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The web is deeply integrated into the economic, governmental, and social fabrics of our

society, and it promises to help fulfill people’s diverse and critical needs more easily, cheaper,

faster, and more democratically. However, to fulfill this promise, we must study the security

and privacy implications of the web and its surrounding technologies, and ensure that security

and privacy are incorporated into their future evolution. In this dissertation, I present

measurement and analysis work which studies the web and a set of the web’s neighboring

“sister technologies” — QR codes and web archives — forming insights and foundations for

the ways that we can make the web more secure and privacy preserving. I identify and

quantify current, past, and future properties of the web which are critical to its ability to

provide security and privacy to its users, and synthesize lessons from these measurements and

analyses which aim to guide the future designers and regulators of technologies surrounding

the web in ensuring that it serves the needs of all who use it.
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Chapter 1

INTRODUCTION

People today use the web in critical aspects of their lives, making the security and privacy

of the web critical in both personally and public ways. For example, personally sensitive

uses of the web include online dating, purchasing sensitive items, and communication with

friends, partners, and relatives. Meanwhile, important public uses include of the web include

obtaining political news, registering to vote, and the exercise of free speech. This trend

offers promises of affordability, democratization, and freedom for many important aspects

of our lives, but it also comes with great risks: by networking our private matters and

storing private details on remote servers, we risk privacy violations which were impossible

or unthinkable when those matters were physically isolated behind closed doors. And by

putting our most important public matters online, we could be endangering the integrity of

our democracy and our free society. To fulfill these promises and mitigate these risks, we will

need to deeply understand the security and privacy of the web as it evolves, and incorporate

that understanding into the way we design and regulate the web going forward.

This dissertation uses measurement and analysis to study the web and a set of the

web’s neighboring “sister technologies”, forming insights and foundations for the ways that

we can make the web more secure and privacy preserving. Its primary approach is through

measurement of the web and of those neighboring technologies, measurements which quantify

our interactions with the web and the risks involved in those interactions. In particular, this

dissertation presents new measurement techniques for examining the web longitudinally,

new measurements of how third-party web tracking has evolved over time, the development

and quantification of attacks and defenses against user views of web archives, and the first

large-scale measurement study of the use of QR codes and their interaction with the web.



2

Throughout, I synthesize lessons, both for technologists and policymakers, which provide

guidance on effective directions for integrating security and privacy into the design and

regulation of technology to make us safer and stronger as individuals and a broader society.

1.1 Themes and Challenges

The primary themes and challenges of this dissertation arise from its use of novel measure-

ment techniques and its study of the way that the web interacts with what I will term “sister

technologies”: web-adjacent technologies that interact with, enhance, compliment, and are

complimented by the web.

Novel Measurement Techniques

New insights about technologies like the web sometimes require new approaches and unique

datasets. Acting on this observation, Chapters 2 and 3 describe, develop, and use web

archives as a tool and subject of measurement study, while Chapter 4 performs a unique

study of global QR code usage through the use of a dataset of 87 million barcode scans

obtained through collaboration with industry. For example, I observe that longitudinal

measurements of the web are valuable for their ability to depict trends, but challenging,

since the web is constantly changing. Chapter 2 overcomes this challenge by developing a

new method of using archival data to perform longitudinal measurements over nearly the

whole history of the web. Taking another approach to new measurements, Chapter 4 uses a

unique dataset, obtained through collaboration with industry, to perform the first large-scale

academic study of the use of QR (Quick Response) codes in the wild. Through these new

measurement techniques, this dissertation demonstrates the power of taking new approaches

to measure what is and has been, and it offers insights into the real security and privacy

threats we face today and tomorrow. By seeing how those threats have changed and will

change, it guides us in integrating security and privacy into the design, implementation, and

regulation of the web and its sister technologies.
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The Interaction of the Web With Its Sister Technologies

The second major theme of this dissertation is the interaction of the web with related tech-

nologies that refer to, augment, and compliment the web. This dissertation specifically

considers the following sister technologies: third-party web tracking, web archives, and QR

codes. Each enables unique interactions with the web. For example, QR codes enable

pointers to the web to exist in the physical world, while web archives allow us to time

travel through the web, studying and citing its past. Additionally, these sister technologies

sometimes fundamentally shape the web, as with web tracking, which enables much of the

personalized advertising which underlies the economy of the web, allowing many of our most

powerful and useful web services to exist, while also pushing the commercial structure and

incentives of the web in a direction that emphasizes the value of individuals’ personal data.

Given the technical and economic importance of these sister technologies, this dissertation

studies them alongside the web in order to understand the way that web security and privacy

can be made to serve peoples’ needs.

1.2 Contributions

This dissertation is presented in three chapters, each of which measures and analyses either

the web itself, or certain technologies which surround, expand, and enhance the web. Thus

the topics of the following three chapters are measurements of the evolution of third-party

tracking on the web; the security of web archives against malicious manipulation; and the

expansive ecosystem of QR code usage and its relation to the web. Web archives appear in

both Chapter 2 and Chapter 3: in the first case, they are used to enable a new longitudinal

measurement technique, while in the second they become a topic of study themselves. Finally,

QR codes appear in Chapter 4, as a perspective from which I explore the ways in which

emerging uses of technology piggyback upon and differ from the web and other modern

technologies.
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1.2.1 Using Archival Sources For Longitudinal Measurements Of Third Party Web Tracking

Chapter 2 focuses on the development of a new measurement technique for longitudinal

measurements of the web, as well as the application of that technique to one important

privacy concern on the web: third-party web tracking. The primary contributions of this

chapter include the idea of measuring technical properties of the web longitudinally, using

web archives; the quantification and evaluation of the challenges of using archival data in

longitudinal measurements; the development of a tool, TrackingExcavator, which performs

these measurements automatically; and the presentation and interpretation of data depicting

20 years of evolution of the history of third-party web tracking, using the above tool and

techniques. This chapter shows that tracking has increased dramatically since the earliest

days of the web: not only have the number of trackers increased dramatically, but their

power has also increased, with some trackers individually able to follow people across more

than 20% of the most popular 500 sites on the web, and some third parties appearing on over

40% of the most popular 500 sites in some years. I also made public the data from this study,

its analysis code and TrackingExcavator itself, allowing other researchers to longitudinally

measure a variety of properties of the web far beyond web tracking.

1.2.2 Rewriting History: Changing the Archived Web From the Present

In Chapter 3, the dissertation pivots from considering web archives as a source of data

for longitudinal web measurement to considering them as a subject of study themselves.

Observing that web archives are often cited in socially important contexts such as journalism,

scientific articles, and legal proceedings, I observe that such important uses may motivate

adversaries to attempt to manipulate archives for their own purposes. This dissertation is

the first to our knowledge to study the ways in which the Wayback Machine, perhaps the

largest modern web archive, is vulnerable to adversarial manipulation of the ways that clients

view its archival content. I discover a variety of vulnerabilities which expose client views to

manipulation, and develop attacks which exploit those vulnerabilities. I then measure the



5

prevalence of those vulnerabilities, finding that they are quite common in practice, exposing

a significant fraction of the archived web to adversarial manipulation: nearly three-quarters

of popular snapshots from recent years are vulnerable to complete takeover by at least one

adversary. Finally, I consider the defenses that may be deployed in order to protect client

views of archived websites and increase the trust that people who rely on archival data for

socially important uses can put in that data.

1.2.3 Analyzing the Use of Quick Response Codes in the Wild

Chapter 4 of this dissertation presents measurements of the use of QR codes by real uses

across the world. This chapter is to our knowledge the first large-scale academic analysis of

the use of QR codes in the wild. It presents data showing the wide variety of ways people use

QR codes. From that data, I derive a series of lessons for developers and users of technologies

like QR codes. These lessons are expansive, covering both modern technology like QR codes,

as well as considering QR codes as a proxy for future emerging technologies which embed

information in the environment. Additionally, I observe that the QR codes in our dataset are

dominantly web addresses (87% of scans), illustrating QR codes role as a sister technology to

the web. Despite the importance of web related uses, we also identify a variety of interesting

niche uses, such as an extremely popularly scanned code for donating bitcoins to The Pirate

Bay, as well as a number of malicious Android apps and other malware distribution sites

among the codes. This chapter considers the ways in which the physicality and mobile nature

of QR codes may bear on security and privacy for the web as it is used through QR codes.

1.2.4 Summary of Contributions

Together, these chapters provide a set of perspectives that can ground future approaches to

understanding and measuring security and privacy challenges on the web, and to designing,

implementing, and regulating technologies that help the web be a safer, more beneficial

system for all people.
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Chapter 2

USING ARCHIVAL SOURCES FOR LONGITUDINAL
MEASUREMENTS OF THIRD PARTY WEB TRACKING

In this chapter, I engage with both of the themes of this dissertation by presenting a

new measurement technique (longitudinal web measurement) which is enabled by a sister

technology (web archives). Specifically, I develop a technique to perform longitudinal web

measurements, implement that technique in a tool called TrackingExcavator, and demon-

strate the technique by using TrackingExcavator to perform a study of changes in third-party

web tracking over 20 years. Finally, observe that TrackingExcavator can be used for a wide

variety of measurements using web archives, and thus will reappear as the tool used for the

measurements in Chapter 3.

The work of this chapter previously appeared in a 2016 paper [14], and citations of this

work should refer to that paper.

2.1 Introduction

Third-party web tracking is the practice by which third parties like advertisers, social media

widgets, and website analytics engines — embedded in the first party sites that users visit

directly — re-identify users across domains as they browse the web. Web tracking, and

the associated privacy concerns from tracking companies building a list of sites users have

browsed to, has inspired a significant and growing body of academic work in the computer

security and privacy community, attempting to understand, measure, and defend against

such tracking (e.g., [147, 100, 101, 72, 103, 63, 80, 82, 83, 102, 49, 50, 51, 67, 43, 86, 177, 12,

134, 13, 175, 106, 69, 169, 68, 23, 64, 164, 56, 149, 39, 99, 19, 124, 107, 165]).

However, the research community’s interest in web tracking comes relatively recently in



7

the history of web. To our knowledge, the earliest measurement studies began in 2005 [102],

with most coming after 2009 — while display advertising and the HTTP cookie standard

date to the mid-1990s [112, 104]. Though numerous studies have now been done, they

typically consist of short-term measurements of specific tracking techniques. We argue that

public and private discussions surrounding web tracking — happening in technical, legal,

and policy arenas (e.g., [120, 179]) — ought to be informed not just by a single snapshot of

the web tracking ecosystem but by a comprehensive knowledge of its trajectory over time.

We provide such a comprehensive view in this chapter, conducting a measurement study of

third-party web tracking across 20 years since 1996.

Measurement studies of web tracking are critical to provide transparency for users, tech-

nologists, policymakers, and even those sites that include trackers, to help them understand

how user data is collected and used, to enable informed decisions about privacy, and to incen-

tivize companies to consider privacy. However, the web tracking ecosystem is continuously

evolving, and others have shown that web privacy studies at a single point in time may only

temporarily reduce the use of specific controversial tracking techniques [161]. While one can

study tracking longitudinally starting in the present, as we and others have (e.g., [161, 102]),

ideally any future developments in the web tracking ecosystem can be contextualized in a

comprehensive view of that ecosystem over time — i.e., since the very earliest instance of

tracking on the web. We provide that longitudinal, historical context in this chapter, asking:

how has the third-party web tracking ecosystem evolved since its beginnings?

To answer this question, we apply a key insight: the Internet Archive’s Wayback Ma-

chine [75] enables a retrospective analysis of third-party tracking on the web over time.

The Wayback Machine1 contains archives of full webpages, including JavaScript, stylesheets,

and embedded resources, dating back to 1996. To leverage this archive, we design and im-

plement a retrospective tracking detection and analysis platform called TrackingExcavator

(Section 2.4), which allows us to conduct a longitudinal study of third-party tracking from

1https://archive.org
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1996 to present (2016). TrackingExcavator logs in-browser behaviors related to web tracking,

including: third-party requests, cookies attached to requests, cookies programmatically set

by JavaScript, and the use of other relevant JavaScript APIs (e.g., HTML5 LocalStorage

and APIs used in browser fingerprinting [43, 134], such as enumerating installed plugins).

TrackingExcavator can run on both live as well as archived versions of websites.

Harnessing the power of the Wayback Machine for our analysis turns out to be surprisingly

challenging (Section 2.6). Indeed, a key contribution of this chapter is our evaluation of the

historical data provided by the Wayback Machine, and a set of lessons and techniques for

extracting information about trends in third-party content over time. Through a comparison

with ground truth datasets collected in 2011 (provided to us by the authors of [147]), 2013,

2015, and 2016, we find that the Wayback Machine’s view of the past, as it relates to

included third-party content, is imperfect for many reasons, including sites that were not

archived due to robots.txt restrictions (which are respected by the Wayback Machine’s

crawlers), the Wayback Machine’s occasional failure to archive embedded content, as well as

site resources that were archived at different times than the top-level site. Though popular

sites are typically archived at regular intervals, their embedded content (including third-

party trackers) may thus be only partially represented. Whereas others have observed similar

limitations with the Wayback Machine, especially as it relates to content visible on the top-

level page [28, 88, 130], our analysis is focused on the technical impact of missing third-party

elements, particularly with respect to tracking. Through our evaluation, we characterize

what the Wayback Machine lets us measure about the embedded third parties, and showcase

some techniques for best using the data it provides and working around some of its weaknesses

(Section 2.6).

After evaluating the Wayback Machine’s view into the past and developing best practices

for using its data, we use TrackingExcavator to conduct a longitudinal study of the third-

party web tracking ecosystem from 1996-2016 (Sections 2.5). We explore how this ecosystem

has changed over time, including the prevalence of different web tracking behaviors, the

identities and scope of popular trackers, and the complexity of relationships within the
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ecosystem. Among our findings, we identify the earliest tracker in our dataset in 1996 and

observe the rise and fall of important players in the ecosystem (e.g., the rise of Google

Analytics to appear on over a third of all popular websites). We find that websites contact

an increasing number of third parties over time (about 5% of the 500 most popular sites

contacted at least 5 separate third parties in early 2000s, whereas nearly 40% do so in 2016)

and that the top trackers can track users across an increasing percentage of the web’s most

popular sites. We also find that tracking behaviors changed over time, e.g., that third-party

popups peaked in the mid-2000s and that the fraction of trackers that rely on referrals from

other trackers has recently risen.

Taken together, our findings show that third-party web tracking is a rapidly growing

practice in an increasingly complex ecosystem — suggesting that users’ and policymakers’

concerns about privacy require sustained, and perhaps increasing, attention. Our results

provide hitherto unavailable historical context for today’s technical and policy discussions.

In summary, our contributions are:

1. TrackingExcavator, a measurement infrastructure for detecting and analyzing third-

party web tracking behaviors in the present and — leveraging the Wayback Machine —

in the past (Section 2.4).

2. An in-depth analysis of the scope and accuracy of the Wayback Machine’s view of

historical web tracking behaviors and trends, and techniques for working around its

weaknesses (Section 2.6).

3. A longitudinal measurement study of third-party cookie-based web tracking from

1996 to present (2016) — to the best of our knowledge, the longest longitudinal study

of tracking to date (Section 2.5).

2.2 Background and Motivation

Third-party web tracking is the practice by which entities (“trackers”) embedded in webpages

re-identify users as they browse the web, collecting information about the websites that they

visit [147, 122]. Tracking is typically done for the purposes of website analytics, targeted ad-
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Figure 2.1: Overview of basic cookie-based web tracking. The third-party domain
tracker.com uses a browser cookie to re-identify users on sites that embed content from
tracker.com. This example shows vanilla tracking according to the taxonomy from [147];
other behaviors are described in Section 2.4.

vertising, and other forms of personalization (e.g., social media content). For example, when

a user visits www.cnn.com, the browser may make additional requests to doubleclick.net

to load targeted ads and to facebook.com to load the “Like” button; as a result, Doubleclick

and Facebook learn about that user’s visit to CNN. Cookie-based trackers re-identify users

by setting unique identifiers in browser cookies, which are then automatically included with

requests to the tracker’s domain. Figure 2.1 shows a basic example; we discuss more complex

cookie-based tracking behaviors in Section 2.4. Though cookie-based tracking is extremely

common [147], other types of tracking behaviors have also emerged, including the use of other

client-side storage mechanisms, such as HTML5 LocalStorage, or the use of browser and/or

machine fingerprinting to re-identify users without the need to store local state [134, 43].

Because these embedded trackers are often invisible to users and not visited intention-

ally, there has been growing concern about the privacy implications of third-party tracking.

