our goals from §2. Because sonar has not been used with
these goals in mind, — namely for covert, through-barrier sensing on commodity devices—we aim to show the
constraints of our design choices from §3 and demonstrate feasibility in scenarios that represent realistic threats.
We had �ve main goals from §2:

(1) Identify di�erent classes of motion and activities.

(2) Track multiple people in a 2-D environment.

(3) Evaluate range through di�erent materials.

(4) Ensure that our methods work with existing, cheap, o� the shelf hardware.

(5) Conceal the attack from the victims.

In this section, we outline our experiments, implementation details and present results. We performed exper-
iments for each of our goals to show feasibility in real world environments.

Implementation Details.We implement our design of CovertBand as a third party Android app that does not
require rooting the phone. The app uses the AudioTrack API to play the acoustic signals and the AudioRecord

API to record simultaneously on both microphones in stereo. Our design requires the following from the phone:
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(a) No action (b) Walking (c) Repeated pelvic tilts

Fig. 5. Spectrograms of the change in the correlation profile at all distances (increasing from the top in the y-axis of the figure) over time

(x-axis) for three di�erent cases a) When the person is stationary, there is no change. b) For a linear motion like walking, the maximum

change occurs at the new location of the user. c) For a rhythmic activity like pelvic-tilt exercise, the changes repeat over time.

(1) transmit acoustic signals at 18-20 kHz, (2) sample the received signals on the microphones at 48 KHz, and (3)
have two microphones to achieve 2D tracking (recall that a smartphone with a single microphone can be used
to estimate the distance but not 2D position). Many Android phones including Samsung Galaxy S4, Samsung
Galaxy S5 and HTC One satisfy the above requirements.
For each of our experiments, we used a Samsung Galaxy S4 connected to a portable speaker [31] through the

audio jack. Like most common smartphones, the S4 has two microphones, one at the top and one at the bottom,
separated by approximately 15 cm. Our Android app transmits a song along with our sonar signal through the
speaker and records the backscattered signals using the two microphones as described in §3. We record and
process the raw sample data and send the results to a laptop over Bluetooth for o�ine processing. We note that
this attack can potentially be done on the phone, rather than o�ine, if needed.
Microphone Orientation. For each of our experiments, we placed the phone on its side, so that the two micro-

phones (one at the top of the phone and one at the bottom) were in the same horizontal plane and perpendicular
to the direction of the subject. For distinguishing between activities, any orientation should work. However, for
some of the experiments discussed later, such as 2D tracking, the only relevant property of this orientation is
that the two microphones are in the same plane as the target, as we can only make inferences in this plane. With
more microphones we could potentially sense in 3D.

4.1 Distinguishing Between Activities

First we demonstrate CovertBand’s ability to help an attacker infer information about what a person is doing
using two basic methods: (1) inference based on characteristics of motion and (2) inference based on timing.

Inference based on characteristics of motion.We show how CovertBand can potentially enable an attacker
to di�erentiate between di�erent classes of movements even when subjects are in di�erent body positions and
orientations. Speci�cally, we focus on two classes of motion: (1) linear motion (the subject walks in a straight
line) and (2) periodic motion (pelvic tilt where the subject remains in approximately the same position (lying on
his or her back on the �oor) but performs a periodic exercise). These motions are su�ciently di�erent that we
should be able to di�erentiate them by looking at the spectrograms, but are also realistic enough to potentially
enable privacy leakage. For example, (1) models information that might be of interest to intelligence community
members, e.g., to track the location of a target within a room and (2) could be used to infer sexual activity, for
which the importance of protecting might vary depending on the target’s culture and cultural norms or might
vary depending on the target’s public visibility, e.g., celebrity status or political status.

To run these experiments, we placed our phone and speaker 20 cm from a standard interior wall [30]. A
subject 1 m from the inside of the wall was asked to perform each of the above activities. We then transmit our
covert sonar signal and track the changes in the echoes as a function of time as described in §3. Fig. 5 shows
the spectrogram plots for the di�erent activities. The x-axis denotes the time and the y-axis is the distance of
the subject from a single microphone at the smartphone. The spectrogram plots the di�erence in the echoes
received where the di�erences are computed over successive 10 ms durations. The plots show that:
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Fig. 6. We were able to localize the person in di�erent areas of

the bathroom. According to our sonar readings, Bob spent 13s at

station A, 11.5 s at station B, 10.5 s at station C and 11.5 s at station

D. (Ground truth: 19.5 s at A, 13.4 s at B, 12 s at C and 14 s at D).

Trajectory line thickened for visibility.

Fig. 7. Experimental Setup 1: Box and whiskers plot of tracking

error for one moving subject in the bathroom. We calculate error

by comparing observations with trajectories based on starting and

ending points marked on the floor.

• First, when there is no activity on the other side of the wall, as expected, we do not see any signi�cant
changes in the echoes as received by the microphone.

• As the subject walks towards the phone on the other side of the wall, we see a strong change in consecutive
echoes occurring at decreasing distances from the phone. The black line in Fig. 5(b) shows the actual
distance of the subject as a function of time. By looking at the areas where the changes in the echoes are
the highest, we can see that CovertBand accurately tracks the distance.

• When the subject performs a repetitive motion from a stationary position, we see a repetitive signal at a
�xed distance (1.5 m).

We also tested other rhythmic motions, such as jumping and pumping arms with the subject in a standing
position. The plots look similar to the pelvic tilt in that they are clearly repetitive, but have di�erent energies and
distances associated with them. Though this is clearly an example of a rudimentary classi�cation, it requires no
training phase to generate the data above that enables an additional privacy breach. More sophisticated attackers
could potentially train models to do more accurate classi�cation or detect additional types of movements. And
though we do not aim to do gesture recognition in this work, even recognizing a motion as repetitive may be
su�cient as a privacy threat in situations where circumstantial evidence can be damning. We also note that
CovertBand should still be able to di�erentiate between linear and rhythmic motion in cases where subjects
come into contact with stationary objects in the environment. We veri�ed in §4.2 that CovertBand could detect
the motion and localize a person sitting in an o�ce chair, performing rhythmic motions.

Inference based on timing. As we will see in §4.2, we can use CovertBand to do 2D tracking of subjects even
through walls, which can further leak information about potentially private activities. To demonstrate this, we
show a scenario where one subject (Bob) pretended to go through a routine in the bathroom while the other
(Alice) used CovertBand to track his movements. We placed the speaker setup 15 cm outside the bathroom door
and performed four trials during which Bob spent less than 20 seconds doing each of the following: showering,
drying o� on the scale, sitting on the toilet, and brushing his teeth. During the experiment, the bathroom fan was

ON and we could not hear Bob performing any of the activities inside the bathroom.

Using CovertBand, we were able to localize Bob at di�erent areas of the bathroom as he performed di�erent
tasks. Fig. 6 shows a 2D mapping of Bob’s movements with observed timing as he stopped in each location. We
were also able to download the publicly available �oorplan for this particular apartment, which allowed us to
map each of the stops to di�erent stations within the bathroom. For example, we can guess that Bobwas probably
using the sink during D, or showering during A. Floorplans for many apartments and hotels are available online.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 1, Article 87. Publication date:
September 2017.



CovertBand: Activity Information Leakage using Music • 87:11

Fig. 8. Experimental scenario 2: Multiple people, multiple motions. An example of one of the bedroom layouts. Subject A twisted at the

hips, while subject B walked toward him. For all experiments, doors/windows were closed.

We note that the notably higher error for timing while Bob was at station A is due to Alice’s inability to
di�erentiate between Bob standing in the shower, and Bob opening/closing the curtain or simulating drying o�
directly outside the shower. If we had simulated Bob showering for a more realistic amount of time, the relative
error would be much more reasonable.
During this experiment, the participant did not spend a realistic amount of time at each station, rather simply

paused and used a timer to record how long he stayed at each stop. We can see that being able to localize Bob
within 20cm can tell us a lot about which part of the room he is in and with what he could be interacting.

