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ABSTRACT
Algorithmic audits of industry face recognition models have re-
cently incentivized companies to diversify their data collection
methods, which in turn has reduced error disparities along demo-
graphic lines, such as gender or race. We argue that it is important
to understand exactly how various forms of targeted data collection
mitigate performance disparities in these updated face recognition
models. We propose an empirical framework to assess the impact of
additional dataset collection targeted towards various racial groups.
We apply our framework to three racially-annotated benchmark
datasets using three standard face recognition models. Our findings
empirically validate the notion that the introduction of data from
the demographic group with the initially-lowest performance im-
proves performance on that group significantly more than adding
from other groups. We also observe that in all settings, the intro-
duction of data from a previously omitted group does not harm the
performance of other groups. Furthermore, investigation of feature
embeddings reveals that performance increases are associated with
a larger separation among images of different identities. Despite
the commonalities we observe across datasets, we also find key dif-
ferences: for example, in one dataset, training on one racial group
generalizes well across all groups. These differences speak to the
criticality of re-applying empirical evaluation methods, such as the
methods in this work, when introducing new datasets or models.
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1 INTRODUCTION
In the last decade, extensive research studies have demonstrated the
prevalence of demographic biases in machine learning systems, due
to a lack of representation in training datasets [29]. Most notably,
in the domain of face analysis, standard face datasets include very
few images of individuals with darker skin types, and researchers
have determined that commercial gender classification models have
much higher error rates for women with darker skin types [8].
However, facial recognition continues to be used widely: from
identity verification in mobile devices to public surveillance in
certain countries, many people interact with these systems in their
day-to-day lives [22]. While some argue for the complete removal of
facial recognition techologies [7], the use of these technologies may
not disappear. As such, opponents of face recognition along with
the developers of these systems may both benefit from a careful
analysis of how the demographic makeup of training datasets may
impact a model’s performance on various demographic groups.

In order to remedy past data representation bias, researchers
have developed several new benchmark face recognition datasets
that are more balanced along demographic attributes such as gender
or race [38, 44].While these balanced datasets have improvedmodel
performance, accuracy disparities still persist [45]. For example,
the optimal allocation of training data by demographic group is
not always the equally-balanced allocation: Gwilliam et al. [19]
find that a balanced training set (with equal number of samples
per racial group) obtains a higher accuracy variance across groups
but the same overall accuracy compared to another training data
allocation.

Additionally, curating new datasets requires time and resources,
and can intrude upon the subpopulation being studied [33]. It is
also incredibly time-consuming to train models on all possible al-
locations of demographic groups in order to find some “optimal”
allocation. Rather than searching for the best subgroup allocation
for a training set of a fixed size, companies may prefer a greedy
solution— a solution in which new data is added in an add-only
manner. Hence, we focus on the following goal: to examine addi-
tional data collection and its impacts on the performance of various
racial groups.

Consider the following scenario: an entity (e.g., a company or a
group of researchers) trains a face recognition model using some
initial training dataset which lacks data from some particular racial
group. Upon evaluation on held-out test data or due to an external
bias audit, the company realizes their performance lags on that
group, and now wishes to collect more data from the omitted group.
They have the budget to collect only a fixed number of samples and
have limited resources to train additional models (and, perhaps, can
only train one other model). This process closely follows several
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corporations’ past responses detailed in Raji and Buolamwini [35]
and allows us to pose these research questions:

(1) How does additional data from the underrepresented group
change the test performance for that particular group, as
well as the test performance for other groups?

(2) How does data collection targeted towards the group with
the initially-lowest performance impact that group’s test
performance and overall group differences, in comparison
to introducing data from other groups?

(3) Are our results consistent across racial groups, datasets, and
models?

To answer these questions, we develop an empirical framework
to evaluate the performance impact of data augmentation by de-
mographic subgroup. For our framework and analyses, we focus
on one-to-one facial recognition: given two images of faces, a one-
to-one facial recognition system is designed to determine whether
or not those two images are of the same person. We implement
this framework for three racially-annotated datasets (BFW [38],
BUPT [43, 44], and VMER [16]) and three state-of-the-art face recog-
nition models (SE ResNet [9], CenterLoss [46], and SphereFace [27]).
We summarize our main empirical findings below:

(1) The introduction of samples from any racial group X im-
proves the performance for every group that we tested. (Dif-
ferent datasets use different terms. Using the terms in the
source datasets, e.g., for BUPT [43, 44], we considered images
labeled as African, Asian, Caucasian, or Indian.)

(2) The addition of data from the lowest-performing group im-
proves that group’s performance the most and closes perfor-
mance gaps across racial groups.

(3) Increasing data from the highest-performing group Xwidens
performance disparities, regardless of whether the initial
training dataset contained images from group X, a specific
counter to the notion that more data or more representation
reduces discrimination.

(4) The above findings are consistent across all datasets and
models we examined, while some findings are different across
different datasets.

That some findings are not generalizable from the analysis of
only a single dataset — speaks to the criticality of assessing various
datasets. While the academic benchmark datasets we examine do
not reach the commercial scale, such as Clearview AI’s training data
of 30 billion images [26], we find that our framework is still useful
to understand how various datasets behave and how pre-conceived
assumptions of additional representation do not always hold.