In recent years, it has been the subject of repeated policy discussions (Mayer and Mitchell

provide an overview as of 2012 [122]); simultaneously, the computer science research com-

munity has studied tracking mechanisms (e.g., [147, 134, 177, 122]), measured their preva-



11

lence (e.g., [147, 51, 102, 13]), and developed new defenses or privacy-preserving alternatives

(e.g., [19, 164, 56, 64, 149]). We discuss related works further in Section 2.3.

Figure 2.2: Overview of our infrastructure, TrackingExcavator, organized into four pipeline
stages. Red/italic elements apply only to “Wayback mode” for historical measurements,
while black/non-italics elements apply also to present-day measurements.

However, the research community’s interest in web tracking is relatively recent, with the

earliest measurements (to our knowledge) beginning in 2005 [102], and each study using a

different methodology and measuring a different subset of known tracking techniques (see

Englehardt et al. [49] for a comprehensive list of such studies). The practices of embedding

third-party content and targeted advertising on websites predate these first studies [112], and

longitudinal studies have been limited. However, longitudinal studies are critical to ensure

the sustained effects of transparency [161] and to contextualize future measurements. Thus,

to help ground technical and policy discussions surrounding web tracking in historical trends,

we ask: how has the third-party tracking ecosystem evolved over the lifetime of the web?

We investigate questions such as:

• How have the numbers, identities, and behaviors of dominant trackers changed

over time?

• How has the scope of the most popular trackers (i.e., the number of websites on which

they are embedded) changed over time?

• How has the prevalence of tracking changed over time? For example, do websites

include many more third-party trackers now than they did in the past?

• How have the behaviors of web trackers (e.g., JavaScript APIs used) changed over

time?
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By answering these questions, we are to able provide a systematic and longitudinal view

of third-party web tracking over the last 20 years, retroactively filling this gap in the research

literature, shedding a light on the evolution of third-party tracking practices on the web, and

informing future technical and policy discussions.

The Wayback Machine. To conduct our archeological study, we rely on data from the

Internet Archive’s Wayback Machine (https://archive.org). Since 1996, the Wayback

Machine has archived full webpages, including JavaScript, stylesheets, and any resources

(including third-party JavaScript) that it can identify statically from the site contents. It

mirrors past snapshots of these webpages on its own servers; visitors to the archive see

the pages as they appeared in the past, make requests for all resources from the Wayback

Machine’s archived copy, and execute all JavaScript that was archived. We evaluate the

completeness of the archive, particularly with respect to third-party requests, in Section 2.6.

2.3 Additional Related Work

Tracking and Defenses. Third-party tracking has been studied extensively in recent years,

particularly through analysis and measurements from 2005 to present [147, 100, 101, 72,

103, 63, 80, 82, 83, 102, 49, 50]. A few studies have considered mobile, rather than desktop,

browser tracking [51, 67]. Beyond explicit stateful (e.g., cookie-based) tracking, recent work

has studied the use of browser and machine fingerprinting techniques to re-identify and track

users [43, 86, 177, 12, 134, 13]. Others have studied the possible results of tracking, including

targeted ads [175, 106], personalized search [69], and price discrimination [169].

User-facing defenses against tracking range from browser extensions like Ghostery [58]

and Privacy Badger [46] to research proposals (e.g. [68, 23]). Researchers have also designed

privacy-preserving alternatives including privacy-preserving ads [64, 164, 56, 145], social

media widgets [149, 39, 99], and analytics [19]. Others have studied user attitudes towards

tracking and targeted advertising (e.g., [124, 107, 165]). Our study shows the increased

prevalence of tracking over time, suggesting that designing and supporting these defenses for

privacy-sensitive users is as important as ever.
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Wayback Machine and other Longitudinal Measurements. Others have used the

Wayback Machine for historical measurements to predict whether websites will become ma-

licious [157] and to study JavaScript inclusion [136] and website accessibility [66]; to recover

medical references [170]; to analyze social trends [84]; and as evidence in legal cases [47].

Others [130] found that websites are accurately reflected in the archive. These studies noted

similar limitations as we did, as well as ways it has changed over time [88]. Finally, re-

searchers have studied other aspects of the web and Internet longitudinally without the use

of archives, including IPv6 adoption [34], search-engine poisoning [108], privacy notices [125],

and botnets [171].

2.4 Measurement Infrastructure:
TrackingExcavator

To conduct a longitudinal study of web tracking using historical data from the Wayback

Machine, we built a tool, TrackingExcavator, with the capability to (1) detect and analyze

third-party tracking-related behaviors on a given web page, and (2) run that analysis over

historical web pages archived and accessed by the Wayback Machine. In this section, we

introduce TrackingExcavator. Figure 2.2 provides and overview of TrackingExcavator, which

is organized into four pipeline stages:

(1) Input Generation (Section 2.4.1): TrackingExcavator takes as input a list of top-

level sites on which to measure tracking behaviors (such as the Alexa top 500 sites), and, in

“Wayback mode,” a timestamp for the desired archival time to create archive.org URLs.

(2) Data Collection (Section 2.4.2): TrackingExcavator includes a Chrome browser

extension that automatically visits the pages from the input set and collects tracking-relevant

data, such as third-party requests, cookies, and the use of certain JavaScript APIs.

(3) Data Analysis (Section 2.4.3): TrackingExcavator processes collected measurement

events to detect and categorize third-party web tracking behaviors.

(4) Data Visualization: Finally, we process our results into visual representations (in-
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cluded in Section 2.5).

2.4.1 Input Generation

In the input generation phase, we provide TrackingExcavator with a list of top-level sites to

use for measurement. For historical measurements, TrackingExcavator must take a list of

top-level URLs along with historical timestamps and transform them into appropriate URLs

on archive.org. For example, the URL for the Wayback Machine’s February 10, 2016

snapshot of https://www.usenix.org/conference/usenixsecurity16 is https://web.

archive.org/web/20160210050636/https://www.usenix.org/conference/usenixsecurity16.

We use the Memento API to find the nearest archived snapshot of a website occur-

ring before the specified measurement date [85]. Though this process ensures a reasonable

timestamp for the top-level page, embedded resources may have been archived at different

times [18]. During analysis, we thus filter out archived resources whose timestamps are more

than six months from our measurement timestamp, to ensure minimal overlap and sufficient

spacing between measurements of different years.

2.4.2 Data Collection

To collect data, TrackingExcavator uses a Chrome extension to automatically visit the set of

input sites. Note that we cannot log into sites, since the Wayback Machine cannot act as the

original server. Our browser is configured to allow third-party cookies as well as popups, and

we visit the set of sites twice: once to prime the cache and the cookie store (to avoid artifacts

of first-time browser use), and once for data collection. During these visits, we collect the

following information relevant to third-party web tracking and store it in a local database:

• All request and response headers (including set-cookie).

• All cookies programmatically set by JavaScript (using document.cookie).

• All accesses to fingerprint-related JavaScript APIs, as described below.

• For each request: the requested URL, (if available) the referrer, and (if available)
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information about the originating tab, frame, and window.

We later process this data in the analysis phase of TrackingExcavator’s pipeline (Sec-

tion 2.4.3 below).

Fingerprint-Related APIs. Since cookie-based web tracking is extremely common (i.e., it

is “classic” web tracking), we focus largely on it — and third-party requests in general — to

capture the broadest view of the web tracking ecosystem over time. However, we also collect

information about the uses of other, more recently emerged tracking-related behaviors, such

as JavaScript APIs that may be used to create browser or machine fingerprints [43, 134].

To capture any accesses a webpage makes to a fingerprint-related JavaScript API (such as

navigator.userAgent), TrackingExcavator’s Chrome extension Content Script overwrites

these APIs on each webpage to (1) log the use of that API and (2) call the original, overwrit-

ten function. The set of APIs that we hook was collected from prior work on fingerprint-based

tracking [43, 134, 137, 12, 13] and is provided in Appendix 2.7.

Preventing Wayback “Escapes”. In archiving a page, the Wayback Machine transforms

all embedded URLs to archived versions of those URLs (similar to our own process above).

However, sometimes the Wayback Machine fails to properly identify and rewrite embedded

URLs. As a result, when that archived page is loaded on archive.org, some requests may

“escape” the archive and reference resources on the live web [88, 26]. In our data collection

phase, we block such requests to the live web to avoid anachronistic side effects. However,

we record the domain to which such a request was attempted, since the archived site did

originally make that request, and thus we include it in our analysis.

2.4.3 Data Analysis

In designing TrackingExcavator, we chose to separate data collection from data analysis,

rather than detecting and measuring tracking behaviors on the fly. This modular architec-

ture simplifies data collection and isolates it from possible bugs or changes in the analy-

sis pipeline — allowing us to rerun different analyses on previously collected data (e.g., to
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retroactively omit certain domains).

“Replaying” Events. Our analysis metaphorically “replays” collected events to simulate

loading each page in the measurement. For historical measurements, we modify request

headers to replace “live web” Set-Cookie headers with X-Archive-Orig-Set-Cookie head-

ers added by archive.org, stripping the Wayback Machine prefixes from request and refer-

rer URLs, and filling our simulated cookie jar (described further below). During the replay,

TrackingExcavator analyzes each event for tracking behaviors.

Classifying Tracking Behaviors. For cookie-based trackers, we base our analysis on a

previously published taxonomy [147].2 We summarize — and augment — that taxonomy here.

Note that a tracker may fall into multiple categories, and that a single tracker may exhibit

different behaviors across different sites or page loads:

1. Analytics Tracking : The tracker provides a script that implements website analytics

functionality. Analytics trackers are characterized by a script, sourced from a third

party but run in the first-party context, that sets first-party cookies and later leaks

those cookies to the third-party domain.

2. Vanilla Tracking : The tracker is included as a third party (e.g., an iframe) in the

top-level page and uses third-party cookies to track users across sites.

3. Forced Tracking : The tracker forces users to visit its domain directly — for example,

by opening a popup or redirecting the user to a full-page ad — allowing it to set cookies

from a first-party position.

4. Referred Tracking : The tracker relies on another tracker to leak unique identifiers to

it, rather than on its own cookies. In a hypothetical example, adnetwork.com might

set its own cookie, and then explicitly leak that cookie in requests to referred tracker

ads.com. In this case, ads.com need not set its own cookies to perform tracking.

5. Personal Tracking : The tracker behaves like a Vanilla tracker but is visited by the user

directly in other contexts. Personal trackers commonly appear as social widgets (e.g.,

2We are not aware of other taxonomies of this granularity for cookie-based tracking.
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“Like” or “tweet” buttons).

In addition to these categories previously introduced [147], we discovered an additional

type of tracker related to but subtly different from Analytics tracking:

6. Referred Analytics Tracking: Similar to an Analytics tracker, but the domain which

sets a first-party cookie is different from the domain to which the first-party cookie is

later leaked.

Beyond cookie-based tracking behaviors, we also consider the use of fingerprint-related

JavaScript APIs, as described above. Though the use of these APIs does not necessarily imply

that the caller is fingerprinting the user — we know of no published heuristic for determining

fingerprinting automatically — but the use of many such APIs may suggest fingerprint-based

tracking.

Finally, in our measurements we also consider third-party requests that are not otherwise

classified as trackers. If contacted by multiple domains, these third-parties have the ability

to track users across sites, but may or may not actually do so. In other words, the set of all

domains to which we observe a third-party request provides an upper bound on the set of

third-party trackers.

We tested TrackingExcavator’s detection and classification algorithms using a set of test

websites that we constructed and archived using the Wayback Machine, triggering each of

these tracking behaviors.

Reconstructing Archived Cookies. For many tracking types, the presence or absence of

cookies is a key factor in determining whether the request represents a tracking behavior.

In our live measurements, we have the actual Cookie headers attached by Chrome during

the crawl. On archived pages, the Wayback Machine includes past Set-Cookie headers as

X-Archive-Orig-Set-Cookie headers on archived responses. To capture the cookies that

would have actually been set during a live visit to that archived page, TrackingExcavator

must simulate a browser cookie store based on these archival cookie headers and JavaScript

cookie set events recorded during data collection.
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Unfortunately, cookie engines are complicated and standards non-compliant in major

browsers, including Chrome [31]. Python’s cookie storage implementation is compliant with

RFC 2965, obsoleted by RFC 6265, but these standards proposals do not accurately represent

modern browser practices [55, 35, 22]. For efficiency, we nevertheless use Python’s cookie jar

rather than attempting to re-implement Chrome’s cookie engine ourselves.

We found that Python’s cookie jar computed cookies exactly matching Chrome’s for only

71% of requests seen in a live run of the top 100. However, for most types of tracking, we only

need to know whether any cookies would have been set for the request, which we correctly

determine 96% of the time. Thus our tool captures most tracking despite using Python’s

cookie jar.

Classifying Personal Trackers in Measurements. For most tracker types, classification

is independent of user behaviors. Personal trackers, however, are distinguished from Vanilla

trackers based on whether the user visits that domain as a top-level page (e.g., Facebook or

Google). To identify likely Personal trackers in automated measurement, we thus develop a

heuristic for user browsing behaviors: we use popular sites from each year, as these are (by

definition) sites that many users visited.

Alexa’s top sites include several that users would not typically visit directly, e.g., googleadservices.com.

Thus, we manually examined lists of popular sites for each year to distinguish between do-

mains that users typically visit intentionally (e.g., Facebook, Amazon) from those which or-

dinary users never or rarely visit intentionally (e.g., ad networks or CDNs). Two researchers

independently classified the domains on the Alexa top 100 sites for each year where we have

Alexa data, gathering information about sites for which they were unsure. The researchers

examined 435 total domains: for the top 100 domains in 2016, they agreed on 100% and iden-

tified 94 sites as potential Personal trackers; for the 335 additional domains in the previous

years’ lists, they agreed on 95.4% and identified 296 Personal tracker domains.
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2.5 Historical Web Tracking Measurements

We now turn to our longitudinal study of third-party cookie-based web tracking from 1996-

2016.

Datasets. We focus our investigation on the most popular websites each year, for two

reasons: first, trackers on these sites are (or were) able to collect information about the

greatest number of users; second, popular sites are crawled more frequently by the Wayback

Machine (if permitted by robots.txt). We thus need historical lists of the top sites globally

on the web.

2003-2016: Alexa. For 2010-2016, we use Wayback Machine archives of Alexa’s top million

sites list (a csv file). For 2003-2009, we approximate the top 500 by scraping Alexa’s own

historical API (when available) and archives of individual Alexa top 100 pages. Because of

inconsistencies in those sources, our final lists contain 459-500 top sites for those years.

1996-2002: Popular Links from Homepages. In 2002, only the Alexa top 100 are available;

before 2002, we only have ComScore’s list of 20 top sites [173]. Thus, to build a list of 500

popular sites for the years 1996-2002, we took advantage of the standard practice at the

time of publishing links to popular domains on personal websites. Specifically, we located

archives of the People pages of the Computer Science or similar department at the top 10

U.S. CS research universities as of 1999, as reported in that year by U.S. News Online [2].

We identified the top 500 domains linked to from the homepages accessible from those People

pages, and added any ComScore domains that were not found by this process. We ran this

process using People pages archived in 1996 and 1999; these personal pages were not updated

or archived frequently enough to get finer granularity. We used the 1996 list as input to our

1996, 1997 and 1998 measurements, and the 1999 list as input for 1999-2002.

2.5.1 Prevalence of Tracking Behaviors over Time

We begin by studying the prevalence of tracking behaviors over time: how many unique

trackers do we observe, what types of tracking behaviors do those trackers exhibit, and how



20

Figure 2.3: Evolution of tracker types over time. The grey bars show the total number of
tracking domains present in each dataset, and the colored lines show the numbers of trackers
with each type of tracking behavior. A single tracker may have more than one behavior in
the dataset (e.g., both Vanilla and Analytics), so the sum of the lines might be greater than
the bar.

many trackers appear on sites over time?

Prevalence and Behaviors of Unique Trackers. Figure 2.3 shows the total number of

unique trackers observed over time (the grey bars) and the prevalence of different tracking

behavior types (the lines) for the top 500 sites from 1996-2016. Note that trackers may

exhibit more than one behavior across sites or on a single site, so the sum of the lines may

be greater than the height of the bar. We note that the particularly large bars in 2015 and

2016 may reflect not only a change in tracking prevalence but also changes in the way the

Wayback Machine archived the web. See Table 2.5 for validation against live data which

suggest that actual growth may have been smaller and more linear, similar to past years.
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Year 1Type 2Type 3Type 4Type
1996 100.00% (1) 0 0 0
1998 0 0 0 0
2000 100.00% (13) 0 0 0
2002 100.00% (19) 0 0 0
2004 96.97% (32) 3.03% (1) 0 0
2006 100.00% (34) 0 0 0
2008 100.00% (29) 0 0 0
2010 94.12% (32) 2.94% (1) 2.94% (1) 0
2012 88.57% (31) 11.43% (4) 0 0
2014 93.75% (60) 4.69% (3) 1.56% (1) 0
2016 86.24% (94) 11.01% (12) 2.75% (3) 0

Table 2.1: Complexity of trackers, in terms of the percentage (and number) of trackers
displaying one or more types of tracking behaviors across the top 500 sites.