4.2 2D Tracking

As we mentioned above, CovertBand can track 2D movements using echoes from multiple microphones on a
phone (recall §3.4). Here we strive to demonstrate and quantify our 2D location tracking ability by performing
experiments in real-world setups both from within the home and from outside of it.

Home Environment: In our �rst setup, we ran two sets of experiments in each of �ve real-world homes in a
metropolitan area. For each, we asked volunteers of di�erent height and weight to perform various actions. We
con�rmed in separate tests that larger subjects (largest was 6’3", 180 lbs) re�ected more energy, than smaller
ones (smallest was 5’3", 130 lbs). However, though they re�ected more energy, this did not a�ect our ability to
localize them or change the observed error. In some cases, larger people were easier to detect, but caused more
observed error as they re�ected energy from a wider space.

Experimental scenario 1 - Single subject. For the �rst experiment, we ran three trials at each location where we
placed the phone and speaker on a chair outside a closed wooden bathroom door and asked a volunteer
to walk along a straight 1 m line marked on the bathroom �oor. The thicknesses of the wooden doors were
standard [29], but some were hollow and some were solid wood. Also, in a couple of homes the fan inside the
bathroom was on, and in all the homes we could not visually see or hear the subject performing the activity. For
each trial, we compared the 2D trajectory computed by our system with the marked trajectory on the inside of
the bathroom. Fig. 7 shows the mean 2-D tracking error across the bathrooms in the �ve homes. While we see
a variation in the errors across the homes, owing to di�erences in the bathroom door material and the natural
variation inmovements across di�erent subjects and trials, across the �ve home environments themean tracking
error for the bathroom experiments was just 18 cm.
In a similar scenario, we were also able to localize a subject in close contact with a strong multi-path re�ec-

tor. To demonstrate this, we placed a large metal sheet next to a subject, who performed rhythmic motion. As
mentioned in §3.4, the close proximity of a strong multi-path re�ector causes dynamic multi-path. However, we
were still able to correctly localize the moving subject within an average error of 13 cm.
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Fig. 9. Experimental Scenario 2: Box and whiskers plot of tracking

error for the twisting subject from Fig. 8 (Subject A). The error is

smaller because he is stationary (only moves his torso).

Fig. 10. Experimental scenario 2: Box and whiskers plot of track-

ing error for the walking subject from in Fig. 8 (Subject B). We com-

pute error based on the trajectory marked on the floor.

Experimental scenario 2 - Multiple subjects, multiple motions. We placed the speaker and phone outside a bed-

room to detect and localize subjects inside. In three of �ve homes, we placed the setup outside the bedroom
wall; in the the other two, we placed it outside a closed bedroom door. All walls and doors were standard and
all doors were closed for the experiments. To show that we can simultaneously track two people, we asked one
person to stand 2 m from the wall closest to the speaker and continuously move his torso in a rhythmic fashion.
At the same time, a second person walked 2 m towards the �rst person. For these experiments, distances and
orientations were a bit di�erent in each setup depending on the layout of the room. The experimental setup for
one of these layouts is depicted in Fig. 8. For subject A, we calculated the tracking error as the distance between
the computed 2D location and the true location. For subject B, we computed the tracking error as the di�erence
between the computed trajectory and the direct line between the starting and ending points.
In the bedroom experiments, the mean tracking error was 8 cm for the subject twisting in a �xed location,

but 20 cm for the walking subject. The discrepancy in tracking error between the subjects is in part because we
measured the accuracy against a reference line which was directly between the starting point and the ending
point. In reality, it is likely that the walking subject deviated slightly from this direct line while moving 2 m
toward the twisting subject. For example, even for a subject walking directly on the trajectory line, normal
walking motion includes arms, separated by more than 20 cm, swinging with pendulum-like motion. As such,
we do not try to optimize our results for errors less than 50 cm. Despite this, all calculated errors were still less
than 25cm (less than 1 foot) and in each trial wewere able to both localize eachmovement and identify it as either
the linear movement or the rhythmic one. Though the experiments for Fig. 7 were done in the same respective
homes as those for Fig. 9 and 10, they were done in di�erent rooms with di�erent layouts, so we expect some
deviation in the results. However, the mean tracking error for the bathroom experiments are similar to errors
for the walking subject in the bedroom setup, owing to the similarity in movement, the similarity of materials
within homes and similar variability in subject trajectory.

Experimental Scenario 3: Multiple people, convergence. To demonstrate this behavior, we performed two more
experiments to con�rm that CovertBand could deal with two subjects converging to a single location. In these
experiments, both subjects performed a whole body motion by walking towards and away from each other
inside a roomwith the speaker setup placed outside a standard interior wall. Speci�cally, for the �rst experiment,
the two subjects were present at 1 m and 1.7 m from the wall and walked towards each other; for the second
experiment, both the subjects started from the same point 1.5 m from the wall and walked in diagonally opposite
directions. Fig. 12 shows the CDF of the 2-D localization errors of the two subjects. From the results, we found
that we were able to localize both the subjects with an average error of less than 20 cm. When the subjects get
su�ciently close, i.e., less than 20 cm, our thresholds begin to treat them as a single person. As they walk away,
the threshold separates them into two distinct people again.
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Fig. 11. Spectrogram shows the seated person performing the ry-

thmic motion when the other subject stands in contact with the

chair and the subject.
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Fig. 12. CDF of localization errors for two subjects when they are

walking towards each other as in experimental scenario 3.

A Note About Multiple People. As described in Experimental Scenario 3, when multiple people are far apart,
CovertBand can distinguish between them, but when they come within close contact, it treats them as a single
person. One person moving rhythmically and one static will be treated as a single person moving rhythmically.
Furthermore, if both are moving linearly together, they will simply be treated as a single walking person, but
they will likely re�ect more energy. Because CovertBand is only accurate to 18 cm, we leave it out of the scope
of this work to distinguish situations where there is only one person in a location vs. when there are two.
An attacker using CovertBand would have to deduce this using prior knowledge. For example, she could use
CovertBand to observe that therewere previously two peoplemoving toward each other.We note that an attacker
can make inferences about activities in a bedroom— for example, where two people converge to a location,
spend time performing rhythmic activity in the same location, and then separate some time later—without
obtaining concrete evidence. As mentioned in §2.1, this could be a signi�cant potential security threat for certain
individuals. However, as we discuss in §7, CovertBand will not allow an attacker to identify either subject once
they have separated.
Two people moving rhythmically in the same position will simply look like rhythmic motion (albeit with

potentially di�erent frequencies) on a spectrogram, similar to the pumping arms scenario, where the subject’s
arms were not moving in unison. We also note that a static person between the attacker and a moving subject
will act like a stationary object in between a victim and attacker, serving to attenuate the sonar signal to some
degree. To show that CovertBand can perform this type of tracking when subjects are in contact with stationary
objects in the environment, we ran a similar experiment where the stationary person sat in an o�ce chair and
performed rhythmic motion while the walking subject walked 1 m to that position and stood next to the seated
subject (who was performing rhythmic motion) both in contact with the chair and the person. CovertBand
correctly recognized that rhythmic motion and was able to localize both the seated and walking subjects. When
they camewithin 20 cm of each other, it treated them as a single person continuing rhythmic motion. Our system
was able to localize this subject with an average error of 9.57 cm. Fig. 11 shows the spectrogram for the seated
person performing rhythmic motion. We can see that despite contact with a static object and another human,
we are still able to see the rhythmic motion of the subject.

Overall, we �nd that resolution and accuracywere not drastically a�ected in any of our real-world experiments
despite very di�erent circumstances, building structures and layouts. This implies that in common scenarios,
CovertBand can be resilient to changes in location and, unlike some alternative approaches, does not require a
training phase before performing through wall detection and tracking.