Thus, based on our findings, we encourage future work that in-
troduces new datasets to re-apply our methodology (and others) as
benchmarks to evaluate those datasets with known face recognition
models. To facilitate this process, we publish our source code online
at https://github.com/hongrachel/representation-disparities.

2 BACKGROUND AND RELATEDWORK
In computer vision, researchers have extensively examined data
representation biases and how models trained on datasets unrepre-
sentative of the general population perform poorly on underrepre-
sented groups.

For example, Pahl et al. [32] annotate several facial expression
datasets and observe that these datasets skew heavily towards
younger Euro-American subjects. In addition, Wilson et al. [47]
find that a standard pedestrian detection dataset contains more data
from individuals with lighter skin tones, and resultingmodels obtain
higher accuracy for detecting individuals with lighter skin tones.
Albiero et al. [2] investigate the source of gender bias in standard
face recognition systems and determine that the test accuracy gap
is attributed to models mapping images of women closer together.

Shortly after the publication of Buolamwini and Gebru [8], which
demonstrated how several commercial face recognition systems
discriminate by skin tone, these corporations updated their face
recognition APIs to mitigate performance disparities. In their re-
leased statements, they explicitly cited new dataset collection efforts
in order to ensure diverse representation in their training sets [35].
These newly updated models significantly decreased (previously
high) error rates for individuals with darker skin and attributed
their improvement to the targeted collection of additonal data along
the lines of skin tone, gender, and age [37]. Diverse data collection
is a promising method to address bias [23], but there has been lit-
tle work investigating cases when the new data is composed of
some explicitly-chosen demographic group that was previously
underrepresented or omitted in the initial training set.

As a result, the lack of diverse data has spurred the creation of
balanced training datasets, which have shown marked improve-
ments in classification accuracy rates for previously underrepre-
sented groups, even when trained with the same model architecture.
Specifically, much recent work has focused on the collection of di-
verse face image datasets, along dimensions such as race, gender,
age, lighting, pose, and expression, in order to allow models to
generalize well on real-world variations [9, 24, 28]. These datasets
have also been used to evaluate proposed face recognition models
that reduce bias, which incorporate novel loss functions or model
architectures. For instance, Serna et al. [41] show that a sensitive
triplet loss function improves both accuracy and fairness across
racial groups.

Recently, several studies examine how demographic subgroup
distribution in training plays a role in accuracy disparities. In the
case of gender bias in face recognition, Albiero et al. [3] observe that
training datasets equally-balanced by gender lowers the prediction
accuracy gap between groups, but the equally-balanced allocation
does not minimize the accuracy gap. Similarly, Gwilliam et al. [19]
vary the racial group makeup of the training set and also observe
that the equally-balanced allocation is not the most optimal or fair
one. Our work builds off their research and extends this investiga-
tion by analyzing the impact of adding data from different racial
group distributions, rather than holding the training size fixed.

There are also several recent works in fairness literature that
formally explore data collection processes. Most notably, Rolf et al.
[39] form a theoretical framework to model subgroup allocations in
training for a fixed training set size. They find that dataset compo-
sition impacts performance more than upweighting samples from
minority groups. Chen et al. [10] provide a procedure to estimate the
value of collecting additional samples and empirically validate the
notion that additional data collection can mitigate discrimination
without an accuracy tradeoff. Their work focuses on introducing
data drawn from the same sampling distribution rather than data
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collection targeted by demographic group. Abernethy et al. [1]
propose several adaptive sampling algorithms for achieving min-
max fairness, which minimizes the loss of the group that is worst
off, to update the model over a series of iterations. Finally, Gong
et al. [15] survey several definitions of input diversity in training
data, through various sampling processes that upweight diverse
batches in training. Our focus complements these works by assess-
ing the empirical impact of targeted data collection on performance
inequities.

3 METHODOLOGY
3.1 Problem setup
We now describe our task setting; we focus on face verification, or
1-to-1 face-matching, due to its ability to handle identities outside
of the training distribution. We follow the standard face recognition
training process in deep learning literature [42]: given a dataset D
with face images {𝑥} and identity labels {𝑦}, we train a model that
takes an image as input and outputs a vector corresponding to the
image’s predicted identity. This training minimizes the empirical
risk with respect to a particular loss function. The model is then
used to perform inference (or prediction) by removing the final
output layer. The result is a model that takes an image as input
and produces a feature embedding with some fixed size established
during training. This output feature embedding can be thought of
as a lower-dimensional representation of an individual face image.

We evaluate the performance of a given model on the task of face
verification: given two images (𝑥, 𝑥 ′), 𝑥 ≠ 𝑥 ′, do the two images
belong to the same identity or not? This evaluation is performed
on pairs of images from a held-out test set, where the images and
identities beloging to the test set are disjoint from those in the
training set.

To convert the model from one which produces embeddings
to one which predicts whether pairs of images are of the same
identity, we do the following. For a particularly fixed threshold 𝑡 ,
the face verification system predicts that the test pair are of the
same individual if the cosine similarity score of the two images’
feature embeddings is at least 𝑡 . As such, ground truth labels of a
pair are separated into a genuine pair (label 1) or an impostor pair
(label 0), following the terminology in existing literature on face
verification [11]. In this manner, the verification process evaluates
the differences between the genuine and impostor score distribu-
tions. This methodology does not explicitly assume that the test
and training data collection processes are the same or even similar,
though conceptual frameworks often assume the two are the same.