We make several observations. First, we see the emergence of different tracking behaviors:

the first cookie-based tracker in our data is from 1996: microsoft.com as a Vanilla tracker

on digital.net. The first Personal tracker to appear in our dataset is in 1999: go.com

shows up on 5 different sites that year, all also owned by Disney: disney.com, espn.com,

sportszone.com, wbs.net, and infoseek.com (acquired by Disney mid-1999 [1], before

the date of our measurement). The existence of a Personal tracker that only appeared

on sites owned by the same company differs from today’s Personal tracking ecosystem, in

which social media widgets like the Facebook “Like” button appear on many popular sites

unaffiliated with that tracker (Facebook, in this case) [147].

More generally, we see a marked increase in quantities of trackers over time, with rises in

all types of tracking behavior. One exception is Forced trackers — those relying on popups —

which are rare and peaked in the early 2000s before popup blockers became default (e.g., in

2004 for Internet Explorer [132]). Indeed, we see third-party popups peak significantly in

2003 and 2004 (17 and 30 popups, respectively, compared to an annual mean of about 4),

though we could not confirm all as trackers for Figure 2.3. Additionally, we see an increasing

variety of tracking behavior over time, with early trackers nearly all simply Vanilla, but more

recent rises in Personal, Analytics, and Referred tracking.

We can also consider the complexity of individual trackers, i.e., how many distinct track-
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Year Most Prolific API-user Num APIs Used Coverage
1998 realhollywood.com 2 1
1999 go2net.com 2 1
2000 go.com 6 2
2001 akamai.net 8 15
2002 go.com 10 2
2003 bcentral.com 5 1
2004 163.com 9 3
2005 163.com 8 1
2006 sina.com.cn 11 2
2007 googlesyndication.com 8 24
2008 go.com 12 1
2009 clicksor.com 10 2
2010 tribalfusion.com 17 1
2011 tribalfusion.com 17 2
2012 imedia.cz 12 1
2013 imedia.cz 13 1
2014 imedia.cz 13 1
2015 aolcdn.com 25 5
2016 aolcdn.com 25 3

Table 2.2: Most prolific API-users, with ties broken by coverage (number of sites on which
they appear) for each year. The maximum number of APIs used increases over time, but
the max API users are not necessarily the most popular trackers.

ing behaviors they exhibit over each year’s dataset. (Note that some behaviors are exclusive,

e.g., a tracker cannot be both Personal and Vanilla, but others are nonexclusive.) Table 2.1

suggests that there has been some increase in complexity in recent years, with more trackers

exhibiting two or even three behaviors. Much of this increase is due to the rise in Referred or

Referred Analytics trackers, which receive cookie values shared explicitly by other trackers

in addition to using their own cookies in Vanilla behavior.

Fingerprint-Related APIs. We measured the use of Javascript APIs which can be used

to fingerprint browsers and persist identifiers even across cookie deletion. Though the use of

these APIs does not necessarily imply that they are used for tracking (and we know of no

published heuristic for correlating API use with genuine fingerprinting behaviors), the use

of these APIs nevertheless allows third parties to gather potentially rich information about

users and their machines. The full list of 37 fingerprint-related APIs we measure (based on

prior work [43, 134, 137, 12, 13]) is in Appendix 2.7.
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Figure 2.4: Number of sites in each year with a tracker that calls (on that site) at least K
(of our 37) fingerprint-related APIs.

We now consider third parties that are prolific users of fingerprint-related APIs, calling

many APIs on each site. Table 2.2 shows the tracker in each year that calls the most

APIs on a single site. Ties are broken by the choosing the third party that appears on the

largest number of sites. Maximum usage of APIs has increased over time, but we observe

that the most prolific API users are not the most popular cookie-based trackers. Although

we only identify API uses within JavaScript, and not how their results are used, we note

that increasing use of these APIs implies increased power to fingerprint, especially when

combined with non-Javascript signals such as HTTP headers and plugin behavior. For

example, Panopticlick derived 18 bits of entropy about remote browsers from a subset of

these APIs plus HTTP headers and information from plugins [43].

Beyond the power of the most prolific fingerprint-related API users growing, we also find

that more sites include more trackers using these APIs over time. Figure 2.4 shows the
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Figure 2.5: Domains using window.localStorage. First party usages are uses in the top
frame of a web page by a script loaded from the web page’s own domain. Third party usages
are those also in the top frame of a page but by a script loaded from a third party. Framed
uses are those inside of an iframe.

number of sites in each year containing a tracker that calls, on that site, at least K of the

37 fingerprinting APIs. Although many sites contain and have contained trackers that use

at least 1 API (typically navigator.userAgent, common in browser compatibility checks),

the number of sites containing trackers that call 2 or more APIs has risen significantly over

time.

In addition to fingerprint-related APIs, we also examine the use of HTML5 LocalStorage,

a per-site persistent storage mechanism standardized in 2009 in addition to cookies. Fig-

ure 2.5 shows that the use of the localStorage API rises rapidly since its introduction in

2009, indicating that tracking defenses should increasingly consider on storage mechanisms

beyond cookies.

Third Parties Contacted. We now turn our attention to the number of third parties that

users encounter as they browse the web. Even third parties not confirmed as trackers have

the potential to track users across the web, and as we discovered in Section 2.6, many third

parties in archived data may in fact be confirmed trackers for which the Wayback Machine

simply archived insufficient information. Figure 2.6 thus shows the distributions of how

many third parties the top 500 sites contacted in each year. We see a rise in the median
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Figure 2.6: Distributions of third-party requests for the top 500 sites 1996-2016. Center box
lines are medians, whiskers end at 1.5*IQR. The increase in both medians and distributions
of the data show that more third-parties are being contacted by popular sites in both the
common and extreme cases.

number of third parties contacted — in other words, more sites are giving more third parties

the opportunity to track users.

Figure 2.7 provides a different view of similar data, showing the distribution of the top

sites for each year by number of distinct third parties contacted. In the early 2000s, only

about 5% of sites contacted at least 5 third parties, while in 2016 nearly 40% of sites did

so. We see a maximum in 2015, when one site contacted 34 separate third-parties (a raw

number that is likely underestimated by the Wayback Machine’s data)!

2.5.2 Top Trackers over Time

We now turn to an investigation of the top trackers each year: who are the top players in

the ecosystem, and how wide is their view of users’ browsing behaviors?

Coverage of Top Trackers. We define the coverage of a set of trackers as the percentage

of total sites from the dataset for which at least one of those trackers appears. For a single

tracker, its coverage is the percentage of sites on which it appears. Intuitively, coverage

suggests the concentration of tracking ability — greater coverage allows trackers to build

larger browsing profiles. This metric reaches toward the core privacy concern of tracking,

that certain entities may know nearly everything a person does on the web. We consider

trackers by domain name, even though some trackers are in fact owned by the same company
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Figure 2.7: Distribution of top sites for each year by number of unique third-parties (tracking-
capable domains) they contact. In later years, more sites appear to contact more third
parties.

(e.g., Google owns google-analytics.com, doubleclick.net, and the “+1” button served

from google.com), because a business relationship does not imply that the entities share

data, though some trackers may indeed share information out of public view.

Figure 2.8 illustrates the growth of tracker coverage over time. It considers both the

single domain with the highest coverage for each year (Top 1 Tracker) as well as the com-

bined coverage of the union of the top 5, 10 and 20 trackers. Confirming the lesson from

Section 2.6.2, the coverage rates we see for third party domains in the archive are similar to

live coverage of confirmed Vanilla cookie-based trackers.

Clearly, the coverage of top trackers has risen over time, suggesting that a small number

of third parties can observe an increasing portion of user browsing histories.

Popular Trackers over Time. Who are these top trackers? Figure 2.9 shows the rise and

fall of the top two trackers (“champions”) for each year. To create this figure, we make use of

the lesson in Section 2.6.4 to manually label known popular confirmed trackers. We identified

the two domains with the highest third-party request coverage for each year, omitting cases
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Figure 2.8: The growth in the coverage (percentage of top 500 sites tracked) of the top
1/5/10/20 trackers for each year is shown in the first and second panels, for all confirmed
trackers and for all third parties respectively. The right hand panel shows the values on the
live web for confirmed trackers, with the top 5 trackers covering about 70% of all sites in the
dataset. Note that top third party coverage in the archive is an excellent proxy for modern
confirmed tracker coverage today.

where the most popular tracker in a year appeared on only one site. We manually verified that

12/19 of these domains were in fact trackers by researching the domain, owning company,

archived behavior and context, and modern behaviors (if applicable). Based on this analysis,

we are able to assess the change in tracking behaviors even of domains for whom cookies are

lost in the archive (e.g., doubleclick.net). In particular, this analysis reveals trends in the

trackers with the most power to capture profiles of user behavior across many sites.

We find that in the early 2000s, no single tracker was present on more than 10% of top

sites, but in recent years, google-analytics.com has been present on nearly a third of

top sites and 2-4 others have been present on more than 10% and growing. Some, such as

doubleclick.net (acquired by Google in 2008) have been popular throughout the entire

time period of the graph, while others, such as scorecardresearch.com, have seen a much

more recent rise.

We note that google-analytics.com is a remarkable outlier with nearly 35% coverage in

2011. Google Analytics is also an outlier in that it is one of only two non-cross-site trackers

among the champions (gstatic.com, a Referred Analytics tracker, is the other). As an

Analytics type tracker, Google Analytics trackers users only within a single site, meaning
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Figure 2.9: This figure depicts variations in site coverage for a number of the most popular
confirmed trackers from years across the studied period. We call the two trackers embed-
ded on the most sites in a given year the “champions” of that year, filtered by manual
classification as described in the text.
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Figure 2.10: Changes in the frequency with which domains are referred to or refer to other
domains (based on HTTP Referer).

that its “coverage” is arguably less meaningful than that of a cross-site tracker. However,

we observe that Google Analytics could track users across sites via fingerprinting or by

changing its behavior to store tracking cookies. This observation highlights the need for

repeated measurements studies that provide transparency on the web: with a simple change

to its tracking infrastructure, Google Analytics could begin to track users across 40% of the

most popular sites on the web overnight. Thus, Google’s decision not to structure Google

Analytics in this way has a tremendous impact on user privacy.

2.5.3 Evolution of the Tracking Ecosystem

Finally, we consider the tracking ecosystem as a whole, focusing on relationships between

different trackers. We find a remarkable increase in the complexity of these relationship over

time. Again we consider only relationships observable using TrackingExcavator, not external

information about business relationships.

To study these relationships, we construct the graph of referring relationships between

elements on pages. For example, if we observe a third-party request from example.com to
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tracker.com, or from tracker.com referring to tracker2.com, the nodes for those domains

in the graph will be connected by edges.

We find a significant increase in complexity over time by examining several properties of

this graph (Figure 2.10). Over time, the mean number of referrals outward from domains

increases (top of Figure 2.10), while the number of domains that are never referred to by

other domains or never refer outward steadily decreases (middle of Figure 2.10). Meanwhile,

the maximum number of domains that refer to a single domain increases dramatically, sug-

gesting that individual third parties in the web ecosystem have gradually gained increasing

prominence and coverage. This reflects and confirms trends shown by other aspects of our

data (Figures 2.9 and 2.8). These trends illuminate an ecosystem of generally increasingly

connected relationships and players growing in size and influence. Appendix 2.8 shows this

evolution in graph form; the increase in complexity over time is quite striking.

2.5.4 Summary and Discussion

We have uncovered trends suggesting that tracking has become more prevalent and complex

in the 20 years since 1996: there are now more unique trackers exhibiting more types of

behaviors; websites contact increasing numbers of third parties, giving them the opportu-

nity to track users; the scope of top trackers has increased, providing them with a broader

view of user browsing behaviors; and the complexity and interconnectedness of the tracking

ecosystem has increased markedly.

From a privacy perspective, our findings show that over time, more third parties are

in a position to gather and utilize increasing amounts of information about users and their

browsing behaviors. This increase comes despite recent academic, policy, and media attention

on these privacy concerns and suggests that these discussions are far from resolved. As

researchers continue to conduct longitudinal measurements of web tracking going forward,

our work provides the necessary historical context in which to situate future developments.
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Figure 2.11: 2003, 2005 and 2007 referer graphs for the top 500, as seen in the Wayback
Machine’s archive. An from a domain referer.com to another domain referred.com

is included if any URL from referer.com is seen to be the referer for any URL from
referred.com. Note the increasing complexity of the graph over time. Note as well in-
creased connectivity, with a larger percentage of the graph joined in a single component.
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2.6 Evaluating the Wayback Machine as an
Archaeological Data Source for Tracking

The Wayback Machine provides a unique and comprehensive source of historical web data.

However, it was not created for the purpose of studying third-party web tracking and is thus

imperfect for that use. Nevertheless, the only way to study web tracking prior to explicit

measurements targeting it is to leverage materials previously archived for other purposes.

Therefore, before using the Wayback Machine’s archived data, it is essential to systematically

characterize and analyze its capabilities and flaws in the context of third-party tracking.

In this section we thus study the extent to which data from the Wayback Machine allows

us to study historical web tracking behaviors. Beyond providing confidence in the trends of

web tracking over time that we present in Section 2.5, we view this evaluation of the Wayback

Machine as a contribution of this chapter. While others have studied the quality of the

Wayback Machine’s archive, particularly with respect to the quality of the archived content

displayed on the top-level page (e.g., [130, 88, 28]), we are the first to systematically study

the quality of the Wayback Machine’s data about third-party requests, the key component of

web tracking.

To conduct our evaluation, we leverage four ground truth data sets collected from the

live web in 2011, 2013, 2015, and 2016. The 2011 data was originally used in [147] and

provided to us by those authors. All datasets contain classifications of third-party cookie-

based trackers (according to the above taxonomy) appearing on the Alexa top 500 sites (from

the time of each measurement). The 2015 and 2016 data was collected by TrackingExcavator

and further contains all HTTP requests, including those not classified as tracking.3 We plan

to release our ground truth datasets from 2013, 2015, and 2016.

We organize this section around a set of lessons that we draw from this evaluation. We

apply these lessons in our measurements in Section 2.5. We believe our findings can assist

3For comparison, the published results based on the 2011 dataset [147] measured tracking on the home-
pages of the top 500 websites as well as four additional pages on that domain; for the purposes of our
work, we re-analyzed the 2011 data using only homepages.
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August 1 August 25 September 1
All Third-Parties 324 304 301
Analytics 7 13 11
Vanilla 127 115 108
Forced 0 0 0
Referred 3 3 3
Personal 23 21 21
Referred Analytics 21 17 18

Table 2.3: Natural variability in the trackers observed on different visits to the Alexa top
100 in 2015. This variability can result from non-static webpage content, e.g., ad auctions
that result in different winners.

future researchers seeking to use the Wayback Machine as a resource for studying tracking

(or other web properties relying on third-party requests) over time.

2.6.1 Lesson (Challenge): The Wayback Machine provides a partial view of third-party re-

quests

A key question for using the Wayback Machine for historical measurements is: how complete

is the archive’s view of the past, both for the top-level pages and for the embedded content? In

this lesson, we explore why its view is incomplete, surfacing challenges that we will overcome

in subsequent lessons. We identify several reasons for the differences between the live and

Wayback measurements, and quantify the effects of each.

Variation Between Visits. Different trackers and other third parties may appear on a

site when it is loaded a second time, even if these views are close together; an example of

this variation would be disparity in tracking behaviors between ads in an ad network.

To estimate the degree of variation between page views, we compare three live runs

from August-September 2015 of the Alexa top 100 sites (Table 2.3). We find that variation

between runs even a week apart is notable (though not enough to account for all of the

differences between Wayback and live datasets). For the number of Vanilla trackers found,

the August 25th and September 1st runs vary by 7 trackers, or 6%.

Non-Archived and Blocked Requests. There are several reasons that the Wayback
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Type of Blocking Fraction Missed
Requests 1115 / 56,173 (2.0%)

Robots Exclusions URLs 609 / 27,532 (2.2%)
Domains 18 / 1150 (1.6%)
Requests 809 / 56,173 (1.4%)

Not Archived URLs 579 / 27,532 (2.1%)
Domains 8 / 1150 (0.7%)
Requests 9025 / 56,173 (16.1%)

Wayback Escapes URLs 4730 / 27,532 (17.2%)
Domains 132 / 1150 (11.5%)
Requests 404 / 56,173 (0.7%)

Inconsistent Timestamps URLs 156 / 27,532 (0.6%)
Domains 55 / 1150 (4.8%)

Table 2.4: For the archived versions of the Alexa top 500 sites from 2016, the fraction of
requests, unique URLs, and unique domains affected by robots exclusion (403 errors), not
archived (404), Wayback escapes (blocked by TrackingExcavator), or inconsistent timestamps
(filtered by TrackingExcavator).