Spying through external walls and doors: In addition to detecting and localizing subjects across rooms inside
a home environment, we also tested CovertBand through external doors and walls. These barriers are thicker
and are often designed so that any outsider cannot visually see or hear anything that happens within the home.
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Fig. 13. The figure shows the speaker layout placed in apartment1

close to the wall shared with apartment2. The subject walked in a

line toward the speaker on the other side of the drywall.
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Fig. 14. E�ect of barrier material. The figure plots the mea-

sured signal power and the maximum range at which we can accu-

rately locate an individual through five di�erent barrier materials.

We conducted experiments in three di�erent locations— one apartment and two standalone homes— to test
our ability to do 2D localization through external materials. Speci�cally, we tested a 4.5 cm thick solid wood
door, a 30 cm thick exterior foundational basement wall composed of a combination of di�erent wood paneling
and sheet-rock, and an external double-paned window with curtains drawn. In each experiment, we placed the
speaker close to the barrier and ensured that all windows and doors were shut. In the apartment, this meant
placing the speaker in a neighboring apartment along a shared wall.
In all experiments, the speaker was placed 5 cm from the barrier on the house’s exterior and a test subject

walked a distance of 1 m inside the home. We then localize this subject over time using their walking motion
and compute the average of shortest perpendicular distance to the original trajectory as the localization error.

We found that we were able to localize the subject within an error of about 30 cm in the case of the external
door an window. As an example, Fig. 13 shows the speaker setup and the measured trajectory for the experiment
that we conducted in the apartment. For that experiment, we placed the speaker setup along the shared wall
in the neighboring apartment an asked a subject to walk toward the wall on the other side. We were able to
localize this subject with an average error of 30 cm. However, we were not able to track the subject through
the foundational basement wall due to much thicker external materials. However, an attacker could potentially
increase the range and penetrate thicker materials by using a better speaker with higher output power.

4.3 Evaluating Range through Materials

To estimate upper bounds on CovertBand’s ability to sense in di�erent environments, we ran experiments
through various barriers in a two-bedroom apartment and measured the maximum ranges at which Covert-
Band could detect movement. In particular, we placed the speaker with no barrier as a baseline and 30 cm from
the following visual obstructions: a hollow wooden door, a hollow interior wall, and a hollow exterior wall. In
each case, we performed the experiments in the context of the home so as to study feasibility in realistic situ-
ations. The interior walls were all standard hollow walls [30] and the doors were made of hollow wood were
standard interior doors [29]. The external walls were also drywall and had an estimated thickness of 10 cm.
For each situation, we placed the Samsung Galaxy S4 connected to a JBL portable Bluetooth speaker around

30 cm from the barrier. We also placed an Amprobe sound pressure meter [5] 20 cm away on the other side
of the barrier to measure the attenuation. We asked a volunteer to take two steps (around 60 cm) on the other
side of the barrier at various distances so that we can calculate the maximum distance at which CovertBand
can successfully detect the motion. The volunteer repeats the motion �ve times at each distance until we cannot
successfully detect it with an error of less than 30 cm, 80% of the time, i.e., four of the �ve times. This is su�cient
in our opinion to constitute a privacy breach.
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Fig. 14 shows the pressure values reported by the sound pressure meter and the maximum distance at which
we can detect the movement correctly in 80% of our trials. In order to count as correctly detected, we require that
CovertBand track and localize the movement with an error of less than 30 cm from the ground truth trajectory,
marked on the �oor with tape. Logically, as the attenuation caused by the barrier increases, the distance at
which we can detect the motion decreases. The maximum distances are around 6, 5, 4, 3 and 1.5 meters for air,
curtain, wooden door, hollowwall and exterior wall, respectively. In addition to using speakers capable of higher
volumes, we mention a few ways to increase this range across all materials in §7. Though these results are only
for a single apartment, our experiments in �ve other homes in later sections showed similar results. We note
that our system can detect movement with a lower probability (e.g., one out of �ve) at a further distance.

4.4 Using Common Existing Hardware

For our detection to work, the speaker needs to transmit signals at the higher end of the audible frequency range.
As such, rather than re-running all of our experiments in homes with many di�erent speakers, we �nd it equally
e�ective to compare the relative volumes at which a variety of speakers can play frequencies in this range.

We compared 4 cheap portable speakers, including the JBL [31] we used in the above experiments, and a
home theater system. All were able to play tones at comparable volumes at frequencies from 200 Hz-20 kHz
with the exception of a Bose Bluetooth speaker, which had a noticeable dip at 17.5 kHz. We also noticed more
speaker “clipping”, across all portable speakers at full volume when we played some of the higher frequencies.
Despite this, as we demonstrate in other sections, the power is still su�cient for the purposes of our attack
and the “clipping” noises don’t harm our ability to perform tracking. The clipping is a result of the speaker not
being able to drive the speaker cone with the expected amplitude su�ciently fast, so even at 90% volume the
clipping disappears. Better speakers capable of higher volumes would not necessarily have this problem. The
home theater system we tested, for example, did not exhibit clipping at any of the volumes we measured.
We believe that all �ve of the speakers we tested are fully capable of executing our attack with ranges from

2-6 m, with the caveat that the signal may need to be altered to use the Bose speaker. The only other components
we need are a pair (or more) of microphones that can sample at 48 kHz or higher. Many common smartphones,
such as the Galaxy S4/5, LG G4, and HTC One, have microphones that satisfy this requirement.

Demonstrating information leakage with smart TVs. As we mentioned, the ability to use common hard-
ware for this type of attack opens up a variety of potential devices for an attacker to use to get information
about a target; an attacker with access to a speaker and microphone that already exist in the environment can
potentially leverage them to glean information about remote targets. We show that such an attack is possible
if an attacker can get an over-permissioned application on a smart TV. To demonstrate, we use CovertBand to
play some of our altered songs through the television speakers of a 42 inch SHARP TV [48]. Though all of our
previous tests were done on a Samsung Galaxy S4 with software tuned for the orientation of the speakers on
that device, an attacker may not know the exact orientation and power of speakers on a victim’s device, or the
relative position with respect to the speaker they now control. To account for this, we used the dual microphones
from a larger LG G4 phone (with microphones in di�erent positions) and placed it on a table next to the TV. As
we mean to demonstrate feasibility, we conservatively did not change any of the software to tune it for the new
hardware. We had a volunteer stand two meters in front of the television and perform repetitive motions for
a short interval in a stationary position. We found that using the standard TV front-facing speakers we could
correctly estimate distance of a subject within a maximum error of up to 30 cm.

4.5 Evaluating Covertness of our Design

Our �nal goal was to conceal the signal, and its subharmonics, against unknowing attackers. We designed an
experiment to get an estimate of an upper bound on detectability by testing whether subjects who were both
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Fig. 15. Histogram of ages and genders for test subjects

from experiments in §4.5.
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Fig. 16. Distribution of detection scores. Random guessing would

on average result in 8 correct songs.

familiar with the experiment and knowledgeable of the signal could di�erentiate between unaltered songs and
songs containing our sonar signal. Our logic is that subjects who have been exposed to the signal, who are not
obscured by barriers, and who have been told that the signal will be present should detect our attack at higher
rates than unknowing victims.

Experimental Setup. Participants were asked to identify which of two clips (played back-to-back in a random
order) was the original unmodi�ed song and which was the clip with our added sonar signal. The volume of the
added sonar signal was half the volume of the song (6 dB lower). Our subjects (17 female, 16 male) spanned ages
between 18 and 45 and were composed of students and sta� from di�erent entities in our organizations as well
as other local individuals. None of the subjects were monetarily compensated. All the experiments reported in
this were given an exemption by our organization’s IRB. Fig. 15 shows a histogram of ages and genders.