3.2 Experiment design
Given a model trained on a dataset D, we study a method of data
collection motivated by our scenario of interest, where a face recog-
nition system developer might respond to bias audits by collecting
more training data from some target demographic group. As such,
we focus on benchmark datasets with each image belonging to
some racial group.

We define our method, single-group augmentation, as the incre-
mental addition of samples from a fixed racial group to some initial
training set consisting of a single racial group. This enables us to
compare the performance of re-trained models by adding data from

various groups, in order to determine whether the model improves
more by training on an unseen group versus the initial group. We
give the formal definition of single-group augmentation below.

We stress that we are not arguing that this data augmentation
method should be used in practice, nor does this precisely say that a
facial recognition system might only train on a single demographic
group in practice. Rather, our experimental methodology distills
the core essence of a targeted data collection approach, such that
the impacts of data augmentation can be isolated and empirically
analyzed.

3.2.1 Procedure for single-group augmentation. We train our mod-
els across a variety of training set configurations to understand
how the group-specific performance of a model changes with the
introduction of data targeted towards a specific demographic group.
We follow a very similar setup and build off of the codebase from
Gwilliam et al. [19]. Unlike their work, however, we do not main-
tain a fixed size training set and change proportions, but instead
augment the dataset with additional data, and we empirically ana-
lyze three datasets rather than one. The training configurations are
defined as follows:

For each group 𝐴, the initial training configuration consists of
images from 𝑁 randomly-chosen identities from group 𝐴, where 𝑁
is fixed dependent on the size of the benchmark datasetD. Here we
refer to group 𝐴 as the initial group. To obtain subsequent training
configurations, we iteratively augment the initial training config-
uration with 𝑛 randomly-sampled identities from another group
𝐵, where 𝑛 is also decided based on D. We refer to group 𝐵 as the
target group. As an example, an initial training configuration may
consist of images from 200 identities from the African-American
group, and we incrementally add images from 50 identities from the
East-Asian group to obtain the rest of the training configurations.

Note that in some settings, the initial group𝐴 may be equivalent
to the target group𝐵. This enables our empirical analysis to compare
continually adding data from the same group to continually adding
the same amount of data from a previously unrepresented group. In
other words, we can assess the impact of increasing demographic
representation in the training data.

The design of these training sets replicates the motivating sce-
nario of training data collection targeted on a particular demo-
graphic group in a simple setting of moving from one group in
training to two. This empirical framework therefore simulates an
existing face recognition system’s possible response to bias audits.

3.3 Datasets
We conduct experiments on three existing racially-annotated datasets
that we present in order of dataset size: BUPT [43, 44] (the largest
dataset), VMER [16], and BFW [38], all of which have been used
in face recognition model evaluations of racial bias [14, 19]. Other
datasets we considered lacked sufficient images per subject to ad-
equately train a model [34, 40], or were designed for other face-
related analysis tasks [24]. Table 1 gives a breakdown of the groups
in each dataset we examine. We observe that each dataset names
racial categories differently from each other, and some refer to
ethnicity rather than race [25]. In our results, we refer to the termi-
nology used in the evaluated dataset in italics, but also recognize
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Subjects Images Test
Dataset Categories per per subjects per

category subject category

BFW Asian, Black, 180 25 20
[38] Indian, White

BUPT African, Asian, 5000 18 3000
/ RFW Caucasian, Indian
[43, 44]

VMER African American, 400 108 24
[16] East Asian,

Caucasian Latin,
Asian Indian

Table 1: A summary composition of datasets in training and
test folds, subsampled to ensure equal number of images
per subject. Here, a subject refers to an identity, of which
there are some number of images. It is assumed each subject
belongs to exactly one category.

there are both overlaps and key distinctions between each dataset’s
group definitions, which is discussed further in Section 5.3.

To form the test image pairs from a given test set, we follow
standard methodology as Wang et al. [44]. In every dataset, we
generate all possible pairs of distinct test images (𝑥, 𝑥 ′), 𝑥 ≠ 𝑥 ′

from the same group, assigning label 1 if the images share the same
identity and 0 otherwise.

BUPT-BalancedFace (BUPT) contains a total of 1.3 million
images from 28,000 individuals and is equally broken down into
4 demographic groups: African, Asian, Caucasian, and Indian [43].
Images are collected from the benchmarkMS-Celeb-1M dataset [18]
and augmented via Google search for additional celebrities in partic-
ular categories. The subjects are categorized by racial group using
their nationality as a proxy, as well as via the Face++ API. Using
nationality and race prediction are not robust methods for race
categorization [25]; however, this is one of the only large-scale face
datasets to consist of at least 7 thousand subjects per group. To
ensure at least 18 images per subject, we constrict to 5 thousand
subjects per group, which matches the setup in Gwilliam et al. [19].