Machine may fail to archive a response to a request, or provide a response that TrackingEx-

cavator must ignore (e.g., from a far different time than the one we requested or from the

live web). We describe these conditions here, and evaluate them in the context of a Wayback

Machine crawl of the top 500 pages archived in 2016, according to the 2016 Alexa top 500

rankings; we elaborate on this dataset in Section 2.5. Table 2.4 summarizes how often the

various conditions occur in this dataset, for requests, unique URLs, and unique domains.

In the case of domains, we count only those domains for which all requests are affected,

since those are the cases where we will never see a cookie or any other subsequent tracking

indicators for that domain.

Robots.txt Exclusions (403 errors). If a domain’s robots.txt asks that it not be crawled,

the Wayback Machine will respect that restriction and thus not archive the response. As

a result, we will not receive any information about that site (including cookies, or use of

Javascript) nor will we see any subsequent resources that would have resulted from that

request.

We find that only a small fraction of all requests, unique URLs, and (complete) domains

are affected by robots exclusion (Table 2.4). We note that robots exclusions are particularly
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common for popular trackers. Of the 20 most popular trackers on the 2016 live dataset,

12 (60%) are blocked at least once by robots.txt in the 2016 Wayback measurement. By

contrast, this is true for only 74/456, or 16.23%, of all Vanilla trackers seen in live.

Other Failures to Archive (404 errors). The Wayback Machine may fail to archive resources

for any number of reasons. For example, the domain serving a certain resource may have

been unavailable at the time of the archive, or changes in the Wayback Machine’s crawler

may result in different archiving behaviors over time. As shown in Table 2.4, missing archives

are rare.

URL Rewriting Failures (Wayback “Escapes”). Though the Wayback Machine’s archived

pages execute the corresponding archived JavaScript within the browser when TrackingEx-

cavator visits them, the Wayback Machine does not execute JavaScript during its archival

crawls of the web. Instead, it attempts to statically extract URLs from HTML and JavaScript

to find additional sites to archive. It then modifies the archived JavaScript, rewriting the

URLs in the included script to point to the archived copy of the resource. This process may

fail, particularly for dynamically generated URLs. As a result, when TrackingExcavator

visits archived pages, dynamically generated URLs not properly redirected to their archived

versions will cause the page to attempt to make a request to the live web, i.e., “escape” the

archive. TrackingExcavator blocks such escapes (see Section 2.4). As a result, the script

never runs on the archived site, never sets a cookie or leaks it, and thus TrackingExcavator

does not witness the associated tracking behavior.

We find that Wayback “escapes” are more common than robots exclusion or missing

archives (Table 2.4): 16.1% of all requests attempted to “escape” (i.e., were not properly

rewritten by the Wayback Machine) and were blocked by TrackingExcavator.

Inconsistent Timestamps. As others have documented [28], embedded resources in a webpage

archived by the Wayback Machine may occasionally have a timestamp far from the timestamp

of the top-level page. As described in Section 2.4, we ignore responses to requests for resources

with timestamps more than six months away.
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Figure 2.12: The fraction of domains categorized as Vanilla trackers in the live 2016 crawl
which, in the archival 2016 crawl, (1) set and leaked cookies and thus were confirmed as
trackers, (2) were only third-party requests (had at least one third-party request but no
cookies), (3) did not appear at all, or (4) other (e.g., had cookies but not at the time of a
third-party request, or cookies were not attached due to a cookie simulation bug).

Cascading Failures. Any of the above failures can lead to cascading failures, in that non-

archived responses or blocked requests will result in the omission of any subsequent requests

or cookie setting events that would have resulted from the success of the original request.

The “wake” of a single failure cannot be measured within an archival dataset, because events

following that failure are simply missing. To study the effect of these cascading failures, we

must compare an archival run to a live run from the same time; we do so in the next

subsection.

2.6.2 Lesson (Opportunity): Consider all third-party requests, in addition to confirmed

trackers

In the previous section, we evaluated the Wayback Machine’s view of third-party requests

within an archival measurement. For requests affected by the issues in Table 2.4, TrackingEx-
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cavator observes the existence of these requests — i.e., counts them as third parties — but

without the corresponding response may miss additional information (e.g., set cookies) that

would allow it to confirm these domains as trackers according to the taxonomy presented

earlier. However, this analysis cannot give us a sense of how many third-party requests are

entirely absent from Wayback data due to cascading failures, nor a sense of any other data

missing from the archive, such as missing cookie headers on otherwise archived responses.

For that, we must compare directly with live results.

We focus our attention on unique trackers: we attempt to identify which live trackers

are missing in the 2016 Wayback dataset, and why. For each tracker we observe in our

2016 live measurement, Figure 2.12 identifies whether we (1) also observe that tracker in

“Wayback mode,” (2) observe only a third-party request (but no confirmed cookie-based

tracking behavior, i.e., we classify it only as a third-party domain), or (3) do not observe

any requests to that tracker at all.

We conclude two things from this analysis. First, because the Wayback Machine may fail

to provide sufficient data about responses or miss cookies even in archived responses, many

trackers confirmed in the live dataset appear as simple third-party requests in the Wayback

data (the second column in Figure 2.12). For example, doubleclick.net, one of the most

popular trackers, appears as only a third party in Wayback data because of its robots.txt

file. Thus, we learn that to study third-party web tracking in the past, due to missing

data in the archive, we must consider all third-party requests, not only those confirmed

as trackers according to the taxonomy. Though considering only third-party requests will

overcount tracking in general (i.e., not all third parties on the web are trackers), we find that

it broadens our view of tracking behaviors in the archive.

Second, we find that a non-trivial fraction of trackers are missing entirely from the archive

(the third column in Figure 2.12). In the next subsection, we show that we can nevertheless

draw conclusions about trends over time, despite the fact that the Wayback Machine under-

represents the raw number of third parties contacted.
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2011 2013 2015 2016
Wayback (All Third Parties) 553 621 749 723
Wayback (Vanilla+Personal) 47 49 92 90
Live (Vanilla+Personal) 370 419 493 459
Wayback-to-Live Ratio
(Vanilla+Personal) 0.13 0.12 0.19 0.20

Table 2.5: We compare the prevalence of the most common tracking types (Vanilla and
Personal) over the four years for which we have data from the live web. Though the Wayback
Machine provides only partial data on trackers, it nevertheless illuminates a general upward
trend reflected in our ground truth data.

2.6.3 Lesson (Opportunity): The Wayback Machine’s data allows us to study trends over

time

As revealed above, the Wayback Machine’s view of the past may miss the presence of some

third parties entirely. Thus, one unfortunately cannot rely on the archive to shed light on

the exact raw numbers of trackers and other third parties over time. Instead, we ask: does

the Wayback Machine’s data reveal genuine historical trends?

To investigate trends, we compare all of our live datasets (2011, 2013, 2015, and 2016) to

their Wayback counterparts. Table 2.5 compares the number of Vanilla and Personal trackers

(the most prevalent types) detected in each dataset. For the purposes of this comparison,

we sum the two types, since their distinction depends only on the user’s browsing behaviors.

We also include the number of all third parties in the Wayback datasets, based on the

previous lesson. Though not all of these third parties represent trackers in live data, they

help illuminate trends in third party prevalence over time.

We draw two conclusions from this comparison. First, we find that we can rely on the

archive to illuminate general trends over time. Although confirmed trackers in “Wayback

mode” (as expected from our earlier lessons) underrepresent the number of confirmed trackers

found on the live web — and third parties in the archive overestimate confirmed trackers in

the live data — we find that the trends we see over time are comparable in both sets of

measurements. Critically, we see that the upward trend in our archival view is not merely
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the result of improvements in archive quality over time or other factors — we indeed observe

this trend reflected in ground truth data. We gain further confidence in these trends in

Section 2.5, where we see a rise in tracking behaviors since 1996 that corresponds with our

intuition. The absence of any large vertical steps in the figures in Section 2.5 further suggests

that the trends we identify are artifacts of the web evolving as opposed to any significant

changes in the Wayback Machine archival process.

Second, however, we find that — although long-term trends appear to be meaningfully

represented by the Wayback Machine — one should not place too much confidence into small

variations in trends. For example, the Wayback Machine’s data in 2013 appears to be worse

than in other years, under-representing the number of confirmed trackers more than average.

Thus, in Section 2.5, we do not report on results that rely on small variations in trends unless

we have other reasons to believe that these variations are meaningful.

2.6.4 Lesson (Opportunity): Popular trackers are represented in the Wayback Machine’s

data

Because popular trackers, by definition, appear on many sites that users likely browse to,

they have a strong effect on user privacy and are particularly important to examine. We

find that although the Wayback Machine misses some trackers (for reasons discussed above),

it does capture a large fraction of the most popular trackers — likely because the Wayback

Machine is more likely to have correctly archived at least one of each popular tracker’s many

appearances.

Specifically, when we examine the 2016 archival and live datasets, we find that 100% of

the top 20 trackers from the live dataset are represented as either confirmed trackers or other

third parties in the Wayback data. In general, more popular trackers are better represented

in Wayback data: 75% of the top 100 live trackers, compared to 53% of all live trackers.

Tracker popularity drops quickly — the first live tracker missing in Wayback data is #22,

which appears on only 22 of the top 500 websites; the 100th most popular tracker appears

on only 4 sites. By contrast, the top tracker appears on 208 sites. In other words, those
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trackers that have the greatest impact on user privacy do appear in the archive.

Based on this lesson, we focus part of Section 2.5’s analysis in on popular trackers, and

we manually label those that the Wayback Machine only sees as third parties but that we

know are confirmed trackers in live data.

2.6.5 Lesson (Opportunity): The Wayback Machine provides additional data beyond requests

Thus far, we have considered third-party requests and confirmed cookie-based trackers. How-

ever, the Wayback Machine provides, and TrackingExcavator collects, additional data related

to web tracking behaviors, particularly the use of various JavaScript APIs that allow third

parties to collect additional information about users and their machines (e.g., to re-identify

users based on fingerprints). For JavaScript correctly archived by the Wayback Machine,

TrackingExcavator observes accesses to the supported APIs (Appendix 2.7). For example,

we observe uses of navigator.userAgent as early as 1997.

2.6.6 Summary

In summary, we find that the Wayback Machine’s view of the past is incomplete, and that

its weaknesses particularly affect the third-party requests critical for evaluating web track-

ing over time. We identified and quantified those weaknesses in Section 2.6.1, and then

introduced findings and strategies for mitigating these weaknesses in Sections 2.6.2-2.6.5,

including considering third-party requests as well as confirmed trackers, manually labeling

known popular trackers, and studying general trends over time instead of raw numbers.

We leverage these strategies in our own measurements. By surfacing and evaluating these

lessons, we also intend to help guide future researchers relying on data from the Wayback

Machine.

We focus on the Wayback Machine since it is to our knowledge the most comprehensive

web archive. Applying our approach to other, more specialized archives [144], if relevant for

other research goals, would necessitate a new evaluation of the form we presented here.
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2.7 Fingerprint-Related JavaScript APIs

As described in Section 2.4, TrackingExcavator hooks a number of JavaScript APIs that may

be used in fingerprint-based tracking and drawn from prior work [43, 134, 137, 12, 13]. The

complete list:

• navigator.appCodeName

• navigator.appName

• navigator.appVersion

• navigator.cookieEnabled

• navigator.doNotTrack

• navigator.language

• navigator.languages

• navigator.maxTouchPoints

• navigator.mediaDevices

• navigator.mimeTypes

• navigator.platform

• navigator.plugins

• navigator.product

• navigator.productSub

• navigator.userAgent

• navigator.vendor

• navigator.vendorSub

• screen.availHeight
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• screen.availLeft

• screen.availTop

• screen.availWidth

• screen.colorDepth

• screen.height

• screen.orientation

• screen.pixelDepth

• screen.width

• CanvasRenderingContext2D.getImageData

• CanvasRenderingContext2D.fillText

• CanvasRenderingContext2D.strokeText

• WebGLRenderingContext.getImageData

• WebGLRenderingContext.fillText

• WebGLRenderingContext.strokeText

• HTMLCanvasElement.toDataURL

• window.TouchEvent

• HTMLElement.offsetHeight

• HTMLElement.offsetWidth

• HTMLElement.getBoundingClientRect
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2.8 Ecosystem Complexity

Figure 2.13 (on the next page) visually depicts the connections between entities in the track-

ing ecosystem that we observe in our datasets for 1996, 2000, 2004, 2008, 2012, and 2016:

domains as nodes, and referral relationships as edges. Note that the visual organization of

these graphs (with nodes in multiple tiers) is not meaningful and simply an artifact of the

graph visualization software. Over time, the complexity and interconnectedness of relation-

ships between third-party domains on the top 450 websites has increased dramatically.

2.9 Conclusion

Though third-party web tracking and its associated privacy concerns have received attention

in recent years, the practice long predates the first academic measurements studies of tracking

(begun in 2005). Indeed, in our measurements we find tracking behaviors as early as 1996.

We introduce TrackingExcavator, a measurement infrastructure for third-party web tracking

behaviors that leverages archive.org’s Wayback Machine to conduct historical studies. We

rigorously evaluate the Wayback Machine’s view of past third-party requests and develop

strategies for overcoming its limitations.

We then use TrackingExcavator to conduct the most extensive longitudinal study of the

third-party web tracking ecosystem to date, retrospectively from 1996 to present (2016).

We find that the web tracking ecosystem has expanded in scope and complexity over time:

today’s users browsing the web’s popular sites encounter more trackers, with more complex

behaviors, with wider coverage, and with more connections to other trackers, than at any

point in the past 20 years. We argue that understanding the trends in the web tracking

ecosystem over time — provided for the first time at this scale by our work — is important

to future discussions surrounding web tracking, both technical and political.
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(a) 1996

(b) 2000

(c) 2004

(d) 2008

(e) 2012

(f) 2016

Figure 2.13: Referrer graphs for the top 450 sites in 1996, 2000, 2004, 2008, 2012 and 2016 as
seen in the Wayback Machine’s archive. An edge from a domain referrer.com to another
domain referred.com is included if any URL from referrer.com is seen to be the referrer
for any request to referred.com. Note the increasing complexity of the graph over time.
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Chapter 3

REWRITING HISTORY: CHANGING THE ARCHIVED WEB
FROM THE PRESENT

In this chapter, I pivot from using sister technologies as a source of measurement data

(as in Chapter 2, where the Wayback Machine was used to study web tracking and other

properties of the web) to considering those sister technologies directly. I consider the socially

important uses of web archives (such as in academic research, journalism, and legal proceed-

ings) and study how motivated attackers might maliciously manipulate the view that clients

have of archival content. After discovering and developing vulnerabilities and attacks, this

work uses TrackingExcavator (Chapter 2) to quantify the prevalence of these vulnerabilities,

demonstrating the flexibility and power of this new measurement tool.

The work presented in this chapter is currently under submission, and if available, should

be cited in its conference-paper form.

3.1 Introduction

The Wayback Machine is a publicly browsable web archive which has cataloged and preserved

a collection of over 286 billion web pages over the period from 1996 to 2017 [76]. Like other

web archives, the Wayback Machine allows clients using ordinary web browsers to access

snapshots of past websites through a web interface1, enabling ordinary citizens as well as

technical experts to see how the web has changed and what it once contained. These archival

snapshots of websites are rendered in HTML, Javascript, and CSS just like the modern web,

preserving not only their content but also their client-side dynamic behaviors, making them

a rich cultural and technical preserve.

1https://web.archive.org/



46

The Wayback Machine is frequently used in a variety of contexts critical to our free society,

including scholarly articles, journalism, and legal proceedings. Scientists may cite archived

snapshots in their scientific papers to increase the durability of their references [42, 143],

while journalists have used archives to understand how websites such as official government

pages have changed [139], and lawyers often use archival snapshots as evidence in legal cases,

including civil and criminal cases, administrative proceedings, and patent litigation (e.g.,

[3, 4, 6, 142]). While other researchers have studied inaccuracies in the Wayback Machine

which arise accidentally, we observe that these socially and financially important uses sug-

gest incentives to intentionally manipulate archives after the fact. For example, governments

might want to suppress or change historical information, companies might want to manipu-

late evidence of prior art in a patent case, organizations might want to hide evidence of past

wrongdoing, and news sources might want to manipulate source material for their reporting.