We used sixteen di�erent songs chosen from a list of popular songs and selected ones with su�cient amounts
of percussion. We did not use any sophisticated methods for choosing songs or try to maximize our ability to
hide the signal within. The songs are listed in the appendix. Each participant was seated in front of a Beats
Bluetooth speaker [8] with no barrier blocking the speaker. They sat within a 30 degree angle of the speaker’s
face and were allowed to move around as close or far as needed. To give our victims as much power as possible,
we spent the �rst few minutes of each experiment training their ears by playing our signal un-obscured. We also
allowed them to ask for a replay of any clip at any time. Every subject we tested was able to identify the sonar
signal when played without music cover. They reported hearing something similar to static.

Results. We expect our subjects to be able to guess the correct clip with slightly better than 50% accuracy.
Intuitively, this is because with no information, we would expect them to succeed at 50%. However, we have
given our subjects a number of advantages and have not tailored our signal to hide speci�cally within songs.
Further, some subjects are likely to be able to hear frequencies at which we transmit [4], driving up the expected
percentage of correct answers.
Our results fall mostly in line with our hypothesis. Overall, our 33 subjects guessed the correct clip 58% of the

time, for a mean of 9.3 out of 16, a median of 9, and a standard deviation of 3.077.
We also asked each of our subjects to record any pairs for which they were very con�dent they had correctly

identi�ed the signal. Of the 528 total trials, this resulted in 71 claims of high con�dence, of which 60 (85%) were
chosen correctly. These high con�dence claims tended to be of two varieties: 1) Three subjects claimed to be
able to hear the sonar signal clearly in almost every song. Of those, two chose the correct clip in all sixteen
trials. One (Female, 21) was able to hear the high frequency tone in one of two ears. The other (Female, 22) heard
both the clipping and the high frequency sound with ease. The third (Male, 27) guessed incorrectly twice before
�guring out that he could feel the clipping sound if he leaned in directly in front of the speaker. 2) There was
one song for which almost everyone was able to identify the sonar signal due to many short silent periods in
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the song. A third of subjects marked this song with high con�dence and all of those subjects correctly identi�ed
the modi�ed version. Many explicitly mentioned this song after the conclusion of the experiment. If we remove
this song from the statistics, even with the three subjects above included, the detection rate drops to 56%. If we
additionally remove the three subjects who were able to consistently detect readings, we show a detection rate
of under 53%, less than 3% above random guessing (p = 0.12).
Most of our subjects admitted that they guessed randomly on every trial in the experiment despite the lack of

barriers, close proximity, and prior training.

Key Observations. When played at full volume (as we did in our experiments), whether or not we obscured
with music, there was an audible clipping sound due to the sonar signal. However, reducing the volume by just
ten percent removes the clipping, so we would expect even lower detection rates at more modest volumes.

Through-Barrier Follow-Up.To get an upper bound on detectability in through-barrier scenarios, we re-tested
two of the three subjects who claimed to hear the sonar signal in every song in a through-the-wall scenario. We
placed them inside one of the rooms we used for experiments in §4.2 and placed the speaker [31] along the same
wall we used before. Using the exact same songs—which the subjects were able to detect from the unobstructed
trials —we asked them if they could identify the sonar signal. We only collected subjective feedback on their
experience due to a very small sample size and limited subject availability. Though both were able to hear the
unobscured signal through the wall, when mixed with music they admitted to having low con�dence on over
two thirds of pairs. Subjects had the greatest success when lying on the �oor to listen through the space at the
bottom of the door, indicating they were able to identify the signal much better when unobstructed.

Improvements. We believe that a sophisticated attacker could hide the signal during percussive events in the
music on a per-song basis, making it incredibly di�cult for most people to detect. We also randomly generated
our OFDM symbols. An attacker who really wanted to make it undetectable could generate a tone speci�cally
meant to avoid clipping noises (some symbols were better than others) and avoid playing the signal at 100%
volume. Future work could inclue speci�cally analyzing the ratios of music to OFDM symbol and tailor the
volumes to match. However, even simple improvements, such as removing the symbols during silent portions
of songs would reduce detectability based on our responses. We also note that very young children and animals
often hear higher frequencies more clearly, and thus may be able to detect our signal. We are currently placing
these detection mechanisms out of scope.
In summary, for most people, detection was very di�cult despite all the advantages we gave our subjects. We

hypothesize that for adult targets who are not aware of the presence of the signal, detectionwould be exceedingly
unlikely even without a wall or other barrier. Even subjects who can hear the added signal may just think there
is something strange with the speaker or music, like static from the radio.

5 DEFENSES

In this section we discuss some defenses against CovertBand attacks.

(1) Victims could prevent some versions of this attack by soundproo�ng their homes. This may be infeasible for
many people, especially those who want windows that can open to the outside. However, one could soundproof
more private areas of the home and remove speakers and microphones to prevent CovertBand attacks.

(2) Another defense that does not require structural changes involves jamming signals in the victim’s inaudible
range. However, jamming in the 18-20 kHz range may be audible to pets or children and requires playing inaudi-
ble sounds whenever a victim notices music near private areas. Furthermore, an attacker could allay suspicion
by simulating natural sounds, like birds chirping or leaves ru�ing, to do sparse sensing without explicit cover
tra�c (music). It does not always seem feasible to play sounds like this, though playing random noise across
all potential frequencies in the inaudible range in private areas would thwart the attack. We note that although
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background noise such as loud music can thwart eavesdroppers, it will not thwart CovertBand, which �lters out
signal in the audible range.

(3) One could set up a dedicated sensor, like a Raspberry pi with an attached microphone, that listens for trans-
missions at frequencies that exceed a victim’s hearing threshold. A potential defense could combine this with
jamming, sensing when there is a potential external sonar signal and responding by jamming with a known
pseudorandom sequence in a comparable frequency band.

(4) Finally, a simple smartphone application could be built to fool or jam a CovertBand attack. Upon detecting
high frequencies, the app could match the frequency range and signal power and jam with random noise in that
band. We veri�ed the e�ectiveness of such a defense against CovertBand attacks by conducting an experiment
in the bedroom of one of our test homes. With the speaker setup 20 cm outside the wooden door of the bedroom,
a subject walked 1 m towards the door from the inside. At the same time, we set up another smartphone as a
jammer inside the bedroom 2 m from the door and played a random OFDM signal in the same frequency range
of 18-20 khz from the smartphone speaker. We repeated this experiment with the jammer set to play at �ve
di�erent volume levels 6, 8, 10, 12 and 15 (in android phones, the volume level ranges from 0 to 15). For this
particular layout, with the jamming volume set to 8, i.e. 50 % of output power, the tracking error increased to
64 cm. At volumes higher than that, our system could not detect the motion of the subject. We note a possible
extension to this defense: given that CovertBand repeats OFDM symbols, the defending phone app could even
spoof locations and activities by transmitting altered signals at comparable amplitudes during expected intervals.
In this way, a phone left in a particular location or carried by a potential victim could be set up to do detection
and jam/spoof locations.
We note that although these defenses are e�ective to varying degrees and have di�erent drawbacks, they rely

on victims to understand that they may be under attack and take actions to mitigate the harm.

6 RELATED WORK

Acoustic Systems. Acoustic transmissions have been used extensively to localize devices in systems such as
Cricket [49]. [6, 23, 53, 70] demonstrated the feasibility of localizing and determining the direction of device
movement using acoustic transmissions. Unlike prior work, we demonstrate the feasibility of tracking users
without instrumenting them with any devices.

Prior work leverages Doppler shifts from inaudible acoustic transmissions to perform gesture recognition [11,
19]. These designs enable recognition of a pre-de�ned set of gestures in close vicinity to the mobile devices using
the resulting Doppler shifts. [57, 66] achieve �nger-level localization close to a phone; these techniques do not
use active sonar but instead localize the sounds of �ngers tapping on a surface. FingerIO [39] uses active sonar
to track �nger motion around a wearable device, but it is not designed to go through barriers. ApneaApp [38]
detects breathing movements using acoustic transmissions on the phone with a range of one meter but is not
designed to operate through barriers. Medical imaging uses high-frequency (> 1 MHz) ultrasound signals to
perform imaging inside the body [37]. These systems require the acoustic transducer to be placed directly on
the skin’s surface. Sonar imaging has also been used extensively in underwater settings [1, 24, 50].