The accompanying test dataset Racial Faces in the Wild (RFW)
consists of fifty million test pairs and uses the same racial annota-
tion method as BUPT. RFW is also fromMS-Celeb-1M [18], but does
not have any overlap with any subject from BUPT. For simplicity,
we refer to the BUPT training and RFW test dataset as “BUPT.“

VGGFace2 Mivia Ethnicity Recognition (VMER) dataset
adds group annotations (African American, Asian Indian, Caucasian
Latin, and East Asian) to the entire VGGFace2 training and test
sets, which is one of the largest academic face recognition datasets
[16]. VMER uses manual annotations across three million images
to categorize subjects into four racial groups. Greco et al. [16]
intentionally choose this annotation procedure rather than pre-
trained models, in response to critiques that ethnicity classifiers
fail to generalize well on racially-diverse datasets [24]. This dataset
also consists of many more images per subject. To conduct our
experiments with equal training set size per group, we randomly

sample 440 individuals per group with 108 images per individual,
which allows us to evaluate models trained on significantly more
images for a given subject.

Balanced Faces in the Wild (BFW) is another dataset with an
equal number of images and subjects from each racial category, but
is also balanced by subgroups Male and Female within each racial
group [38]. Each category consists of five thousand images from
two hundred subjects with an equal number of faces per subject.
BFW also samples from VGGFace2 [9], but instead uses pre-trained
ethnicity classifiers to categorize subjects into the following groups:
Asian, Black, Indian, andWhite. As with BUPT, pre-trained ethnicity
classifiers, even if well-designed, may have inaccuracies [25]. To
form the test set, we randomly select a hold-out fold of twenty
individuals per group. Since the test sets for BUPT and VMER are
fixed, for consistency of analysis, we similarly create a static test
set for BFW as well.

3.4 Models
We perform these experiments on three state-of-the-art face verifi-
cation architectures defined below. In each experiment, we train
a model from scratch on the training configurations defined in
Section 3.2.1. The models each use cross-entropy loss as the base
classification loss function, stochastic gradient descent as the opti-
mization function, and train for 50 epochs. We define the explicit
hyperparameters used for each model in Appendix A.5.

The SE-ResNet model uses ResNet-50, a standard convolutional
neural network with 50 layers [20], as a backbone and attaches
Squeeze-and-Excitation blocks, which dynamically recalibrate chan-
nel wise feature responses [21]. Cao et al. [9] implement SE-ResNet
to train on their proposed VGGFace2 dataset to demonstrate their
improved performance in comparison to prior benchmarks. The
CenterLossmodel learns a center vector for each identity, in order
to incorporate a loss penalty between feature embeddings and the
identity’s center, along with the base cross entropy loss function
[46]. Thisminimizes thewithin-identity feature embedding distance
and separates identities within the feature space. The SphereFace
model introduces a multiplicative angular margin to the model’s
output, which maximizes the variance between feature embeddings
of different identities.

3.5 Evaluation
To empirically measure model performance, we consider several
evaluation metrics and in this section briefly describe the tradeoffs
between them.

3.5.1 Global threshold. In face verification tasks, the model once
trained depends on some chosen threshold to form binary pre-
dictions. We find, however, that the model evaluation of a global
threshold does not sufficiently capture amodel’s behavior. Robinson
et al. [38] demonstrate that using a singular threshold across de-
mographic groups results in accuracy gaps, and that group-specific
thresholds can strictly improve test accuracy across groups. In addi-
tion, many commercial face recognition systems, such as Amazon’s
Rekognition, allow users to set thresholds according to some ap-
plication objective, i.e., to maintain a certain false positive rate [5].
Therefore, it is important to examine the model performance across
a range of thresholds, rather than evaluation of a single one.
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Figure 1: Initial exploration of impact of threshold on test
accuracy, for an example initial group, target group pair on
the BUPT dataset and SE-ResNet model. Color denotes size
of target group, while initial group stays fixed at 2000.

Previous work on demographic group allocation in training
have studied the accuracy rates obtained from a particular thresh-
old [3, 19]. In our initial exploration of single-group augmentation,
for every test group we plot test accuracy against threshold values
across each training configuration, as shown in Figure 1. While we
find trends in increasing the size of the target group, it is difficult to
capture how test accuracy increases, given that the optimal thresh-
old changes at each line. If we hope to understand the different
forms of single-group augmentation, we find that distilling the ROC
curve to a single metric enables comparisons among many training
configurations.

3.5.2 Overall accuracy. Regardless of the threshold selection prob-
lem, we also find that studying overall accuracy has its limitations:
there are many cases when equalization of accuracy rates by group
still allows for disparate treatment [13]. For example, a face ver-
ification system may obtain a high false positive rate and a low
false negative rate for one group, but still maintain equal accuracy
across all groups. If this system is used for biometric authentication,
this disparity in false positive rates could result in disproportionate
security vulnerabilities for one demographic group. As a result, in
our evaluation, we avoid studying accuracy as a comparison metric.
Moreover, this prompts us to also examine the impact of targeted
data collection on the group with the lowest performance, instead
of using equal performance as the primary objective.

3.5.3 Area under the curve. As a consequence of the above disad-
vantages, we shift our attention to the area under the curve (AUC)
calculated by the receiver operating characteristic curve (ROC)
curve, an evaluation metric that has been used in prior face recog-
nition literature [6]. The AUC is the probability that a positive test
pair has a higher similarity score than a negative test pair, which
enables our analysis to capture the distance distributions of feature
embeddings, rather than merely considering the accuracy (or false
positive or negative rates) of a binary classification task for a fixed
threshold.