To our knowledge, this chapter describes the first work investigating the technical vulner-

abilities and attacks that might be used to perform such intentional manipulation. That is:

how might attackers attempt to rewrite history? How might they intentionally cause clients

who view the archive to see archived websites with content, appearance, and behavior that

are different from the actual website at archival time? We analyze the way that the Wayback

Machine functions, finding that in fact, there are several types of vulnerabilities which would

allow an attacker today to take full control of clients’ views of snapshots. For example, snap-

shots sometimes cause clients to accidentally mix content from the live web into an archived

page, allowing servers on the live web to inject content or code into clients’ views of the

archive. Our attacks are global — they affect the appearance and behavior of snapshots for

all visitors, and they do not involve the direct compromise of archival or publisher servers or

databases.

We demonstrate the viability of our attacks with proofs-of-concept. For example, we

demonstrate the ability to inject arbitrary Javascript code into client views of archival snap-

shots, allowing us to modify text, images, styling, and behavior, subtly or completely rewrit-

ing the web of the past. Figure 3.1 shows such an attack, in which we took complete control
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of a snapshot of reuters.com from 2011.2

We then quantify the prevalence of the types of vulnerabilities we discovered, seeking them

in the wild through a measurement study of archived websites. We find that vulnerabilities

to our attacks are very common: over snapshots of the Top 500 most popular websites of

the past 20 years, 74% contain some vulnerability which exposes the snapshot to complete

control by an attacker (65% for URLs sampled from the Top Million). Additionally, we

perform these same measurements over a set of website snapshots which have been cited in

legal contexts such as court decisions, administrative decisions, and documents filed as trial

court and appellate briefs, finding that 37 domains referenced in the 991 legal documents we

examined are vulnerable to an attack which would provide complete control to some attacker

over the way clients view the snapshot. We note that we are unaware of any attackers who

have used these vulnerabilities for malicious purposes in practice — rather, our measurements

show that a large fraction of sites are or were vulnerable to such attacks, suggesting that the

consumer of web archives should exercise caution.

While an instance of our attacks may be evident upon detailed technical inspection of

the way a client renders a snapshot, they are likely to be completely invisible to less tech-

nical users of the archive. Even when investigated by technical experts, attackers may have

plausible deniability, since modern content can and does become intermingled with archival

content in many benign cases [89, 27]. We explore a variety of defenses that could help clients

see correct views of snapshots, and we design and build ArchiveWatcher, an end-user defense

which demonstrates a subset of our defensive techniques, demonstrating techniques which

may aid technical experts, such as expert witnesses and fact checkers in legal and journalism

contexts, in determining when a view of a website can be reliably cited.

This chapter makes the following contributions:

• We analyze the Wayback Machine in order to identify vulnerabilities which enable

adversaries to manipulate clients’ view of archival snapshots (Section 3.4).

2For ethical reasons, we disabled our attacks after showing that they worked.
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• We develop attacks which exploit these vulnerabilities, exploring how an adversary can

change the appearance and behavior of snapshots seen by all visitors to the archive,

even years after the snapshot was captured. We execute proofs-of-concept of our attacks

against real snapshots in the Wayback Machine (Section 3.5).

• We measure the prevalence in the wild of vulnerabilities which enable our attacks,

finding that they are quite common, including a number of vulnerabilities which affect

snapshots cited in legal cases and decisions (Section 3.6).

• We explore the space of possible defenses which might be deployed by archives, website

publishers, and end-users, and we build an end-user defense, ArchiveWatcher, that

detects and blocks vulnerabilities to our attacks (Section 3.7).

Before the publication of the conference paper describing this work, we will disclose these

vulnerabilities to the Wayback Machine, and we will make our defense, ArchiveWatcher,

publicly available.

3.2 Background and Related Work

3.2.1 How Web Archives Work

Overview: Archival Protocol and Systems. We focus our analysis of web archives

on the Internet Archive’s Wayback Machine, since it is the largest publicly available web

archive, with a goal of archiving as much of the public available web as possible.

The Wayback Machine consists of two major components relevant to this paper. The first

is the archive crawler, which visits, retrieves, loads, and archives pages on the web into

the archive’s database. The second is the archive front-end, which is the system of web

servers, accessible via https://web.archive.org, which allow anyone to use their browser

to view the web of the past.

In this paper, we refer to the archival preservation of a top level page as an archival

snapshot, or simply snapshot, and the archival copies of a page’s subresources (e.g., images,

scripts, CSS, etc.) as archival captures. Each snapshot or capture was saved at a moment
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in time, called its timestamp, which appears in its URL. For example, https://web.

archive.org/web/20001110101700/http://www.ccs2000.org:80/ refers to a capture of

the homepage page for the 7th CCS which was saved by the archival crawler at 10:17:00

UTC on 11 November 2000. When a web browser visits this snapshot, it does the same

thing as when it accesses a normal site on the live web: it recursively downloads, parses,

executes, and renders the HTML, Javascript, and CSS of the page. The only difference

is that the archive plays the role of the first- and third-party web servers which originally

published the the site, serving the resources that make up the snapshot.

The archive crawler performs regular crawls of a large set of pages, providing significant

coverage of the web. Internet Archive’s Frequently Asked Questions page does not offer

details about how they find sites to crawl, but states that “crawls tend to find sites that are

well linked from other sites”, and that they collect pages that are “publicly available” [77].

Additionally, any person can use a form on the Wayback Machine’s website “Save Page

Now”, which “Capture[s] a web page as it appears now for use as a trusted citation in the

future.” This feature causes the archival crawler to immediately capture the given page or

resource, including its subresources [78]. We discuss additional technical details about the

Wayback Machine inline as appropriate.

3.2.2 How are Web Archives Used?

Web archives are used in variety of important social contexts, including legal proceedings,

news articles, academic publications. We take particular interest in their use in legal pro-

ceedings for two reasons: because the integrity of the legal process is important to our free

society, and because legal proceedings may motivate involved parties to launch attacks that

modify evidence in their favor, such as by using the attacks described in this paper. Lawyers

use web archives in a wide variety of legal contexts, such as civil lawsuits (e.g., [6]), criminal

cases (e.g., [4]), administrative proceedings (e.g., [5]), federal claims court (e.g., [3]), and

patent litigation (e.g., [142]), anc they may use archival evidence for various purposes, such
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as to demonstrate “prior art” in patent litigation 3 or to recover evidence of wrongdoing that

has since been deleted from the live web.

Because of these socially important uses, users of archives should take appropriate steps

to ensure that archival data they use is trustworthy and not manipulated. We emphasize that

we are unaware of any attacks like the ones in this paper being used in practice. However,

this work demonstrates that not only are attacks are possible (Sections 3.4 & 3.5), but also

that the vulnerabilities which enable them are very common in the wild (Section 3.6).

3.2.3 Legal Guidance on Web Archives

Legal scholars have written on the evidence standards that do and should govern the admis-

sibility of archival material. Eltgroth encouraged the use of existing evidence standards to

allow “reliable evidence from the Wayback Machine [to be] admitted as any other Internet-

derived proof” [48], while Gazaryan argued in 2013 argued for the need to lower the difficulty

of using archival material as evidence [57]. Others have advised lawyers on best practices such

as employing experts to evaluate the technical limitations of the archive [142]. These articles

discuss only non-adversarial factors, while we focus on the technical aspects of adversarial

manipulation rather than the legal aspects of incidental inaccuracies.

In 2007, Fagan raised the possibility of “E-Evidence Tampering”, noting that archival

infrastructure may be compromised, or that an archived website might be cached or archived

in a compromised state [53]. Our work is different in that we consider less privileged attackers,

who do not compromise the archive.

3.2.4 Technical Work on or with Web Archives

Computer scientists have used the Wayback Machine in research: Nikiforakis et al. measured

longitudinal trends in Javascript inclusion from 2001 to 2010 [135]; Soska and Christin used

archival data to develop and evaluate a method for determining which websites would become

3Patents must be original to be valid, and prior art is information published prior to a patent which might
be relevant to the patent’s claims of originality[7].
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malicious over time [158]; Lerner et al. studied third-party web tracking using archival

data [14]; and Hackett et al. studied the evolution of website accessibility from 1997 to

2002 [65].

Others have studied the (non-malicious) incompleteness or inconsistency of web archives

(e.g., [130, 88, 18, 28]). We find in our work that the technical limitations of archives that

lead to accidental incompleteness can be leveraged intentionally by adversaries.

3.3 Threat Model

In our threat model, we consider attacks in which clients (both people and automated sys-

tems) browsing archival material are maliciously caused to see content that does not ac-

curately reflect the the web of the past. Critically, we show that this is possible without

requiring attacks to be launched by the archive itself, and without compromising website

publisher or archival servers. Instead, the vulnerabilities which enable our attacks involve

entirely ordinary interaction with archives, such as hosting content on domains and servers

the attacker rightfully owns and requesting that the archive capture specific URLs.

We note that the vulnerabilities we consider can also cause non-malicious inaccuracies in

the archive. These non-malicious inaccuracies have been discussed in other work (e.g., [17,

16, 151]), and could an our defenses Section 3.7 might incidentally mitigate them. However,

we focus on the ways in which our vulnerabilities can be used intentionally by malicious

actors.

3.3.1 Definitions

We refer to a single capture of a web page as a snapshot or archival snapshot. For exam-

ple, http://web.archive.org/web/20000101000000/http://example.com is a snapshot

of http://example.com which aims to represent its appearance as of 1 January, 2000. We

will use the terms time-of-archive, timestamp, or archival timestamp to refer to the

time at which a particular snapshot was taken. Prior to time-of-archive, we may refer to

time-of-publication, when the first-party website chose what content to include in its web-
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site and published it on the web. We may use these terms to refer to the domains involved

in an attack and their owners at different times. For example, we may refer to the time-

of-archive first-party, by which we mean “the entity which owned example.com at the time

that the snapshot in question was archived,” noting that ownership may change over time.

Figure 3.2 depicts the relationship of different times in the lifecycle of a snapshot.

We will refer to as clients the end-users and devices that use the archival front-end to

view snapshots, and who may rely upon those snapshots for information about the past.

For example, a client may wish to refer to the content of http://example.com in 2000 in

the course of a legal argument. To do so, they would use an ordinary browser (the client

browser) to access the snapshot “http://web.archive.org/web/20000101000000/http:

//example.com”. We will refer to the time at which a client accesses a snapshot as the

time-of-access. For example, if a client examines the past contents of example.com on

19 May 2017, then 19 May is the time-of-access in this scenario. If an attack has been

made against that snapshot, then the client may see a modified version of the snapshot at

the time-of-access, rather than something which accurately reflects the site’s appearance at

time-of-archive.

We refer to the time at which an attacker takes an action to deploy an attack as the

time-of-attack. Since our attacks sometimes require multiple actions by the attacker at

different times, there may be multiple times-of-attack for a scenario. The time-of-attack may

be either before or after time-of-archive, depending on the attack, and time-of-attack may

precede or coincide with payload delivery to the client at time-of-access.

3.3.2 Attacker’s Goals

Our attacks aim to change what clients see when they view archived snapshots — that is, to

cause the client browser to display snapshots incorrectly, rendering content and exhibiting

behavior (i.e., running code) which do not reflect the original website nor (in the case of

benign archival errors) the website as it had originally been preserved in the archive.

We observe that attackers may have incentives to modify both their own and others’
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content in the archive. For example, if Alice accuses Bob of publishing slander on his

website, then Bob may wish to retroactively remove the slander from the archive of his

website. Alternatively, Alice (or an uninvolved party, such as Mallory) may frame Bob by

retroactively adding slander to snapshots of his site. Attackers may be motivated by a wide

variety of personal, political, legal, and financial motivations.

We emphasize that although our threat model encompasses attacks that add material to

the archive’s databases, the adversary must only do so legitimately, not by compromising

those databases. That is, some attacks involve archiving new websites that we create as part

of an attack.

By default, successful attacks are visible to any client who views that archived resource.

However, attackers could also customise their attacks for different clients. For example,

attackers might identify clients via techniques like browser fingerprinting [54, 138, 44, 128],

or by using tracking cookies [147]. Though we note such customization is possible, we do

not explore it further in this chapter.

3.3.3 Possible Attackers

Under our threat model, the attacker owns — at time-of-attack — the domain from which the

attack is mounted. For a given victim snapshot, the attacker may either be the owner of

the first-party domain (e.g., example.com) or the owner of a third-party domain on that

page (e.g., ads.com, serving an ad embedded inside example.com).

In a third-party attack, an attacker who controls ads.com (either at time-of-archive or

in the future) may wish to modify the snapshot of example.com. To motivate a first-party

attack — example.com modifying itself — we note that the ownership of domains may change

over time. Thus, for example, a different entity may own example.com now than in the past,

and that new owner may now wish to modify past archives of example.com. The present

first-party owner might also be the same as the past owner, but seeking to alter its own past

archives.

Thus, depending on the attack, an attacker must be able to serve content from one of
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the first- or third-party domains that make up the target snapshot, either at time-of-archive

and/or at time-of-access. To meet this criterion, the attacker may either already own relevant

domains, or they might purchase domains specifically to perform these attacks. They might

also be able to hijack domains illicitly, e.g., through DNS poisoning. The means by which

the attacker gains the ability to publish content from the domain of the vulnerable resource

is orthogonal to the discussions of this chapter.

3.4 Analyzing the Wayback Machine for Vulnerabilities

We analyzed the Wayback Machine, surfacing three types of vulnerabilities which emerge

from its design. Those types of vulnerabilities are Archive-Escapes, Same-Origin Es-

capes, and Never-Archived Resources, detailed below.

3.4.1 Archive-Escapes

To deliver snapshot content, the Wayback Machine plays the role of all web servers which

were originally involved in serving the archived site. That is, it serves archived versions of

all first- and third-party content the client requests while rendering its view of the snapshot.

To cause the client to correctly request all these resources from the archive, rather than

the live web, the archive performs URL rewriting, modifying URLs in archived HTML,

Javascript, and CSS to make them refer to archived versions of the same URL. For example,

the archive may find the URL http://example.com/script.js in some HTML at time-of-

archive, and rewrite the HTML so that the URL instead reads http://web.archive.org/

web/<timestamp>/example.com/script.js, where the timestamp of the archived script

matches the timestamp of the archived HTML.

URL rewriting is not perfect, primarily because it does not account for client-side dy-

namically generated URLs. We find that when Javascript computes subresource URLs using

computation as simple as string concatenation, then URL rewriting fails and clients end up

making requests to the live web to load those subresources. For example, if URL rewriting

fails, the client might accidentally load a live copy of example.com/script.js instead of
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its archived version. These live web subresources are incorporated into the client’s rendered

view of the snapshot, mixing live and archived content and behavior.

We refer to the request and use of live-web resources as part of a snapshot view as

an Archive-Escape, the first of our classes of vulnerabilities. We refer to the domain

contacted for live resources as the archive-escape destination, such that in the example

above, example.com is an archive-escape destination. Whenever there is an archive-escape,

the destination of that escape becomes a potential attacker, since that domain can now serve

a malicious payload on the live web at the escaping URL. For example, the live copy of

example.com/script.js can be replaced with a malicious payload. Note that the archive-

escape destination may be the same domain as that of the victim snapshot.

3.4.2 Same-Origin Escapes

We discovered a second class of vulnerability, related to the fact that archives take on the

role of serving both content from all of the domains which were involved in a snapshot at

time-of-publication.

As background, browsers prevent third-parties inside <iframe>s from accessing or mod-

ifying data from the main page. This policy of preventing cross-origin access is called the

Same-Origin Policy. So, for example, if http://example.com embeds http://ads.com in a

frame, code from ads.com (running inside the frame) will be blocked by the browser from

reading or influencing any parts of the page outside of its frame. This allow sites to safely em-

bed content from third-parties within the context of their own pages. The http://ads.com

attacker might embed malicious code which attempts to modify the page, but it will be

blocked from doing so by the Same-Origin Policy.

The Same-Origin Policy, however, is ineffective in the archival context. Since all archived

resources are loaded from the archive, this means that all resources making up a snapshot,

including both first- and third-party resources, are loaded by the client from a single domain,

archive.org. When this occurs, a vulnerability arises: code from the embedded frame now

executes without the isolation provided on the live web by the Same-Origin Policy, allowing it
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to reach outside of its frame to modify any aspect of the main page. This allows an attacker to

embed an attack payload inside of an <iframe>, where it will become active when preserved

by the archive and served to clients, modifying the client’s view of the containing snapshot.

3.4.3 Never-Archived Resources and Nearest-Neighbor Timestamp Matching

Our third class of vulnerability arises from the interaction of two properties of the Wayback

Machine: its incompleteness, and its nearest-neighbor timestamp matching.