Many sonar-based approaches address through-wall detection to aid Law Enforcement. However, these ap-
proaches currently require non-standard equipment placed directly against a wall [2, 12, 62]. As such, theywould
be expensive, forego plausible deniability, and could not be leveraged by remote attackers.
A rich body of work focuses on mapping environments using acoustics, for example [16]. However, this work

does not pertain to ours in execution or motivation. In general, it uses �rst order echoes to reconstruct environ-
ments and is not designed to work through barriers or track movement.
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RF-based Designs. Prior work has proposed radio-based solutions for human motion detection [14, 15, 43],
localization [13, 14, 43], and gesture recognition [33, 40, 41]. While promising, none of the RF-based designs
have been demonstrated to work on o�-the-shelf smartphones. Speci�cally, these designs use expensive, ultra-
wideband transceiver and/or specialized hardware that are not available on mobile devices. Further, they typi-
cally requiremultiple antennas separated by half awavelength, which is di�cult on smartphones due to their size
constraints. In particular, [13, 14, 43] use radar hardware that transmits, receives and processes 500MHz to 3 GHz
wideband signals and requires multiple antennas. Researchers have recently proposed ultra-wideband radar de-
signs that operate in the millimeter wave [72] and terahertz bands of the electromagnetic spectrum [20, 54]
where the wavelengths are signi�cantly smaller, permitting multiple antennas to be packed together. Further, it
remains to be seen whether the power and processing required for such wideband signals could be achieved on
smartphone-grade consumer devices.
Recent work also leverages Wi-Fi for human motion detection and gesture recognition. [15] does human

motion detection (walking forward and backward) in through-wall scenarios using 20 MHz wide transmissions
but requires specialized interference cancellation hardware that is not available on commodity devices. [41]
extracts Doppler shifts on RF transmissions to perform gesture recognition in through-wall scenarios. [10] uses
specialized, full-duplex hardware to track �nger strokes using RF signals. [61] extracts the minute changes that
occur on a loudspeaker when playing a song using Doppler e�ects from wireless signals. However, these require
custom hardware processing (e.g., software radios) and do not work with commodity devices.

Wi-Fi gestures [40] can enable recognition of a pre-de�ned set of gestures in the vicinity of an Intel Wi-Fi
chipset. WiDraw [52] tracks arm motion using transmissions from 20-30 other Wi-Fi devices. These systems
work only when the user is close to the Wi-Fi chipset and have not been demonstrated in through-barrier sce-
narios. Work on tomography imaging [63, 71] tracks motion by deploying 10-30 sensors spread throughout the
environment that measure the attenuation between every pair of sensors. WiDir [64] estimates the direction
of motion using Wi-Fi CSI values; however, CSI information is not available on commodity smartphones at the
software level. In contrast, to the best of our knowledge, ours is the �rst work to demonstrate user motion de-
tection or 2D tracking through walls and barriers using just a smartphone and a Bluetooth speaker, opening up
a new attack vector.
Finally, thermal imaging cameras have been designed to interface with smartphones and detect the heat ra-

diated by humans using an infrared sensor array [18, 46]. These cameras can detect changes in heat radiation
patterns and can hence see in the dark or detect pipes within walls. However, they cannot be used to see through
walls or even glass surfaces [55].

Summary of limitations and comparisons to prior work. While there has been extensive work on device
tracking [6, 23, 34, 49, 53, 70], we focus our comparisons on device-free tracking, which does not require the
victim to carry a device. Here, we compare our work to previous work in the device-free localization and tracking
space in both sonar and RF domains. Table 1 lists those works— grouped by approach— and their capabilities
and quantitative results. To be representative of the general approach, we have used the strongest listed results
from each group of citations that are comparable to our work.
Of the compared systems, only CovertBand and the sonar gesture papers [38, 39, 59] can be implemented

on commodity hardware. The gesture-based papers, however, do not focus on full-body detection. The Wi-Fi
solutions exploit existing Wi-Fi infrastructure in a space to do 2D localization. However, they require control
over multiple access points and network devices connected to the localization software in order to function. For
example, to achieve 70 cm accuracy, [56] uses four access points and seven laptops to do localization in the
home, in e�ect creating an 11 antenna array. Further, because they work by looking at disturbances in multiple
wireless streams, they need those devices to get good coverage of the space, and need to know the locations of
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FMCW Software Wi-Fi Gesture Coupled
CovertBand Hardware Radio [35, 45] Sonar Acoustic

[3, 13, 14, 43] [15, 32] [47, 56, 65] [38, 39, 59] [12]
Can be done on COS hardware • • •

Detects moving subjects • • • • • •

Detects stationary subjects • • • • • •

Works in non-LOS • • • • •

Di�erentiates di�erent types of motion • • • •

Enables remote attacks • • •

2D localization • • • • •

Range in ideal circumstances 6 m 20 m 4.9 m 20 m 0.3 m 13.7 m
2D Accuracy 18 cm 10.9 cm 80 cm 70 cm 0.8 cm -

Table 1. Comparing CovertBand constraints and capabilities against similar approaches in RF and Sonar. Cells with • are

considered to meet the criteria. Cells with • satisfy the criteria with constraints. Blank cells do not satisfy the criteria.

each device. They also require training or a background collection phase, which would have to be redone should
any device move.
All compared approaches permit detection of moving subjects (though we have marked the gesture sonar

papers as “satisfy with constraints" because they were not designed for human level tracking). However, Covert-
Band, software radio-based approaches [15, 32], and the DoD solution [12] can detect stationary people only
when there is su�cient movement, i.e., arm movement or twisting motions. The Wi-Fi ecosystem approach [35,
45, 47, 65] and the FMCW approaches [13, 43] can localize static people using either breathing motion or by
monitoring changes in an already mapped environment.
Of the attacks possible on commodity hardware, we mark the Wi-Fi approaches as “satisfy with constraints"

because they require a detailed understanding of the WiFi AP and device placements in the environment and
would require compromising many devices. The very small range of the sonar-based gesture papers have earned
it the same score, though microphones could be utilized solely for eavesdropping purposes.
Most of these localization approaches are fairly particular about the placement of sensing equipment. As

mentioned, the Wi-Fi papers require a detailed understanding of device placements and retraining if devices
move. The DoD approach [12] requires placing the acoustic coupler directly against the wall. CovertBand, the
FMCW papers, and the software radio papers bene�t from directionality, though they do not necessarily need
subjects to be in any particular direction: for RF papers, range will be best when the subject is in the main lobe
of the antenna. Similarly, CovertBand gets best results when subjects are in the forward direction of the speaker
owing to the directional nature of most commodity speakers.
The main constraint of our work is range. Because RF propagates well through materials, it permits a longer

range in through-barrier scenarios. We discuss some methods to increase range in §7. The custom FMCW
builds [43] can increase transmit power to penetrate thick materials and measure up to 20 m. Similarly, be-
cause Wi-Fi approaches use existing Wi-Fi infrastructure, they can in principle work as long as multiple Wi-Fi
streams intersect a location. This depends greatly on the wireless network’s layout. Alternatively, because the
coupled acoustics [12] are placed directly against the wall, they eliminate one of the biggest re�ectors (known
as “the �ash problem"), turning the barrier into a speaker of sorts. This enables for much farther propagation
than is achievable with audio on commodity hardware.
As noted, RF approaches without signi�cant antenna arrays are far less accurate due to the vastly larger

RF wavelengths. CovertBand bene�ts from shorter acoustic wavelengths and speed of sound, permitting accu-
racies similar to those of large antenna arrays in the FMCW approaches [13, 14, 43]. The DoD solution does
only presence detection, not localization, so its accuracy is not listed. In e�ect, the Wi-Fi approach also has a
large array. As mentioned above, To achieve 70 cm accuracy [56] e�ectively uses 11 antennas. The �gures listed
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for the gesture sonar papers come from FingerIO [39], which was designed for tracking �nger movement very
close to the phone. As such, range and accuracy are very small. The best comparison to CovertBand is probably
WiTrack2 [13], which operates at slightly better ranges around 10 m and accuracies around 10.9 cm. We calcu-
lated the accuracy using median x and y errors for the �rst detected subject (likely an underestimate). Again,
however, this approach will not enable remote attacks as it cannot be done on commodity equipment.