We note that AUC is a single numerical value which describes the
functional relationship between true positives and false positives
of a classification model derived from thresholding a regression
model. It therefore is an incomplete description of the ROC curve,
and two regression models might have equal AUC values but very
different behavior in terms of this tradeoff.

3.6 Broader contexts and limitations
In addition to the previously-mentioned assumptions of demo-
graphic group fairness, we find certain limitations to the ability
to generalize beyond our datasets, which are clarified below (in
Section 5.2 we discuss how the limited ability to generalize from
our results to other datasets is a strength for some of our other
conclusions). In this section, we also situate our methodology in
relation to the broader context of machine learning research.

3.6.1 Group fairness. In our work, we examine the task of face ver-
ification from a group fairness lens because we find that the main
demographic information attached to standard face benchmarks is
group membership. The datasets we study partition identities into
only four racial groups, which excludes and merges many racial
categories. Moreover, each dataset implicitly assumes that each
individual belongs to a single category. This inherently ignores
individuals with multi-racial identities, and the lack of additional
demographic information may prevent analysis of intersectional
differences along other dimensions, such as gender or age. We be-
lieve that this is an important topic for future study, especially as
adding a single training sample can often increase representation
across multiple demographic groups. At the same time, it is still
beneficial to understand existing differences in performance among
these groups, given the limitations of real-world data containing
demographic information in the first place. In Section 5.3, we elab-
orate upon the implications of group-level annotations based on
our results.

3.6.2 Image variations by racial group. Specific to the BUPT dataset,
prior research has shown that the average face-to-image ratio is
much lower for images from the Caucasian and African groups [19].
We obtain similar findings even when we control for face-to-image
ratios, but this discrepancy indicates that other image variations by
racial group, such as lighting or pose, may factor into our results.
Previous work on performance gaps in group-balanced datasets has
extrapolated that learning for a particular demographic is inher-
ently more difficult [44]. We caution against making the broad claim
that performance is capped for a certain sociodemographic group,
as image quality and inter-group image variations can often also ex-
plain these gaps. For instance, many face image datasets are scraped
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from celebrity photographs online; as a result, researchers have
pointed out distinct differences of celebrity photography by race
or gender, such as higher proportions of women wearing makeup
than men, which may in turn affect performance disparities by
demographic group [2, 4].

3.6.3 Underrepresented versus unrepresented groups. We also high-
light that the single-group augmentation framework narrows the
problem space we consider: from our motivation of racial groups
that are underrepresented in training, to our experiments on racial
groups completely unrepresented in training. We make this simplifi-
cation intentionally to isolate the impact of augmenting one group
with another group—underrepresentation on the extreme end.

The specific task of evaluating a model on an unseen group
relates to domain generalization, a well-studied subfield of machine
learning. While domain generalization techniques can be applied
to this problem, Gulrajani and Lopez-Paz [17] show that model
selection may not be straightforward when evaluated on a variety
of datasets; this is an important area for further study. As a result,
we recognize that our study examines only one piece of the puzzle:
dataset representation bias does not encapsulate demographic bias
across the entire face recognition system. Due to the variations in
image quality by demographic group as described above, model
interventionsmay be needed to ensure some chosen fairness criteria
or generalization property. In this work though, we center our focus
on the racial composition of training datasets, instead of a specific
machine learning algorithm.

3.6.4 Generalizability of datasets. Finally, the dataset-specific ar-
tifacts highlight the difficulty of making generalizations of our
observed trends to apply to all future forms of data collection. We
limit our study to face recognition models and benchmark datasets
available for academic study. If we hope to understand how cor-
porations should best respond to bias audits, it is unclear whether
our findings extend to systems training on datasets with sizes at a
much larger magnitude. Moreover, we recognize that commercial
face recognition systems may rely on vast pre-trained models that
are not publicly available. We therefore acknowledge that our work
may not align with the training procedures and large-scale datasets
that industry face recognition systems may follow— this prompts
the need for the release of commercial datasets and practices to the
research community.

However, the fact that differences between datasets exist is itself
an important contribution, especially as BUPT, BFW, and VMER
continue to be used as benchmarks in face recognition literature
to evaluate racial bias [14, 19]. In Section 5.2, we explore how our
methodology may inform how future work can use these bench-
mark datasets, in addition to new ones.

4 RESULTS
We now present some representative findings in the figures below.
For brevity, we show results for the SE-ResNet model, though the
relative comparisons and general trends are consistent for Center-
Loss and SphereFace. In general, we focus on the BUPT dataset to
demonstrate key results due to its large size, but clarify otherwise
when there are distinct dataset differences. For more details and
accompanying results, please refer to Appendix A.

4.1 Differences among datasets
First, we observe in Figure 2 that the group-specific performance
impact of single-group augmentation differs across datasets. Train-
ing on data from some racial group may not impact performance
in the same manner across various datasets. As such, evaluation of
a single benchmark dataset may not be sufficient; we elaborate on
this further in Section 5.2.

4.1.1 VMER: Increasing representation improves AUC of unrepre-
sented group more than addition from other groups. In Figure 2a,
we show the impact of single-group augmentation on the AUC of
each test group. We find that setting the target group as the test
group results in the highest growth in AUC for the ranges in train-
ing size that we examine. In other words, if we were to update a
face verification model by introducing samples from a single racial
group, in VMER, the best choice to improve group 𝑋 ’s performance
is to add more data from group 𝑋 .