First, we discuss incompleteness. Many pages in the Wayback Machine include re-

sources which the archive has never successfully captured. There are a variety of rea-

sons why this might occur, including archival crawler errors or a partial unavailability of

the publisher’s web server at time-of-archive. For example, snapshot’s HTML might in-

clude an image, but that image has never been saved in the archive’s database. When

the client asks for a never-archived resource, the archive front-end responds with an HTTP

X-Archive-Wayback-Runtime-Error header with value ResourceNotInArchiveException,

and error code 404. Our measurements (Section 3.6 show that never-archived resources arise

quite commonly.

Second, we discuss the archive front-end’s nearest-neighbor timestamp matching

policy. Image that a client requests an archived resource R at a timestamp T , and that

the archive’s database contains captures of R, but only with timestamps 6= T . When this

happens, the archive will find the capture of R with timestamp as close as possible to T ,

and redirect the client to that version. For example, imagine a client that requests to visit

a March 2005 snapshot of example.com. If example.com was never captured in March of

2005, but was captured in April, then the archive would redirect the browser (302 FOUND)

to the April timestamp.

In non-malicious situations, this “nearest-neighbor” behavior allows clients to view a more

complete picture of the past in the case that a snapshot’s subresources were not captured

at the exact moment the snapshot was. However, there is no apparent limit to the time

delta permitted by nearest-neighbor timestamp matching. Thus it is possible, for example,
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to request a resource from 1996 and be redirected to a capture of that resource from 2016, if

no other closer timestamp exists. We refer to instances where client browsers are redirected

to timestamps very far in time from the original page as anachronisms.

An attacker who owns the domain of a never-archive resource can abuse these observations

by inserting a malicious payload as the anachronistic capture of that missing resource, which

will be served to clients due to nearest-neighbor matching.

3.5 Rewriting History: Our Attacks

Having discussed our vulnerabilities, we delve into the design of attacks which exploit these

vulnerabilities to rewrite history. For reference in discussing these attacks, recall that

Figure 3.2 depicts the lifecycle of a snapshot and possible attacks against it.

3.5.1 Attack #1: Archive-Escape Abuse

Preliminaries and Attacker. The precondition for Archive-Escape Abuse is the presence

of an archive-escape vulnerability in the victim snapshot. The potential attacker is the

owner of the destination of the archive-escape, to whom the client makes a request for the

vulnerable resource. Because the attacker delivers the payload from their own servers (rather

than via the archive) at time-of-access, we refer to this as an active attack.

Attack Concept. To mount this attack, the attacker (the destination of an archive-escape),

publishes malicious content at the escaping URL. If the archive-escape is to a static resource

like an image, then the attacker will only be able to affect that resource; if the archive-escape

is a request for a script or stylesheet, then the attacker can choose arbitrary malicious code

to execute.

Sequence of Events for Attack #1.

1. The victim page is published. (Optional: If the attacker is the first-party domain

wishing to enable future modifications of itself, the attacker can intentionally include

requests which will result in archive-escapes.)
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2. The page is archived as the victim snapshot.

3. The victim snapshot, when loaded, causes the client browser to make an archive-escape

request.

4. The attacker (who owns the domain on which the escaping script is hosted) serves

malicious code in response to the archive-escape request. The malicious code runs in

the client browser and modifies the appearance of the snapshot so that the client sees

an inaccurate view of the page.

Proof of Concept Attack Implementation. We developed a proof-of-concept implemen-

tation of Attack #1, demonstrating the ability to attack snapshots of websites over which

we have no control and which were archived years ago. We used our measurements (Sec-

tion 3.6) to locate archive-escape vulnerabilities where the attacker domain was unowned,

using whois. Finding that http://web.archive.org/web/20110901233330/reuters.com

generates an archive-escape to http://cdn.projecthaile.com/js/trb-1.js, and that as

of 19 March 2017, projecthaile.com had no owner. We purchased projecthaile.com and

hosted our own version of /js/trb-1.js which modifies specific elements of the reuters.com

snapshot. This attack resulted in the screenshot shown in Figure 3.1, in which we replaced

a news article image and headline with our own.

As with all of our attacks against snapshots we do not own, we disabled the attack after

confirming that it worked, so as not to disrupt the public’s view of the snapshot. Additionally,

we have purchased the remaining unowned domains (without hosting anything from them)

for this attack to prevent any other attackers from buying and using them.

Advantages and Disadvantages of Attack #1. Attack #1 is an active attack, where

the attacker’s server delivers payloads directly to clients, allowing an attacker to modify

their attack over time, customize it per client, or disable the attack entirely. However, it also

means the attack is not permanent. Additionally, defenses which block archive-escapes are

among the easiest for clients to deploy.
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3.5.2 Attack #2: Same-Origin Escape Abuse

Preliminaries and Attacker. Potential Same-Origin Escape attackers include all third-

parties embedded in <iframes> at time-of-archive. However, this attack requires foresight —

the attacker needs to have included their payload inside their <iframe> at time-of-archive,

so that it can be preserved and served from the archive’s database. Note that this makes

Attack #2 a passive attack, since the payload is stored and delivered to the client by the

archive, rather than directly from the attacker’s server at time-of-access.

Attack Concept. As described above, this attack abuses the lower level of isolation which

the client browser applies to frames when they are delivered from a single origin (the archive’s

origin) rather than multiple origins, as they are served on the live web. The first-party

publisher includes the attacker in their page under the assumption that malicious code the

attacker writes to deface the first-party’s page will be unable to do so because of the Same-

Origin Policy, and this assumption is violated in the archival context.

Sequence of Events for Attack #2.

1. A victim site includes a third-party in an <iframe>, where they are now a potential

Same-Origin Escape attacker.

2. The third-party attacker publishes malicious code in its <iframe>.

3. In the live web, the malicious code executes, but its effects are blocked by the browser,

according to the Same-Origin Policy.

4. The first-party page is archived as a snapshot, including the attacker’s <iframe>.

5. When the snapshot is loaded, both the page and the <iframe> are served from web.

archive.org. Since they are now served from the same domain, the Same-Origin

Policy no longer applies, and the malicious code in the <iframe> can make arbitrary

modifications to client’s view of the page.

Proof of Concept Attack Implementation. For Attack #2, we developed a prototype

demonstration against a toy website which we created and archived for demonstration pur-

poses. The reason is that this attack requires the attacker to be a third-party with foresight,
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and we do not have a third-party position on any websites we do not control which we could

use to demonstrate the attack.

Thus, to demonstrate this attack, we published, on the live web, the victim page of our

first-party domain, including an <iframe> of our third-party domain. Inside the <iframe>,

we then deployed attack code which attempts to modify elements of the first-party page.

On the live web, this attack code fails, due to the Same-Origin Policy. We then requested

that the Wayback Machine “Save Page Now” for our first-party victim page, causing it to

archive that page and, as part of archiving that page, also archive the attacker’s <iframe>

with its attack code. When viewing the snapshot of the victim page in the archive, both

first- and third-party content are served from the same domain, causing the Same-Origin

Policy to no longer apply, and allowing the third-party code to modify clients’ views of the

victim snapshot.

Advantages and Disadvantages of Attack #2. This attack has several strengths. First,

the prerequisites for performing the attack are minimal, since all that is required is to be a

third-party who can execute Javascript. Third-party frames are commonly embedded and

trusted by websites, and it may even be possible to purchase advertising space in order to

gain the position needed to execute the attack. Additionally, there are some third-parties

who are present on a large fraction of websites (see Section 3.6), meaning that for certain

attackers, this attack represents a huge capability to modify snapshots of a large number of

websites.

However, this attack is significantly limited because the attacker must have foresight:

Their attack code, and thus the changes they wish to cause in the client’s view, must be

chosen before time-of-archive, since the attack code must itself be stored in the archive.

3.5.3 Attack #3: “Same-Origin Escape” + “Archive-Escape”

Preliminaries and Attacker. Noting the limitation of Attack #2 requiring foresight, we

consider a stronger way to use Same-Origin Escapes: Attack #3. This attack uses a Same-
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Origin Escape to create an intentional archive-escape, allowing the attacker to launch a later

attack without foresight. Attack #3 is applicable any time Attack #2 is applicable, since

it begins with a third-party in an <iframe> executing Attack #2 in order to create a later

opportunity for Attack #1.

Attack Concept. This attack combines Attacks #1 and #2. Here, the attacker uses a

Same-Origin Escape (malicious code in an <iframe>) to intentionally cause archive-escapes,

with a destination the attacker controls, in the snapshot of the victim page. Once this has

been done, the attacker is now capable of performing archive-escape abuse, immediately or

at a later time.

Sequence of Events for Attack #3.

1. The attacker must be a third-party who is embedded as an <iframe> on the target

page as of time-of-publication.

2. The attacker chooses a destination payload URL which they control, and embeds an

archive-escape to that URL as the src attribute of a <script> tag in their <iframe>.

3. The page, along with the <iframe>, is archived.

4. Some time in the future, the attacker chooses and publishes a payload at the archive-

escape URL.

5. When a client browser loads the snapshot, the archived <iframe> is retrieved from the

archive, including the script which causes an archive-escape. The browser retrieves the

payload and executes it in the context of the <iframe>. Since the <iframe> is archived,

it is not isolated by the Same-Origin Policy (see Section 3.5.2) allowing the modern

attack script to cause arbitrary modifications to the client’s view of the snapshot.

Proof of Concept Attack Implementation. Since Attack #3 leverage Attack #2

(Same-Origin Escape), we created a similar victim/attacker pair of testbed websites to

demonstrate this attack. We again deployed attack code inside a third-party <iframe>,

but in this case our attack code used string concatenation to create an archive-escape to the

third-party domain rather than directly modifying the snapshot content directly. We then
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hosted the snapshot-modifying code on the live web at the third-party domain.

Advantages and Disadvantages of Attack #3. This attack allows archive-escape at-

tacks against a page which does not naturally generate any archive-escapes to the attacker’s

domain, making it subject to the disadvantages of archive-escape attacks discussed above.

Since the archive-escape payload can be chosen after time-of-archive, this attack reduces

a Same-Origin Escape attacker’s need for foresight: they must only choose to enable a future

attack by embedding a small amount of archive-escape generating code in the <iframe>,

without the need to know how exactly they will change the snapshot in the future. An

attacker such as a content delivery network or advertiser which appears on many pages

could even choose to seed many pages with archive-escapes in order to preserve their ability

to attack snapshots of many pages later on.

3.5.4 Attack #4: Anachronism-Injection

Preliminaries and Attacker. The precondition for Anachronism-Injection is a page which

contains at least one resource which has never been captured by the archive. The potential

attacker is the owner of the domain of that never-archived resource, who is in a position to

publish a malicious version of that resource and cause that payload to be preserved in the

archive as the resource’s first (and at that point only) capture.

Attack Concept. The attacker publishes payload code to the missing-resource’s URL on

the live web, then uses the archive’s “Save Page Now” feature to archive the payload. For

example, a snapshot from 2000 might include a script capture, also from 2000. If that script

has never been archived, then today, in 2017, the owner of the script’s domain can publish

a malicious payload at the script’s URL and use the archive’s “Save Page Now” feature to

create a capture of the script with a 2017 timestamp. Once the missing resource has been

archived, it will be the only capture of that resource in the archive (since a precondition

of the attack was that the resource had never before been archived). As the only capture

of the resource, its timestamp necessarily is (and always will be) the nearest neighbor to
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the timestamp requested in the victim snapshot, despite being 17 years distant. Thus the

payload will be loaded in the context of the victim snapshot, as client requests are nearest-

neighbor redirected to the malicious payload’s timestamp. Even if more captures of the

malicious resource are made afterwards, the payload will always have a timestamp that is

strictly earlier, and thus which is closer to the victim snapshot’s timestamp, than those

subsequent captures, making the attack permanently effective.

Sequence of Events for Attack #4.

1. A victim snapshot refers to a vulnerable resource which has never been archived.

2. The attacker, who owns the vulnerable resource’s domain, publishes an attack payload

on the live web.

3. The attacker uses the archive’s “Save Page Now” feature to cause the payload to be

preserved as the first and only extant capture of the vulnerable resource.

4. When a client browses the victim snapshot, their browser makes a request for the

vulnerable resource at the timestamp of the snapshot. In response, the archival front-

end redirects the client browser to the malicious, anachronistic capture of the resource,

since it has the timestamp closest to the requested version.

Proof-of-Concept Attack Implementation. As with Attack #1, we could demonstrate

the Anachronism-Injection attack on snapshots of previously-archived websites over which

we have no control. However, because this attack permanently alters the victim snapshot

(even if our injected anachronism is not expressly malicious), we chose not to implement this

attack on real victim snapshots. Instead, we test it on our own testbed websites, similarly

to Attacks #2 and #3.

We note that executing this attack took careful planning, since on several occasions we

deployed attack code that was slightly incorrect, forcing us to start over with entirely new

victim and attacker pages, since once the attack code is archived, the attacker is unable

to replace it with different attack code, since all subsequently archived code will have a

timestamp farther from the victim snapshot’s timestamp. However, using this attack we
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were able to take control of our testbed victim snapshot.

Advantages and Disadvantages of Attack #4. This attack is a passive attack, with the

advantage that once the attack is in place, it becomes permanent. However, the flip side to

this advantage is that the attacker cannot easily disable the attack, since the content which

enables the attack has been permanently preserved in the archive’s database.

Indeed, this attack’s main weakness is that it is a one-time opportunity. Once the attacker

has created a payload and caused it to be archived, they no longer have any way to change

the behavior of that attack, since it is permanently the closest neighbor to the vulnerable

resource. However, an attacker could choose to make two distinct modifications to the attack

to gain the ability to continue to modify the payload over time:

1. Archive-escape extension. In this version of the attack, the malicious code cre-

ates an intentional archive-escape, allowing persistent control from the present by the

attacker. This version fails against archive-escape-blocking defenses.

2. Anachronism chaining. In this version, in addition to performing malicious modi-

fications of the snapshot, the payload also causes the client to make a request for the

archival version of another, different URL which has never been archived. In other

words, while deploying the payload, the attacker intentionally creates the precondi-

tions for another Anachronism Injection attack, which they can exploit in the future.

For example, the archived payload script attack0.js might make a request for the

never-archived script attack1.js. This request will fail until the attacker changes the

content of the snapshot again, at which point they host and archive attack1.js. This

chaining can continue indefinitely (attack2.js, attack3.js, etc.).

3.5.5 Reflecting on Attacks

We now step back and reflect on our attacks, which are summarized in Table 3.1. We

highlight several axes along which we can distinguish our attacks:

Passive vs. Active Attacks. Attacks differ by whether the payload is loaded from the
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Requires Passive or
# Name Foresight? Active?

1 Archive-Escape Abuse No Active
2 Same-Origin Escape Yes Passive
3 Same-Origin Escape ->Archive Escape Yes Active
4 Anachronism Injection No Passive

Table 3.1: A summary of the attacks we develop. Attacks requiring foresight necessitate the
attacker to plant a payload (e.g., Javascript code) before the time-of-archive of the victim
page. At the time-of-access, attacks served from an archived version of an attacker’s page
are passive, whereas attacks served from the attacker’s server in the live web are active.

archive itself — a passive attack — or from an attacker’s live web server — an active at-

tack. In a passive attack, the attacker is not actively involved at time-of-access. Specifically,

Attacks #1 and #3, which both use archive-escapes, are active attacks, since the attacker’s

server is the destination of the archive-escape. By contrast, Attacks #2 and #4 deliver

payloads the attacker has placed in the archive, and which are delivered to the client by the

archive front-end.

Some Attacks Require Foresight. Some attacks require foresight on the part of the

attacker. By foresight, we mean that the attacker must define the attack payload (e.g., the

Javascript code to run on the snapshot when viewed by a client) at the time-of-publication of

the victim page. Specifically, attacks based on origin-escapes (Attacks #2 and #3) require

the attacker to plant malicious code inside an <iframe> on the victim page. Attacks which

do not require foresight (Attacks #1 and #4) allowing the attacker to choose a payload at

any time, including after time-of-archive. For example, in Attack #1, the attacker can even

change this payload over time (whereas once an anachronism has been injected in Attack

#4, that payload is fixed).

Partial vs. Full Control. For all attacks, vulnerabilities may permit either partial-control

or complete-control attacks, depending on the type of resource the attacker controls in the

specific instance of the attack. If an attacker controls static resources like text or images, the

attacker can only changes those particular elements (partial-control). If an attacker controls
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client-side code, such as Javascript or a CSS stylesheet, the attacker can leverage that code for

complete-control, gaining the ability to modify any part of the client’s view of the snapshot,

such as its text, styling, images, layout, client-side dynamic behavior, and so on. We explore

the prevalence of partial-control and complete-control attacks in the Section 3.6.