7 DISCUSSION AND CONCLUSION

With a proof-of-concept prototype that uses active sonar pulses in the 18-10 kHz range played on commonly
available devices that already exist in many homes, we show that an attacker can glean information about what
a person is doing even when that attacker can neither hear the person nor see his movements. This section
outlines our system’s limitations as well as future research opportunities.
Achieving a Higher Accuracy and Resolution. One could incorporate phase-based algorithms [39, 70] to
achieve a higher resolution than that demonstrated in this paper. One could also use multiple phones or move
the phone along a straight line (potentially in conjunction with the accelerometer) to improve localization and
gesture detection. Moving the phone creates a virtual microphone array by taking measurements at di�erent
points in space. One could then use tradition angle of arrival algorithms to gain both resolution and accuracy
even in the absence of a direct path, enabling the sensing of more subtle motions such as the movement of hands,
arms, or even �ngers.
Achieving a Higher Range. We evaluate CovertBand’s range in a variety of materials, showing that it can
track at up to 6 m without barriers and 3 m in through-wall scenarios. While this in itself is a privacy leakage,
further research is required to achieve better range. For example, we currently place the microphone next to
the speaker to make it easier to administer experiments. This limits our range because the close proximity of
the speaker means we can play only a limited volume before we exceed the microphone’s capabilities. However,
an attacker could use any method to supply audio. Therefore, it is possible to simply position the microphone
far from the speaker, for example, by connecting to it over Bluetooth, allowing the use of signi�cantly higher
volumes to increase range. Additionally, an attacker could use longer OFDM symbols and perform correlation-
based techniques to decode the minute changes due to human motion at larger distances. As discussed in §4.5,
a sophisticated attacker could improve CovertBand by using various clever methods to hide the sonar signal.
Some of the more subtle methods including tailoring each signal to match the song in cadence and distortive
sound. More sophisticated methods may even emulate natural sounds or natural frequencies— simulating a car
driving, truck moving, or a jackhammer— allowing for the use of lower frequency sonar pulses which would
permit much higher volumes and better sound propagation on existing commodity speakers.
Tracking More than Two Subjects. Our current implementation is tested to track up to two concurrent
subjects. In principle, as long as the subjects are at di�erent distances from the microphones, CovertBand can
distinguish more than two subjects. One can further generalize the techniques described in this paper to lever-
age more than two microphones, potentially on multiple devices, to achieve higher angular resolution. If the
microphones are placed on di�erent sides of the subject, this could also help solve the near-far problem, where
one of the subjects is much closer to the microphones and can have much stronger re�ections.
Expanding the Set of Activities Classi�ed. Our paper explores a limited set of activities like pumping arms,
jumping, and supine pelvic tilts, which in certain contexts can expose private activities. However, one could ex-
plore the use of active sonar to achieve imaging of the environment and a much richer set of activity recognition.
At a high level, if we can combine the acoustic re�ections from multiple devices spread across a home, one can
start creating images of the environment with a higher resolution.
Identifying Individual Subjects. Our implementation can distinguish between users in di�erent locations,
but it cannot identify them. Therefore, it cannot continue to track a particular person if two people move to
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the same location and then separate. Similarly, CovertBand can not currently di�erentiate between movement
caused by di�erent objects, such as a dog, a fan, or a human. However, there may be di�erences in the types of
motion caused by each. For example, prior work has demonstrated that gait information can be used to identify
human subjects. In principle, one could extract gait information from the acoustic re�ections and achieve subject
identi�cation. Similar work has been done in the RF space [58, 68]. One could imagine that these techniques could
generalize to classify certain movements as non-human or as generated by a particular object, like a fan.
Generalizing to More Devices CovertBand could also adapt to instances where an attacker has access to only
a single microphone by using multiple speakers. A system with stereo speakers and a single microphone would
still create two ellipses which share a focus at the microphone. For example, a smart television with a single
microphone will almost assuredly have stereo sound; this could be used to track motion in a 2-D plane.
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APPENDIX

Songs Used (See §4.5 for details): American Woman - Lenny Kravitz, Bad - Michael Jackson, Barbara Streisand -
Duck Sauce, Baby Don’t Cry - 2pac, Five Hours - Deorro, What Goes Around Comes Around - Justin Timberlake,
Guerilla Radio - Rage Against The Machine, Ice Ice Baby - Vanilla Ice, O.P.P. - Naughty By Nature, Revolutionary
Warfare - Nas, Rockefeller Skank - Fatboy Slim, Save Me San Francisco - Train, Hey, Soul Sister - Train, Spoils -
Protest the Hero, Uptown Funk - Bruno Mars, What Would You Do? - City High

Speakers Used (See §4.4): JBL [31], Beats [8], Auvio [7], Bose [9], Bose Acoustimass Home Theater [22]

REFERENCES

[1] 2016. VideoRay ROV Sonar, VideoRay Imaging Sonar. (2016). http://www.videoray.com/homepage/options/sonar/
blueview-imaging-sonars.html.

[2] Acoustic Localization 2017. Acoustic Localization through wall/ceiling/�oor. (2017). https://redecomposition.wordpress.com/
acousticvideo/.

[3] Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Durand. 2015. Capturing the human �gure through a wall. ACM Trans.

Graph. 34 (2015), 219:1–219:13.
[4] HO Ahmed, JH Dennis, O Badran, M Ismail, SG Ballal, A Ashoor, and D Jerwood. 2001. High-frequency (10–18 kHz) hearing thresholds:

reliability, and e�ects of age and occupational noise exposure. Occupational Medicine 51, 4 (2001), 245–258.
[5] Amprobe 2016. Amprobe sound power meter. (2016). http://www.amprobe.com/amprobe/usen/environmental-test/sound/amp-sm-10.

htm?PID=73334.
[6] Md Tanvir Islam Aumi, Sidhant Gupta, Mayank Goel, Eric Larson, and Shwetak Patel. 2013. DopLink: Using the Doppler E�ect for

Multi-device Interaction. In UbiComp.
[7] Auvio 2016. Auvio Portable Bluetooth Speaker. (2016). http://www.amazon.com/Portable-Bluetooth-Speaker-PBT1000-Gadgets/dp/

B00D2D46S4.
[8] Beats 2016. Beats Pill. (2016). http://www.beatsbydre.com/beatspill.html.
[9] Bose 2016. Bose Sound Link 2. (2016). https://www.bose.com/products/speakers/wireless_speakers/soundlink_mini_ii.html.
[10] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan. 2015. Tracking Keystrokes Using Wireless Signals. In Proceedings of the 13th

Annual International Conference on Mobile Systems, Applications, and Services.
[11] Ke-Yu Chen, Daniel Ashbrook, Mayank Goel, Sung-Hyuck Lee, and Shwetak Patel. 2014. AirLink: Sharing Files Between Multiple

Devices Using In-air Gestures. In UbiComp.
[12] Ivan Cowie. 2008. Through-Wall Surveillance for Locating Individuals Within Buildings. Technical Report. Time Domain Corporation

and United States of America. Final Scienti�c and Technical Report.
[13] Fadel Ddib, Zachary Kabelac, and Dina Katabi. 2015. Multi-Person Localization via RF Body Re�ections. In NSDI.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 1, Article 87. Publication date:
September 2017.