The same relative comparisons can be made when broken down
by initial training configuration (see Appendix A.1 for details).
Given an initial training set without group 𝑋 , in the VMER dataset,
the re-trained model’s performance on unrepresented group 𝑋

increases the most when increasing representation from group 𝑋
in training. Even if the model initially trains on 𝑋 , we find that
continuing to augment the training set with samples from group 𝑋
outperforms augmentation from any other group.

This case illustrates an example where out of all forms of single-
group augmentation, improving demographic representation in
training datasets increases the unrepresented group’s performance
the most. This matches existing intuition behind the development
of training datasets that are balanced along demographics or more
diverse in face composition, in response to prior face datasets that
lacked representation along these dimensions [9, 24, 28].

4.1.2 BUPT: Training on some racial groups generalizes across all
groups more than the addition of unrepresented groups. Figure 2b
demonstrates the change in AUC for each group in the BUPT dataset.
We observe that introducing data from the African and Caucasian
groups improves the AUC for all groups regardless of the initial
training configuration (Appendix A.1). Introducing data from the
Asian and Indian groups does improve group-specific performance,
but not as much as adding from the other groups, even when eval-
uated on the Asian and Indian test groups.

Compared to VMER, this result demonstrates that in the BUPT
dataset, data fromAfrican andCaucasian groups generalizes strongly
across all four groups. Gwilliam et al. [19] also confirm this trend
since they find that when training on data from a single group,
training on data from the African and Caucasian groups obtains the
highest test accuracy for each group. A potential explanation may
be that a significant proportion of images from Asian and Indian
groups in training have much larger face-to-image ratios than in
test [19]. We show that the same relative comparisons hold even
when controlling for face-to-image ratios in Appendix A.1.1, but
note that the shift from training to test sets might look different
between demographic groups along other relevant dimensions.

Figure 2b shows that the addition of data from an unrepresented
group is not always the best way to improve the performance for
that same unrepresented group, unlike our findings in Figure 2a.
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(a) VMER dataset (b) BUPT dataset

Figure 2: AUC for each test group under single-group augmentation averaged across all initial training configurations for both
VMER and BUPT datasets. The solid line continually adds data matching the test group, and the dashed line continually adds
data from a different group. Evaluated on SE-ResNet model across 5 trials with consistent results across models (per dataset).

These findings complicate the idea that the most data-efficient way
to improve performance for a population 𝑋 (excluded in training)
is to increase representation of population 𝑋 in the training set.

4.2 Similarities across datasets
In addition to the differences in results across datasets we described
above, our analysis methodology revealed several trends which
hold across the three datasets and three models. We highlight these
trends and assess whether our analyses confirm the intuitions and
findings in prior literature.

4.2.1 AUC on all test groups increases with additional training data,
regardless of the group being introduced. In Figures 2a and 2b, we
observe that with any form of data addition, the AUC values across
all test groups increase regardless of the group being introduced
and the initial training group. We find the same trend for every
dataset-model pair single-group augmentation experiment we per-
form. Particularly, in our experiments, a model that retrains on
additional training data from some target group does not sacri-
fice performance on the initial group in order to account for the
target group. This demonstrates the notion that large neural net-
works have extensive capacity to capture arbitrarily complex func-
tions [48], which also applies to new samples from distinct demo-
graphic groups.

4.2.2 No performance tradeoff among groups: Introducing data from
racial groups distinct from the initial group does not harm the initial
group. In various studied settings with group fairness objectives,
researchers have demonstrated the existence of fairness-accuracy
tradeoffs, especially in low-parametrized models, such as linear
regression [12]. In our face verification experiments, we find that
the introduction of data from groups distinct from the initial group

does not harm the initial group; instead, the retrained model strictly
increases performance across all groups.

Figure 3: AUC of each test group under fixed-size data addi-
tions versus the size of the initial training set, composed of
samples matching the test group. The solid line represents
adding 200 identities from the test group, and the points
represent adding 200 identities from a different group. Note
that AUC increases as the initial training set size increases
along the x-axis. Evaluated on VMER dataset with SE-ResNet
model with consistent results across models.

4.2.3 Marginal performance of fixed-size data additions from the
test group versus data additions from other groups shrinks as initial
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training set grows. In Figure 3, we focus on the addition of a fixed
number of samples from any group, instead of the continual in-
troduction of samples from a single group as illustrated in prior
figures. This form of analysis thus answers the following question:
given an initial training set on group 𝑋 , how does performance on
group 𝑋 differ between adding 𝑁 samples from group 𝑋 versus
from another group?

In the VMER dataset, Figure 2a shows that adding data from
the same group as test improves the test group’s performance the
most, in comparison to other forms of single-group augmentation.
As such, the AUC value from adding from the test group (solid
line) is higher than adding from another group, across most initial
training set sizes. However, we observe that as the initial training
set size gets large, the marginal benefit of introducing data from
the test group compared to another group shrinks. We find this
phenomenon across other models and in the BFW dataset as well.
Due to the size limitations of the benchmark datasets we examined,
it is unclear if adding data from a non-test group will ever obtain a
higher performance than adding from the test group and requires
further study.