3.6 Measuring Prevalence of Archive Vulnerabilities

3.6.1 Measurement Methods

Measurement Tool. The authors of [14] provided us with TrackingExcavator, their archival

measurement tool. TrackingExcavator is a Chrome extension which automatically visits an

“Input Set” of URLs, locates them in the Wayback Machine at a requested timestamp, and

collects event traces as it loads and renders those URLs. These event traces include events for

all HTTP requests the browser makes, which we use to locate vulnerabilities to our attacks.

Our Datasets. Our measurements include measurement traces from three sets of URLs:

For the Top 500, we downloaded the publicly available traces from [14]. 4 For the Top

Million, we used historical versions of the Alexa Top Million CSV file for the years from

2010-2017, which we located in the Wayback Machine [9]. We sampled every thousandth site

from those Top Million lists, such that we visited sites with popularity rank 1, 1001, 2001,

..., etc., similar to papers that have sampled from the Top Million [147]. These traces cover

a different (but sometimes overlapping) set of URLs in each timestamp year, with a trace

for each site’s snapshot once for each year in which it appeared in the Top 500 or our Top

Million sample.

For our Legal URL dataset, we searched Westlaw and LexisNexis for court decisions,

court filings, and federal agency administrative decisions which contained the phrase “web.archive.org” [11,

10]. We found that both legal databases contained substantially similar results, and so used

only the results from Westlaw. We then located Wayback Machine URLs cited in these mate-

rials, collecting separate lists of URLs for each category of legal proceeding (court decisions,

4Available at https://trackingexcavator.cs.washington.edu/, Accessed 2017-03-30.
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court filings, administrative decisions). These include 119 URLs cited in 101 court decisions,

255 URLs cited in 302 appellate briefs, 159 URLs cited in 217 expert material documents,

and 307 URLs cited in 371 administrative decisions. 5 We collected traces of the snapshots

at the exact URLs cited in the legal materials.

Measurement Parameters. We crawled the archive from Amazon EC2 t2.large instances,

rendering Chrome (running TrackingExcavator) headlessly inside a virtual frame buffer. We

opened 3 tabs at once, one tab per snapshot, and remained on each snapshot for 40 seconds,

which [14] found is a sufficient for snapshots to complete loading in the browser. We set

TrackingExcavator to block (but still record) archive-escape requests, in order to prevent

contaminating our view of the archive with live data. This means we undercount overall

archive-escapes that would be seen by an ordinary browser (since we miss archive-escapes

caused by other archive-escapes), making our numbers a conservative lower-bound on the

archive-escapes a client will encounter in the wild.

3.6.2 How Often Are Archived Sites Vulnerable?

Figure 3.3 depicts the prevalence of all types of vulnerabilities to our attacks in the top panel,

and the prevalence of vulnerabilities which allow the most powerful attacks (complete-control

without foresight) in the bottom panel. This figure depicts only data from the Top 500 — the

trends we found in the Top Million were similar.

Three-Fourths of Archived Sites Are Vulnerable. Considering the union of the top

sites across all years, we studied 2692 distinct sites from the Top 500 and 7000 distinct sites

in the Top Million. We found found that 73% of those Top 500 sites and 80% of those Top

Million domains were vulnerable to one of our attacks, either now (for Archive-Escape or

Anachronism-Injection vulnerabilities, which do not require foresight) or at time-of-archive

(for Same-Origin Escape vulnerable snapshots, which do require foresight).

Recall that for each vulnerable snapshot, there is a limited set of domains which are

5In an administrative decision, a U.S. federal agency resolves lawsuit-like cases related to the agency’s
jurisdiction. They may replace or precede normal lawsuits.
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capable of exploiting that vulnerability (e.g., the destination domain of an archive-escape

vulnerability, or the owner of the domain of a missing resource). That is, not anyone can

mount these attacks — only attackers who own or are able to acquire these domains. We

consider the number of unowned domains (accessible to anyone) later in this section.

As shown in Figure 3.3, these vulnerabilities are widespread and varied in type, endan-

gering client views of a large fraction of archived sites. Archives and their users should take

care to ensure they put appropriate levels of trust in archival data, given the frequency with

which they are vulnerable to manipulation.

Sites Are Vulnerable To Strong Attacks. While the top of Figure 3.3 considers all of

our attacks, the bottom panel considers a particularly strong, category of attacks: Archive-

Escape (#1) and Anachronism Injection (#4) vulnerabilities which enable complete-control.

Even vulnerabilities to this strong class of attacks are quite common in the archive: 38% of

Top 500 domains and 65% of Top Million domains are vulnerable.

Prevalence of Some Vulnerabilities Has Changed Over Time. The prevalence of our

vulnerabilities varies over the age of snapshots in the archive. For example, more recently

captured snapshots are dramatically more likely to be vulnerable to archive-escape abuse. For

example, in both the Top 500 and Top Million, the fraction of snapshot domains vulnerable

to archive-escape abuse increased from 22% to nearly 80% over the period from 2007 to the

present day. We believe that this trend is due to the increasing complexity of sites over the

history of the web, since URL rewriting failures, which cause archive-escapes, often result in

client-side dynamic behaviors in sites. As sites have grown more complex with more client-

side dynamic behaviors, so have the prevalence of archive-escapes and the vulnerabilities

that they cause.

Snapshot Domains Remain Vulnerable Over Archival Time. The series of snapshots

of a site in the archive may span years or decades, as a site ages. We find that not only

are individual snapshots often vulnerable (Figure 3.3), but also that many of the websites

we studied remained vulnerable over long periods of time. Figure 3.4 shows the number
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Potential Attacker Number of Possible Victims

google-analytics.com 108
googletagservices.com 78
facebook.net 67
googletagmanager.com 66
doubleclick.net 59
gstatic.com 56
criteo.com 27
amazon-adsystem.com 22
newrelic.com 22
cloudfront.net 21

Table 3.2: The third-party attacker domains capable of attacking the most snapshot domains.

of vulnerable domains in each year which were also vulnerable in the previous year. For

example, of the snapshot domains which were vulnerable to Archive-Escape Abuse in 2016,

about 80% of them were also vulnerable in 2015.

This type of continuous vulnerability suggests that the appearance of vulnerabilities in

these sites may be due to structural elements of the way the sites are designed and published,

such as publishers’ choices to embed third-parties, to use client-side dynamic behavior, and

to include third-party Javascript libraries. This implies both that changes in the architecture

of these sites might alleviate these vulnerabilities, but also that they are unlikely to go away

on their own, especially as many of the more complex aspects of the modern web may lead

directly to some of our attacks.

We note that continuous vulnerability of a website may be valuable to attackers who

need to modify the appearance of a particular snapshot of a website for their goals. If a large

fraction of the snapshots of a website are vulnerable over time, the chances are much greater

that an attacker will be able to exploit the particular snapshots needed for their goals.

3.6.3 How Many Potential Attackers Are There?

Some Potential Attackers Have the Ability to Compromise Many Domains’ Snap-

shots. Recall that potential attackers are those who own, or can obtain, the domains asso-
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ciated with vulnerabilities. There are a total of 2077 Attack #1/#4 attackers over the 2692

sites in our Top 500 dataset (3298 attackers over 7000 sites in the Top Million). Many of

these attackers are quite limited in the targets they can attack, with just over half of at-

tackers in the Top 500 only able to attack a single, particular snapshot domain (40% in the

Top Million). However, attackers with more widespread opportunities exist. Table 3.2 shows

the individual third-party domains which could launch Attacks #1 or #4 against the most

snapshot domains. Many of these domains are third-party domains which appear as across

a large number of sites, such as advertising and analytics networks, social network widgets,

and content distribution services. We do not expect any of these companies to maliciously

modify the archive; rather, we list them to characterize the types of modern web practices

which so frequently lead to our vulnerabilities.

First vs. Third Party Attackers. While Same-Origin Escape based attacks (#2 and #3)

can only be executed by a third-party domain, both Archive-Escape Abuse and Anachro-

nism Injection attacks (#1 and #4) can be performed by both first- and third-parties. Both

of these types of attackers are interesting, although they represent significantly motivated

attackers. The first-party is usually the original publisher of the information in the snapshot,

and so a first-party attacker is changing content they published, while a third-party attacker

is generally changing content which was originally created and published by the first-party.

While both first- and third-parties are potentially interesting attackers, we note that indi-

vidual site owners may be more alarmed by the potential for third-parties to modify their

snapshots.

Over the existence of the archive, third-party attackers have become much more common

for archive-escape vulnerabilities, to the point that nearly every (97%) recent snapshot with

an archive-escape vulnerability includes at least one to with a third-party destination, up

from 60% since 2007-timestamp snapshots. We hypothesize that this trend is caused by

the combined trends in the modern web of increasing complexity and increasing inclusion

of third-parties. By contrast, third-party missing resources have become less common over

time. They made up nearly all missing resource vulnerabilities in 1996 (98%), and only
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about 40% in 2016.

Unowned Attack Domains. Our vulnerabilities enable attacks by particular domains

on the Internet, but the ownership of that domain may shift over time. Indeed, attacker

domains are sometimes completely unowned. Aggregating across our datasets, we found

23 archive-escape destination domains and 60 never-archived resource domains which were

unowned as of Spring 2017. These domains can be purchased by anyone to launch an attack

on their vulnerable sites. This is how we performed our proof-of-concept attack (Figure 3.1).

We found no unowned attack domains in our legal dataset.

3.6.4 Measurements of URLs Used in Court Proceedings

We now analyze our dataset of the archive.org URLs used in court proceedings. Recall from

Section 3.6.1 that this dataset consists of 840 URLs from 991 legal documents. Because they

have been cited in court proceedings, the accuracy of these archived pages is critical — or,

conversely, the motivation clearly exists for a potential attacker to manipulate one of these

snapshots to influence legal proceedings.

In this section, we thus investigate the prevalence of vulnerabilities in these snapshots. We

stress that the presence of a vulnerability does not imply that an attack actually occurred.

Indeed, evaluating the question of whether an attack occurred is challenging, since, for most

attacks, they can be temporarily enabled and then disabled. Instead, our goal is to survey the

prevalence of these vulnerabilities in specific archives that have been used in legal proceedings

in the past, to serve as a note of caution for the use of archived URLs in future proceedings.

For these legally referenced snapshots, we considered only Attacks #1 and #4, which do

not require foresight, and thus could be mounted after the fact, at the time of legal proceed-

ings. 57 were vulnerable to Attack #1, and 37 of those were complete-control vulnerabilities.

However, none contained never-archive resources, which is quite unlike the archive at large,

which commonly contains never-archived resource vulnerabilities (Figure 3.3). We hypothe-

size that URLs cited in legal proceedings may be of higher quality since they were curated
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by experts deciding which URLs to cite.

If these vulnerabilities had been exploited at the time of these legal cases, they could have

given an attacker the ability to hide or plant evidence. Again, we stress that we have no

reason to believe that any of these vulnerabilities were exploited at the time of the relevant

court proceedings, but emphasize that future use of archived URLs in legal or other similar

matters must be treated with caution.

3.7 Defenses

In this section, we explore the space of possible defenses against our attacks, including

defenses which detect or block our attacks. As an overall defensive goal, we aim to allow

users of archives to have more confidence in their understanding of the web of the past.
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(a) Above, the snapshot URL for our demonstra-
tion attack, a capture of the Reuters homepage
from the timestamp 20110901233330 (1 Septem-
ber 2011, at 23:33:00).

(b) Above, the original news story from the page,
as preserved in the snapshot URL above: a po-
litical opinion piece, illustrated with a picture of
President Barack Obama. Accessed 15 May 2017.

(c) Above, we used an Archive-Escape Abuse at-
tack (Section 3.5.1) to replace the above article
with incorrect content, so that clients would see
CCS 2017’s cover image and a 6-year-early pre-
diction of CCS 2017’s host city rather than the
correct election opinion piece.

Figure 3.1: We enabled this attack only or the purposes of obtaining this demonstration
screenshot, and disabled the attack after determining that it worked.
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User  
Events 

Malicious 
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saved in archive 
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Figure 3.2: A timeline depicting the (1) lifecycle of archive snapshots (top of figure) and (2)
events that make up attacks against the integrity of those snapshots (bottom). The left-hand
possible Times-of-Attack, before Time-of-Archive, correspond to Attacks #2 and #3, which
require attacker foresight. The right-hand possible Time-of-Attack is after Time-of-Archive
(but still before Time-of-Access), for Attacks #1 and #4, which do not require attacker
foresight. Attacks are described in detail in Section 3.5.
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Figure 3.3: Top: The prevalence of vulnerabilities to our attacks across the Top 500 sites.
Bottom: The prevalence of vulnerabilities to the particularly strong class of attacks which
provide complete-control without foresight (Attacks #1 and #4 with script/stylesheet as
vulnerable resource). Not shown: Our Top Million dataset shows very similar trends to the
Top 500.
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snapshot from the previous year was also vulnerable to the given attack(s).
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Goals
Defense Prevent Detect Who Deploys? When?

Opt-Out of Archives X Website Owner Any Time
Avoid Dynamically Generated URLs X Website Owner Time-of-Publication
Actively Archive Subresources X Website Owner Time-of-Archive
Modify Archived Javascript to Avoid Escapes X X Archive Any time
Serve Distinct Archived Domains from Distinct Subdomains X Archive Any time
Escape-/Anachronism- Blocking Browser Extension X End-user Time-of-Access
Escape-/Anachronism- Highlighting Browser Extension X End-user Time-of-Access

Table 3.3: A summary of the defenses we explore.
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We organize our defenses first by who deploys them: website publishers, archives, or

clients, and categorize them additionally by when they can be deployed (i.e., whether they

work retrospectively, after time-of-attack). Table 3.3 summarizes these defenses, and we

discuss them in detail below. We also we present the implementation of ArchiveWatcher, a

browser extension which detects and blocks archive-escapes and anachronisms.

3.7.1 Defenses Deployed by Website Publishers

We begin with defenses website publishers can deploy to protect snapshots of their won

websites. These defenses work for all clients, but must be separately deployed by each

website, and some are not retroactive, since publishers cannot modify previously archived

data. First-party attackers, may avoid deploying these defenses to retain editorial power

over their site’s past.

Opt-Out of Archives

Websites can opt-out of being preserved in the Wayback Machine, sidestepping the possibility

of archival vulnerabilities. The Wayback Machine has long respected website publishers’ opt-

out preferences in two ways: manual requests, and the use of robots.txt policy files. By

opting out of preservation entirely, a site would avoid having snapshots which could be

manipulated, preventing all attacks in this chapter.

The downside to this defense is that the relevant sites are not archived or available for the

public to browse in the archive, eliminating all the social and cultural benefits the archive

brings. This defense throws the baby out with the bathwater. Some sites may also not be

legally permitted opt-out, such as government sites with archival requirements. Additionally,

this defense may soon become much less viable: Wayback Machine has expressed, in a recent

blog post, an intent to give less weight to robots.txt files, saying that as of April 2017 it

now ignores robots.txt on U.S. government and military websites and is “looking to do

this more broadly.” [8]
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Avoid Dynamically Generated URLs to Avoid Archive-Escapes

Website publishers can reduce the incidence of archive-escapes by designing their websites to

use fewer dynamically generated URLs, since these are a common cause of archive-escapes.

This approach has two major weaknesses. The first is that dynamic behavior and URLs

are a common, valuable feature of the modern web, and asking engineers to do without them

could be inconvenient and expensive. Second, this defense cannot protect against archived-

escapes caused by third-party content, such as third-party Javascript libraries, which are

commonly used and whose behavior is not fully under the control of the publisher.

Actively Archive Subresources

In Anachronism Injection, the attacker wants to replace a subresource which has never been

archived with a malicious payload. One way to defend against this attack is to preemptively

replace missing subresources with benign resources, plugging the vulnerability. Though

anyone can use the “Save Page Now” feature to plug vulnerabilities — the same feature

attackers use to archive their payloads — website publishers wishing to defend their pages

in the archive likely have the greatest incentive to do so. However, if no benign resource

is published at the URL, the defense will not work. The non-malicious content could be

the correct content which was originally present at the URL, an empty response, or even a

404 Not Found response. In all these cases the archive will record the given response as the

only capture of the resource and serve it, causing no harm, as the nearest-neighbor to the

vulnerable reference.

The most significant limitation of this defense is that only the potential attacker can

publish a benign resource to be archived — the permission to enact this defense lies with the

potential attacker. While anyone can ask to “Save Page Now” for any URL, this process

only works for resources where the server responds to the crawler’s response with some

response, even if it is simply a 404 error. Thus attackers who wish to ensure against malice

by themselves in the future, or by later owners of their domain, can use this defense, but it
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will be ineffective when the first-party wants to launch an attack.