http://www.videoray.com/homepage/options/sonar/blueview-imaging-sonars.html
http://www.videoray.com/homepage/options/sonar/blueview-imaging-sonars.html
https://redecomposition.wordpress.com/acousticvideo/
https://redecomposition.wordpress.com/acousticvideo/
http://www.amprobe.com/amprobe/usen/environmental-test/sound/amp-sm-10.htm?PID=73334
http://www.amprobe.com/amprobe/usen/environmental-test/sound/amp-sm-10.htm?PID=73334
http://www.amazon.com/Portable-Bluetooth-Speaker-PBT1000-Gadgets/dp/B00D2D46S4
http://www.amazon.com/Portable-Bluetooth-Speaker-PBT1000-Gadgets/dp/B00D2D46S4
http://www.beatsbydre.com/beatspill.html
https://www.bose.com/products/speakers/wireless_speakers/soundlink_mini_ii.html


CovertBand: Activity Information Leakage using Music • 87:23

[14] Fadel Ddib, Zach Kabelac, Dina Katabi, and Robert C Miller. 2014. 3D Tracking via Body Radio Re�ections. In NSDI.
[15] Fadel Ddib and Dina Katabi. 2013. Seeing Through Walls Using WiFi!. In SIGCOMM.
[16] Ivan DokmaniÄĞa, Reza Parhizkara, Andreas Walthera, Yue M. Lub, and Martin Vetterlia. 2013. Acoustic echoes reveal room shape. In

Proceedings of the National Academy of Sciences, Vol. 110. 12186–12191.
[17] Echo 2016. Amazon Echo. (2016). http://www.amazon.com/Amazon-SK705DI-Echo/dp/B00X4WHP5E.
[18] FLIR 2016. FLIR One Thermal Imaging. (2016). http://www.�ir.com/�irone/explore.cfm.
[19] Sidhant Gupta, Daniel Morris, Shwetak Patel, and Desney Tan. 2012. SoundWave: Using the Doppler E�ect to Sense Gestures. In CHI.
[20] Ruonan Han, Yaming Zhang, Youngwan Kim, Dae Yeon Kim, H. Shichijo, E. Afshari, and O. Kenneth. 2012. 280GHz and 860GHz image

sensors using Schottky-barrier diodes in 0.13 um digital CMOS. In ISSCC.
[21] Home 2017. Google Home. (2017). https://madeby.google.com/home/.
[22] Home Theater 2016. Costco: Bose Acoustimass 10 Series V Home Theater Onkyo Bundle. (2016). http://www.costco.com/Bose%C2

%AE-Acoustimass-10-Series-V-Home-Theater-Onkyo-Bundle.product.100147047.html.
[23] Wenchao Huang, Yan Xiong, Xiang-Yang Li, Hao Lin, XuFei Mao, Panlong Yang, and Yunhao Liu. 2014. Shake and walk: Acoustic

direction �nding and �ne-grained indoor localization using smartphones. In INFOCOM.
[24] Humming 2016. Humming Bird Side Imaging. (2016). http://www.humminbird.com/Category/Technology/Side-Imaging/.
[25] Hunted 2016. Hunted: The War Against Gays in Russia. (2016). http://www.hbo.com/documentaries/

hunted-the-war-against-gays-in-russia.
[26] IEEE. [n. d.]. IEEE 802.11g-2003: Further Higher Data Rate Extension in the 2.4 GHz Band. In Standard, 2003.
[27] i�xit 2017. Amazon Echo Teardown. (2017). https://www.i�xit.com/Teardown/Amazon+Echo+Teardown/33953.
[28] Incest 2016. Man killed on suspicion of incest. http://timeso�ndia.indiatimes.com/city/ahmedabad/Man-killed-on-suspicion-of-incest/

articleshow/35271666.cms. (2016).
[29] Interior Door Dimensions 2017. Standard Inside Door Sizes. (2017). http://homeguides.sfgate.com/standard-inside-door-sizes-84805.

html.
[30] Interior Wall Dimensions 2017. Building Requirements for Partition Walls. (2017). http://homeguides.sfgate.com/

building-requirements-partition-walls-62677.html
[31] JBL 2016. JBL Flip 2. (2016). http://www.jbl.com/bluetooth-speakers/JBL+FLIP+II.html.
[32] Kiran Raj Joshi, Dinesh Bharadia, Manikanta Kotaru, and Sachin Katti. 2015. WiDeo: Fine-grained Device-free Motion Tracing using

RF Backscatter. In NSDI.
[33] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. 2014. Bringing Gesture Recognition To All Devices. In NSDI.
[34] Manikanta Kotaru, Kiran Raj Joshi, Dinesh Bharadia, and Sachin Katti. 2015. SpotFi: Decimeter Level Localization UsingWiFi. Computer

Communication Review 45 (2015), 269–282.
[35] Qiang Lin and Yuan Yue. 2015. Device-Free Passive Human Detection Using Wi-Fi Technology: Current State and Future Trend. 2015

IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015

IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom) (2015), 1717–1723.
[36] LTE 2016. An Introduction to LTE, 3GPP LTE Encyclopedia. (2016). https://sites.google.com/site/lteencyclopedia/home.
[37] mobisante 2016. Smartphone Ultrasound: The MobiUS SP1 System. (2016). http://www.mobisante.com/products/product-overview/.
[38] Rajalakshmi Nandakumar, Shyamnath Gollakota, and Nathaneil Watson. 2015. Contactless Sleep Apnea Detection on Smartphones. In

MobiSys.
[39] Rajalakshmi Nandakumar, Vikram Iyer, Shyamnath Gollakota, and Desney Tan. 2016. FingerIO: Fine-Grained Finger Tracking Using

Active Sonar. In CHI.
[40] Rajalakshmi Nandakumar, Bryce Kellogg, and Shyamnath Gollakota. 2014. Wi-Fi Gesture Recognition on Existing Devices. CoRR

abs/1411.5394 (2014).
[41] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-Home Gesture Recognition Using Wireless Signals.

In MOBICOM.
[42] Radar Through Wall 2012. Through-the-Wall Sensors for Law Enforcement. (October 2012). https://www.justnet.org/pdf/

00-WallSensorReport-508.pdf.
[43] T.S. Ralston, G.L. Charvat, and J.E. Peabody. 2010. Real-time through-wall imaging using an ultrawideband multiple-input multiple-

output (MIMO) phased array radar system. In ARRAY.
[44] Franziska Roesner, Tadayoshi Kohno, AlexanderMoshchuk, Bryan Parno, Helen J.Wang, and Crispin Cowan. 2012. User-Driven Access

Control: Rethinking Permission Granting in Modern Operating Systems. 2012 IEEE Symposium on Security and Privacy (2012), 224–238.
[45] Ahmed Saeed, Ahmed E. Kosba, andMoustafa Youssef. 2014. Ichnaea: A Low-Overhead RobustWLANDevice-Free Passive Localization

System. IEEE Journal of Selected Topics in Signal Processing 8 (2014), 5–15.
[46] Seek 2016. Seek Thermal Camera Review: Smartphone thermal vision in a tiny package. (2016). http://www.cnet.com/products/

seek-thermal-camera/.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 1, Article 87. Publication date:
September 2017.