4.3 Performance disparities for single-group
augmentation

In Figure 4, we study different measures of performance disparity
among racial groups with single-group augmentation.

4.3.1 Examination of group AUC disparities reveals examples that
additional data can widen performance gaps. Figure 4a uses widest
AUC disparity as a metric for unfairness via single-group augmen-
tation. While equalizing performance across groups is not always
desirable due to cases of sacrificing performance to satisfy parity,
we have observed no decrease in performance with any form of
additional data. As such, we still find it valuable to understand how
performance gaps may change as a result of incorporating data
from some racial group.

In Figure 4a, introducing data from the African group lowers
the AUC disparity. This is driven by an increase in the African
group’s performance, which was originally the lowest. On the other
hand, introducing data from the Caucasian group increases the
test performance gap. This is driven by an increase in the Cau-
casian group’s performance, which was originally the highest, even
without inclusion of the Caucasian group in the initial training
configuration.

4.3.2 Results contradict principle that more data reduces demo-
graphic bias. Figure 4a thus illustrates how data collection can
generate various outcomes in performance disparities, and we find
similar examples in other datasets (Appendix A.2). Moreover, the
finding that adding data from an unrepresented group, such as the
Caucasian group, widens performance gaps is a clear counter to the
idea that more data mitigates discrimination as discussed in Chen
et al. [10]. Their work proves that collecting more data from the
population distribution decreases the population loss gap between
groups. In our work, we consider data collection methods that may
not match the test distribution, whichmay be realistic in cases when
the test distribution is unknown. As a result, we demonstrate how

the introduction of data from a group unrepresented in training
may worsen performance disparities.

4.3.3 Adding data from the group with the initially-lowest AUC
increases the AUC for that group significantly more than adding
data from other groups. Figure 4b distinguishes different forms
of single-group augmentation based on whether the target data
is from the group that originally obtained the lowest AUC value.
Across all models, datasets, and when separated by initial training
configurations (Appendix A.3), we find that if the objective is to
most improve the test performance for the group with the lowest
AUC in the initial training set, adding data from that group increases
performance significantly more than adding data from any other
group.

4.3.4 Results connect to prior theoretical work on sampling from
group with lowest performance. This validates prior theoretical anal-
ysis on active learning in group fairness. Abernethy et al. [1] find
that updating the model with the samples from the current worst-
off group converges to a min-max fairness solution, or minimizes
the maximum classification loss across groups. In this manner, sup-
pose a developer wishes to update their face recognition system to
address concerns about a demographic group on which the model
classifies poorly. Then targeted data collection on that group may
improve the retrained model’s performance, even if that group was
already included in the initial training set.

4.3.5 Lowest-performing group does not equal the least-represented
group. Note the distinction between a group with the lowest per-
formance and a group that is unrepresented in training. Although
Figure 2b shows that data augmentation from some omitted group
𝑋 may not significantly improve that group’s AUC, this is still con-
sistent with Figure 4b since group 𝑋 did not have the lowest test
performance in the initial training configuration.

4.4 Feature embedding similarity score
distribution

In order to explain the increase in AUC values from single-group
augmentation, we investigate a model’s feature embeddings from
test images. Figure 5 plots the difference in average cosine similarity
scores between genuine (label 1) and impostor (label 0) test pairs
against the overall AUC of the test group. Each point represents
a training configuration where the target group matches the test
group, over all initial groups of the same size, and the color encodes
the target group size at every point.

First, we find a clear positive relationship between distance and
performance. This is consistent across datasets with more details in
Appendix A.4. This observation indicates that higher AUC values
for some test group are associated with genuine pairs having much
higher cosine similarity scores on average than those of impostor
pairs. This relationship follows from the model test pair procedure
because models that further separate similarity scores between
genuine and impostor pairs will obtain a higher AUC value by
definition. This result matches findings in Albiero et al. [2], which
examine test pair similarity distributions along gender and race.

Second, we notice that for every test group, the upwards trajec-
tory is driven by adding samples matching the test group, regardless
of the initial training configuration. This observation indicates that
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(a) Widest disparity in AUC among groups when introduced with
more data from each group.

(b) AUC of group with lowest performance in initial training config-
uration.

Figure 4: Performance disparity measures of single-group augmentation. Evaluated on BUPT dataset with SE-ResNet model
across 5 trials with consistent results across models (per dataset).

Figure 5: Difference in average cosine similarity scores be-
tween genuine (label 1) and impostor (label 0) test pairs for
each training configuration run, plotted against area under
curve. Color denotes the number of identities in training
from the group that matches the test group, with the initial
group held constant at 2000 identities. Evaluated on BUPT
dataset for SE-ResNet, with consistent results for other mod-
els and datasets.

the introduction of some group 𝑋 to any initial training set allows
the model to better distinguish between genuine and imposter pairs
from group 𝑋 , which in turn, results in a higher AUC.

5 DISCUSSION
We now turn to a discussion of the broader implications of our
results to (1) the addition of new training data in Section 5.1, (2) the
general use of benchmark datasets in Section 5.2, and (3) the diffi-
culty of group-level annotations in Section 5.3.

5.1 Broader implications of additional training
data collection

From our analysis, we form several takeaways about the conditions
and factors associated with data collection. Through simulating
model retraining on the addition of new samples from a specific
target group, we emphasize that we do not claim that this is the best
method to add data, nor that data collection is the most effective
way to improve a model. Instead, we aim to understand the impact
of introducing data from various groups to some initial training
set.

5.1.1 Results summary. Our empirical results illustrate an exam-
ple in the BUPT dataset, where increasing representation from
a group 𝑋 initially omitted in training is not the best form of
single-group augmentation to improve 𝑋 ’s performance the most.
However, across all datasets, we find that introducing data from the
group that was originally worst-off obtains significant performance
gains for that group. We make these performance comparisons by
measuring AUC, but also recognize that AUC is an imperfect metric
for capturing model behavior.

5.1.2 Importance of group annotations of both new and old data.
Our results convey several implications about additional data col-
lection. First, when augmenting training data, if we do not know
the demographic group annotations of the additional samples, it
is unclear how this new data will impact group-specific perfor-
mance or group disparities. In other words, it is necessary to have
knowledge of the demographic makeup of any additional data in
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order to improve any group-specific fairness objectives. Second, our
experimental analysis requires knowledge of initial performance
across demographic groups. This underscores the importance of
bias audits in the first place.

5.1.3 Data collection costs. At the same time, we recognize that
data collection comes with various costs: Raji et al. [36] examine
the ethical considerations when collecting diverse data collections,
especially violations of the privacy and consent of the population
being studied. As a result, targeted data collection can harm and
unfairly monitor marginalized populations, as face recognition be-
comes used as a form of surveillance [30]. Therefore we qualify
our recommendations to researchers and developers and encour-
age them to first assess the harms before choosing to engage in
additional data collection.

5.2 Broader implications of the use of
benchmark datasets

Given the limited number of publicly-available, large datasets with
racial group annotations for face verification, our and other em-
pirical findings may well be artifacts specific to particular datasets
or models. For example, in Figure 2b, we observe that training on
data from only the African or Caucasian group generalizes across
all racial groups in the BUPT dataset, which is not replicated in
the BFW and VMER datasets. The reason for this key difference
between datasets is unclear and warrants further exploration. Yet
because these datasets are used as benchmarks for racial bias eval-
uation in face recognition [14, 19], our findings are still valuable
for models trained and evaluated on these same datasets.

5.2.1 Recommendations for future research on datasets and mod-
els. While the individual properties of our datasets, as discussed in
Section 3.6, limits the full generalizability of our results, the unique
characteristics of the datasets also leads to a strength of our study:
recommendations for future research. As context for these recom-
mendations, we observe that prior analyses on racially-balanced
datasets examine one dataset instead of many. This is perhaps not
surprising— and is not a criticism of past works— because these
datasets are relatively new.

By studying three different datasets (across three models), we
demonstrably find that there are important differences between
datasets. Our findings here thus speak to the criticality of future
work repeating evaluations like ours. For example, we recommend
that future research that introduces new face recognition models
to address racial bias should evaluate their models with several
datasets. Similarly, we recommend that future research that intro-
duces new datasets re-apply our methods and share the results of
their analyses.

5.3 Annotations of demographic groups
For both data collection and dataset curation methods, we recog-
nize the importance of demographic group-level annotations of
data points, but also are aware of its limitations. Recent work, for
instance, demonstrates that curators in each dataset follow different
racial group annotation methods. Khan and Fu [25] point out that
racially-annotated face recognition datasets define racial categories

inconsistently, in spite of similarly named categories, and also en-
code stereotypes by excluding minority ethnic groups. From their
evaluated datasets, the authors note that BUPT and BFW are the
most consistent, due to having more images per individual.

Even simple investigation of the racial group annotation tech-
niques reveals that some of these datasets conflate race, nationality,
and ethnicity [43, 44]. Given that racial groups are socially con-
structed and dependent on cultural contexts [31], it is difficult to
form concrete recommendations when training machine learning
models that are equitable along the lines of race. However, since
face recognition models have historically underperformed for peo-
ple from certain racial groups [8], it is necessary to be aware of
disparate treatment across groups, in spite of these groups not be-
ing well-formed. We find that our methodology still adds value and
can still be performed for future datasets with differently-defined
demographic groups even outside of the face recognition task.

6 CONCLUSION
In this work, we examine the group-specific performance impact of
introducing additional training data from a particular racial group,
if, for instance, a developer discovers that their face recognition
model underperforms for some group unrepresented in its initial
training set. By studying facial recognition, we acknowledge that
some of its applications may create societal harm or invasions of
privacy [7]. This work does not make a normative claim on the use
of face recognition technologies; instead, we focus on the role that
data collection plays on the model performance across groups, if
these systems were to be used.

By proposing and evaluating an empirical framework that mod-
els targeted data collection, we find differences and general trends
across 3 benchmark datasets and 3 standard face verificationmodels.
Some findings confirm previous intuitions about the relationship
between a model’s performance and the importance of data repre-
sentation, while other findings reveal exceptions to these intuitions.
In addition, significant differences in datasets reveal shortcomings
in racial bias evaluation that use only one benchmark. We hope that
our experimental results inform future instances of targeted data
collection and racial bias evaluation on existing or new datasets.
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