http://www.amazon.com/Amazon-SK705DI-Echo/dp/B00X4WHP5E
http://www.flir.com/flirone/explore.cfm
https://madeby.google.com/home/
http://www.costco.com/Bose%C2%AE-Acoustimass-10-Series-V-Home-Theater-Onkyo-Bundle.product.100147047.html
http://www.costco.com/Bose%C2%AE-Acoustimass-10-Series-V-Home-Theater-Onkyo-Bundle.product.100147047.html
http://www.humminbird.com/Category/Technology/Side-Imaging/
http://www.hbo.com/documentaries/hunted-the-war-against-gays-in-russia
http://www.hbo.com/documentaries/hunted-the-war-against-gays-in-russia
https://www.ifixit.com/Teardown/Amazon+Echo+Teardown/33953
http://timesofindia.indiatimes.com/city/ahmedabad/Man-killed-on-suspicion-of-incest/articleshow/35271666.cms
http://timesofindia.indiatimes.com/city/ahmedabad/Man-killed-on-suspicion-of-incest/articleshow/35271666.cms
http://homeguides.sfgate.com/standard-inside-door-sizes-84805.html
http://homeguides.sfgate.com/standard-inside-door-sizes-84805.html
http://homeguides.sfgate.com/building-requirements-partition-walls-62677.html
http://homeguides.sfgate.com/building-requirements-partition-walls-62677.html
http://www.jbl.com/bluetooth-speakers/JBL+FLIP+II.html
https://sites.google.com/site/lteencyclopedia/home
http://www.mobisante.com/products/product-overview/
https://www.justnet.org/pdf/00-WallSensorReport-508.pdf
https://www.justnet.org/pdf/00-WallSensorReport-508.pdf
http://www.cnet.com/products/seek-thermal-camera/
http://www.cnet.com/products/seek-thermal-camera/


87:24 • Nandakumar, R. et al

[47] Moustafa Seifeldin, Ahmed Saeed, Ahmed E. Kosba, Amr El-Keyi, and Moustafa Youssef. 2013. Nuzzer: A Large-Scale Device-Free
Passive Localization System for Wireless Environments. IEEE Transactions on Mobile Computing 12 (2013), 1321–1334.

[48] Sharp TV 2017. Sharp LC-42SB45UT 42" 1080p LCD TV . (2017). https://www.amazon.com/Sharp-LC-42SB45UT-42-1080p-LCD/dp/
B001F0QS9G.

[49] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Priyantha. 2014. Tracking Moving Devices with the Cricket Location
System. In Mobisys.

[50] sonardyne 2016. Sonardyne: Sound in Depth. (2016). http://www.sonardyne.com/.
[51] Stoned 2015. Afghan woman stoned to death for ’adultery’. (2015). http://www.cnn.com/2015/11/04/asia/

afghanistan-taliban-woman-stoning/.
[52] Li Sun, Souvik Sen, Dimitrios Koutsonikolas, and Kyu-Han Kim. [n. d.]. WiDraw: Enabling Hands-free Drawing in the Air on Com-

modity WiFi Devices. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (MobiCom ’15).
[53] Zheng Sun, Aveek Purohit, Raja Bose, and Pei Zhang. 2013. Spartacus: Spatially-aware Interaction for Mobile Devices Through Energy-

e�cient Audio Sensing. In Mobisys.
[54] H. Tanoto, J. H. Teng, Q. Y. Wu, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, and A. J. Danner. 2013. Retraction: Greatly

enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer. In Nat Photon.
[55] Thermal Fact 2016. Thermal Imaging: Facts versus Fiction. (2016). https://pr-infrared.com/about-thermal-imaging/

thermal-imaging-facts-vs-�ction/.
[56] Ju Wang, Hongbo Jiang, Jie Xiong, Kyle Jamieson, Xiaojiang Chen, Dingyi Fang, and Binbin Xie. 2016. LiFS: low human-e�ort, device-

free localization with �ne-grained subcarrier information. In MobiCom.
[57] Junjue Wang, Kaichen Zhao, Xinyu Zhang, and Chunyi Peng. 2014. Ubiquitous Keyboard for Small Mobile Devices: Harnessing Multi-

path Fading for Fine-grained Keystroke Localization. In MobiSys.
[58] Wei Wang, Alex X. Liu, and Muhammad Shahzad. 2016. Gait recognition using wi� signals. In UbiComp.
[59] Wei Wang, Alex X. Liu, and Ke Sun. 2016. Device-free gesture tracking using acoustic signals. In MobiCom.
[60] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo Liu. 2014. E-eyes: Device-free Location-oriented Activity

Identi�cation Using Fine-grained WiFi Signatures. In MOBICOM.
[61] Teng Wei, Shu Wang, Anfu Zhou, and Xinyu Zhang. 2015. Acoustic Eavesdropping Through Wireless Vibrometry. In Proceedings of

the 21st Annual International Conference on Mobile Computing and Networking.
[62] Norbert Wild. 2001. Ultrasonic through-the-wall surveillance system. Technical Report. International Society for Optics and Photonics.

167–176 pages.
[63] J. Wilson and N. Patwari. 2011. See-Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks. IEEE

Transactions on Mobile Computing (2011).
[64] Dan Wu, Zhang Daqing, Chenren Xu, Yasha Wang, and Hao Wang. 2016. WiDir: walking direction estimation using wireless signals.

In UBICOMP.
[65] Jiang Xiao, Kaishun Wu, Youwen Yi, Lu Wang, and Lionel M. Ni. 2013. Pilot: Passive Device-Free Indoor Localization Using Channel

State Information. 2013 IEEE 33rd International Conference on Distributed Computing Systems (2013), 236–245.
[66] Robert Xiao, Greg Lew, James Marsanico, Divya Hariharan, Scott Hudson, and Chris Harrison. 2014. To�ee: Enabling Ad Hoc, Around-

device Interaction with Acoustic Time-of-arrival Correlation. In MobileHCI.
[67] Jie Xiong and Kyle Jamieson. 2012. Towards �ne-grained radio-based indoor location. In HotMobile.
[68] Qinyi Xu, Yan Chen, BeiBei Wang, and K. J. Ray Liu. 2017. Radio Biometrics: Human Recognition Through a Wall. IEEE Transactions

on Information Forensics and Security 12 (2017), 1141–1155.
[69] Lei Yang, Qiongzheng Lin, Xiangyang Li, Tianci Liu, and Yunhao Liu. 2015. See ThroughWalls with COTS RFID System!. InMOBICOM.
[70] Sangki Yun, Yi-Chao Chen, and Lili Qiu. 2015. Turning a Mobile Device into a Mouse in the Air. In MobiSys.
[71] Y. Zhao and N. Patwari. 2014. Robust Estimators for Variance-Based Device-Free Localization and Tracking. IEEE Transactions on

Mobile Computing (2014).
[72] Yanzi Zhu, Yibo Zhu, Ben Y. Zhao, and Haitao Zheng. 2015. Reusing 60GHz Radios for Mobile Radar Imaging. In Proceedings of the 21st

Annual International Conference on Mobile Computing and Networking (MobiCom ’15).

Received February 2017; revised May 2017; accepted July 2017

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 1, Article 87. Publication date:
September 2017.

https://www.amazon.com/Sharp-LC-42SB45UT-42-1080p-LCD/dp/B001F0QS9G
https://www.amazon.com/Sharp-LC-42SB45UT-42-1080p-LCD/dp/B001F0QS9G
http://www.sonardyne.com/
http://www.cnn.com/2015/11/04/asia/afghanistan-taliban-woman-stoning/
http://www.cnn.com/2015/11/04/asia/afghanistan-taliban-woman-stoning/
https://pr-infrared.com/about-thermal-imaging/thermal-imaging-facts-vs-fiction/
https://pr-infrared.com/about-thermal-imaging/thermal-imaging-facts-vs-fiction/

	Abstract
	1 Introduction
	2 Motivation and Goals
	2.1 Scenarios
	2.2 Goals and Non-goals

	3 CovertBand Design
	3.1 Adversary Model
	3.2 Strong Autocorrelative Signal
	3.3 Signal Generation at the Speaker
	3.4 Computing Distance from Microphone
	3.5 Tracking with Multiple Microphones

	4 Experimental Evaluation
	4.1 Distinguishing Between Activities
	4.2 2D Tracking
	4.3 Evaluating Range through Materials
	4.4 Using Common Existing Hardware
	4.5 Evaluating Covertness of our Design

	5 Defenses
	6 Related Work
	7 Discussion and Conclusion
	References