3.7.2 Defenses Deployed by Web Archives

Defenses deployed by archives have the potential to be quite powerful, since archives can

change the data they store in their database (as they do with URL rewriting) and the data

they collect in the future, to provide both forward-looking and retroactive defense which

protect the views of all clients.

Modify/Analyze Javascript to Prevent Escapes

In this defense, the archive would statically and dynamically analyze Javascript code it

captures in order to identify scripts might cause archive-escapes. The archive would then

rewrite or wrap these scripts, replacing the original script with a version that performs the

same operations but avoids generating archive-escapes. For example, such a defense might

hook calls to browser APIs which generate HTTP requests, interposing on them to rewrite

URL arguments to ensure they do not point outside the archive.

This solution is complex, and its implementation might involve many engineering hours.

Additionally, executing the defense on each archived resource at time-of-archive might be

computationally expensive. However, if successful, this defense might permit the Wayback

Machine’s URL rewriting to be much more pervasive, applying even to client-side dynamically

generated URLs, the main source of vulnerabilities that we identify in the archive today.

Serve Distinct Archived Domains from Distinct Subdomains

Archives could defend against Same-Origin Escapes by serving content from distinct sub-

domains, each of which corresponds to the live domain from which that content was origi-

nally published. For example, an archive might choose to serve captures of example.com/

script.js from the subdomain http://example.com.web.archive.org/ instead of from

http://web.archive.org. Since the Same-Origin Policy considers subdomains as distinct
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domains, this would cause client browsers to provide the same isolation in the archival con-

text as they do in the live context, preserving the same trust model across both live and

archival executions of the page. We recommend that archives consider implementing this

defense.

3.7.3 Defenses Deployed by Clients

Finally, we discuss defenses deployed inside the client’s browser. Individual clients can

unilaterally deploy these defenses, giving them high value today. For example, experts in

legal cases might use these defenses to provide more trustworthy testimony. These defenses

are limited by the fact that each client must separately install the defense, but they do apply

to all snapshots in the archive.

Browser Extensions to Block/Highlight Escapes and Anachronisms

This defense interposes on and blocks Archive-Escape and Anachronistic requests made for

subresources while browsing the archive. It prevents Archive-Escape Abuse by blocking all

HTTP requests from a snapshot which leave the archive. Since the distinction between

archive-escapes and archival requests is cut and dry (distinguishable by the destination do-

main of the request), such a defense should be highly effective against Archive-Escape Abuse.

This defense protects against Anachronism Injection not by preventing the payload from

being stored in the archive (as does the Actively Archive Subresources defense, above), but

by blocking the anachronistic request which delivers that payload to the client. It does

so by blocking anachronistic requests — those requests for archival resources which have

timestamps far from the timestamp of the enclosing page. This involves an inherent tradeoff,

in which the defense or its user must define how anachronistic a resource must be to be

blocked. In the most extreme case, only resources with timestamp exactly equal to the

snapshot’s timestamp can be loaded, leading to complete blocking of the vulnerability, but

also preventing many legitimate resources from being loaded, leading to a less complete

picture of the past web.
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This defense can also (or instead) visibly highlight, log, or summarize archive-escapes

and anachronistic requests and the visible page elements which correspond to them. Such a

feature can help a human expert to better judge the accuracy of a snapshot. ArchiveWatcher,

described in more detail below (Section 3.7.4), is an example of this type of defense.

3.7.4 ArchiveWatcher: An End-User Defense

We prototyped ArchiveWatcher, a client-deployed defense consisting of a browser extension

which detects and blocks archive-escape and anachronistic request vulnerabilities. Archive-

Watcher is implemented as a lightweight Chrome Extension which interposes on requests

made for resources while browsing snapshots https://web.archive.org/web. It is written

in 6000 lines of Javascript, CSS, and HTML, and we intend to make it publicly available on

the Chrome Web Store upon publication of the conference paper of the work described in

this chapter.

As described above in Section 3.7.3, ArchiveWatcher blocks requests for archive-escapes

and anachronisms, and has a configurable time window for defining anachronistic timestamps.

It can display to the user a summary of the requests it has detected and blocked on the current

snapshot. We anticipate that ArchiveWatcher or a similar defense could aid technical experts

assessing the veracity of archival snapshots.

3.8 Conclusion

In this chapter, we have explored the space of attacks which can rewrite history — i.e., attacks

that can manipulate how clients see archived websites, focusing on the Wayback Machine.

Though it is known that the archive contains accidental inaccuracies, to our knowledge, we

are the first to explore how an attacker might introduce intentional errors. We identified and

explored several vulnerabilities in how the Wayback Machine archives and serves snapshots of

websites, and we developed four attacks that leverage these vulnerabilities. We demonstrated

proof-of-concept attacks on the Wayback Machine, showing that we were able to manipulate

client views of snapshots without compromising the archive’s or any other servers. We then
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quantified the prevalence of these types of vulnerabilities, finding that over 70% of the sites

we investigated are vulnerable to this type of manipulation by some attacker.

The web is important to our modern society, making web archives a critical source of

socially important information, from journalism to legal proceedings. This work suggests the

importance for website publishers, archive designers, and end users to take steps to prevent

or detect intentional manipulation.
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Chapter 4

ANALYZING THE USE OF QUICK RESPONSE CODES IN
THE WILD

In this final contribution chapter, I focus on the sister technology of QR codes, considering

their use across space and time and with an eye toward their relationship to the web. These

measurements are, to our knowledge, the first large-scale academic analysis of how QR

codes are used in the wild, and the facts and lessons I drive shed light on the ways that

emerging sister technologies which embed information in the environment might interact

with established core technologies like the web.

The work described in this chapter previously appeared in a 2015 paper [109], and cita-

tions to this work should refer to that conference publication.

4.1 Introduction

With the growing prevalence of smartphones and other mobile devices, Quick Response (QR)

codes have become a convenient way to quickly communicate a small amount of information,

such as a URL, to a user’s device. Figure 4.1 shows a sample QR code; Figures 4.2 and

4.3 show examples in real-world contexts. To read these codes, users typically install third-

party QR code scanning applications onto their mobile devices. The number and popularity

of such applications speaks to the popularity of QR codes themselves. For example, the most

popular QR and barcode scanning application for Android boasts over 100 million downloads

(as of November 2014, according to http://appbrain.com).

QR codes are among the most prevalent technologies bridging the physical and digital

worlds, raising unique opportunities and challenges. QR codes are often associated with

physical objects. When a user scans a QR code with a mobile device, that mobile device
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Figure 4.1: Sample QR code.

may perform some follow-on digital action, such as visiting a website (Figure 4.2) or pair-

ing accounts (Figure 4.3). Anecdotally, QR codes are used for marketing purposes or to

provide pointers to additional information about a physical location or object (e.g., in a mu-

seum). QR codes are also used for a growing number of security-sensitive operations, such

as authentication, device pairing, and connecting to password-protected WiFi networks.

The prevalence and utility of QR codes is likely to increase with the growing adoption

of wearable devices such as Google Glass, where text or other traditional forms of input

may be cumbersome. For example, Google Glass already utilizes QR codes to connect to

password-protected WiFi networks [60]. The research community has also turned to QR

codes as a mechanism for linking physical spaces with digital information or computation

(e.g., [24, 150, 146, 37, 21, 87, 148, 123, 71, 153, 110, 38] — see Section 4.2 for a discussion).

Though QR and barcode scanning applications and anecdotes about their uses abound,

to our knowledge there has been no systematic, in-depth study of their use in the wild.

Designers of QR code-based systems are thus forced to rely on speculation, or their own

measurements, of the QR code ecosystem. To fill this gap, we study the use of QR codes

in the wild. We leverage a unique and powerful data set: approximately 87 million scans

of QR and barcodes made using Scan (https://scan.me/), a popular scanning application

with an install base of over 10 million devices.1 This dataset allows us to examine both the

types of QR codes that exist in the wild, and the frequency with which individuals users

interact with these codes. We find, for example, that approximately 75% of QR and barcode

1These scans were logged in accordance with Scan’s terms of service and privacy policy, and our use of
the dataset was approved by our institutions’ IRB boards.
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Figure 4.2: A QR code in a museum, encoding the URL for a video related to the exhibit.
Image source: https://www.flickr.com/photos/balboaparkonline/

Figure 4.3: A QR code used to pair a user’s YouTube account with the YouTube app on
their Xbox. Image source: http://instagram.com/p/icywcsKZbo/

scans in our dataset lead to web URLs, and that the set of popular websites found in QR

codes differs significantly from the set of websites popular on the web in general. We also

find that 25% of scans represent other use cases, and we investigate these varied applications

(e.g., phone numbers, Bitcoin payments, and two-factor authentication). We also observe

examples of malicious uses of QR codes, including links to Android applications containing

malware. These cases of misuse are rare, but their presence in our dataset suggests that

users may encounter them in the wild.

In this chapter, we analyze the use and misuse of QR codes, and we develop an informed

understanding of the types of codes that are created and that are encountered by users in

practice. Our contributions include:

• We conduct the first (to our knowledge) large-scale academic analysis of QR and bar-

code use in the wild, using a dataset of 87 million scans. We present general trends
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about the scans, codes, and devices present in our data.

• We investigate specific use cases for QR codes, including a deep dive into the content

of popular codes in our dataset, a comparison between frequently and infrequently

scanned codes, and an exploration of the varied use cases present in our data (e.g.,

cryptographic currencies, device pairing, one-time passwords). We also investigate

several potential vectors for malicious QR codes, including malware or phishing URLs

and links to malicious Android applications.

• From these findings, we distill a set of lessons and recommendations for QR and barcode

scanning application designers as well as for future systems that rely on QR codes or

similar techniques to communicate between objects.

We now provide additional background and discuss related work in Section 4.2 before

describing our dataset in more detail in Section 4.3. We then present general analyses of the

dataset (Section 4.4), and then an analysis of different use cases that manifest in the dataset

(Section 4.5). We discuss the implications of our findings and avenues for future work in

Section 4.6 and then conclude in Section 4.7.

4.2 Background and Related Work

One- and two-dimensional barcodes have become popular as a convenient way to quickly

communicate a small amount of information, such as a URL, to a user’s device. Fig-

ures 4.2 and 4.3 show examples of Quick Response (QR) codes, a common type of two-

dimensional barcode. The prevalence of QR codes has risen alongside the popularity of

smartphones [115], with one study showing that European usage of QR codes doubled be-

tween 2011 and 2012 [32]. To read these codes, users can install on their devices a variety

of third-party QR and/or barcode reading applications, such as the popular ZXing Barcode

Scanner, which boasts over 100 million downloads on Android, or Scan (https://scan.me/),

which has been downloaded over 10 million times for Android.2

2Download numbers for Android, according to http://appbrain.com in November 2014. The total
number of downloads for all platforms is higher.
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Research applications. QR and barcodes have been applied in a variety of research con-

texts. Several efforts leverage the ability of these codes to bridge the physical and digital

worlds [24, 150], such as for indoor navigation [146], grocery bargain hunting [37], accessi-

bility [21], and to aid augmented reality applications [87]. Additionally, many security and

privacy related uses of QR and barcodes have been proposed, including for communicat-

ing privacy policies [148, 29], device-to-device authentication [123], web authentication [71],

encryption or verification of real-world paper content [153, 110], and as tattoos of medical

device passwords [38].

Security issues. Other researchers have explored the security challenges raised by QR

and barcodes, including attacks enabled by ambiguous decoding protocols [36], a study of

people’s susceptibility to QR code based phishing attacks [168], the potential use of QR codes

to spread malware and phishing URLs [176], and other attacks [91]. While these attacks are

all technically possible, how prevalent are they in practice? We investigate several types of

potentially malicious QR codes in this work, including malicious URLs.

Commercial use. Commercially, QR codes are frequently used for marketing purposes [79,

30], but they have also been applied in various security-sensitive contexts, such as authenti-

cation or device pairing. For example, Google experimented with QR codes for passwordless

login [133], and Google Glass uses QR codes to connect to password-protected WiFi net-

works [60]. Indeed, the prevalence and utility of QR codes is likely to increase with the

growing adoption of wearable, camera-enabled devices like Google Glass.

Missing knowledge about real-world use. Though QR and barcodes have been fre-

quently applied in a diversity of research and commercial applications, to the best of our

knowledge no large-scale academic study has been conducted of the use of such codes in

the wild. Thus, we have little concrete knowledge about the prevalence of the various ap-

plications and attacks described above. We also have little concrete knowledge about the

behavior of real users who may encounter QR codes. We aim to close that gap in this chapter,

leveraging our unique dataset of 87 million scans from a popular QR and barcode scanning
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Table 4.1: The schema of our dataset. Device UUIDs are random and each corresponds to
a single device which has installed the Scan app.

Column Example
Barcode Type e.g., QR, UPC, etc.
Contents URI or other data
Location Lat/lon coordinates
City City
Region e.g., state, province, etc.
Country Country
Platform/Version Mobile OS and version
Device Type Phone make and model
Device ID UUID
Timestamp Date and time
Scan Source Camera/History/Gallery

application. In the next section, we detail our dataset.

4.3 The Dataset

Origin and Scope. We obtained a log of scans performed by users of Scan (https://scan.

me), a popular barcode and QR code scanning application for Android, iOS, and Windows

Phone. The log includes scans made by real users using the software over a 10 month period

from May 2013 to March 2014, including 87,647,504 scans of 18,763,779 distinct barcodes by

15,484,921 distinct devices in 241 countries.

Schema. Table 4.1 describes the full schema of the dataset. It includes the location and

time of each scan as well as an anonymized UUID distinguishing devices which have installed

the app. We note that devices are not one-to-one with users, since a user may have multiple

devices at once or over time, and a single device may have multiple users. Hence, for

expository purposes, when we refer to “users” in this chapter, we are often referring to

devices.

Human Subjects. The dataset was collected for academic research purposes in accordance
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with Scan’s terms of service and privacy policy (e.g., for Android: http://scan.me/mobile/

apps/scan/android/legal/eula). We also received IRB approval for this study from the

IRBs of the University of Washington and Brigham Young University.

When not stored at Scan according to Scan’s policies, we store the data in an encrypted

form and performed all of our analyses on machines that we physically control. Though the

dataset contains some personally identifiable information (e.g., names and phone numbers

in QR codes encoding business cards), we report only aggregate or anonymized data in this

chapter.

Definitions. Throughout the chapter we refer to a “code” as a distinct piece of data

contained in a barcode or QR code. For example, Alice and Bob might both embed the

url http://example.com in a QR code. If a user scans Alice’s code and another user scans

Bob’s code, we consider the code http://example.com to be scanned twice.

A scan is the act of a user scanning a code with the app, corresponding to one row in the

dataset, with all the fields described in the schema (Table 4.1).

4.4 General Analyses

We begin by presenting an overview of the barcode and QR code scans in our dataset. We

analyze the relative popularity of different types of codes, and examine variations over time

and geographical region.

4.4.1 Basic Distributions

Devices. Our dataset includes 15,484,921 distinct devices, each of which corresponds to a

user’s mobile device such as a phone or tablet. These devices serve as proxies for users of

the app, though we note that devices may not correspond directly to users (e.g., a user may

have multiple devices).

We find that a minority of devices account for the majority of scans in our dataset.

Specifically, the most prolific 10% of devices performed approximately half of the scans,



91

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Devices

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 S
u
m
 o
f 
S
ca
n
s

QR only

Non-QR only

All

CDF of Device Scanning Frequency

Figure 4.4: The distribution of scans across devices. Devices had nearly identical distribu-
tions of scanning for QR codes and all codes combined — the yellow (QR only) and orange
(All) lines overlap almost entirely. The right hand side of the figure shows 30% of devices
which contributed only one scan each. Heavy hitters on the left: 10% of devices performed
half the total scans in the dataset.

while just over 30% (4,667,012) performed only one scan over the 10 months covered by our

study. Since the dataset is naturally truncated, users who installed the app near the end of

our study period will appear to have very few scans. Thus the proportion of infrequent users

is slightly exaggerated.

Figure 4.4 shows the distribution of scans across devices. That figure presents the data

over all scans, as well as for only QR code scans and only non-QR code (product barcode)

scans. We note that the distribution remains very similar in each of these cases. We speculate

that this suggests that the tendency to use a mobile device to scan barcodes is influenced not

only by the location and context of barcodes in the environment but also significantly by the

individual person’s experience and skills — perhaps based upon their affinity to technology.

If true, this has implications for adoption of these types of technologies: it may suggest that

the uptake of technologies like mobile barcode scanners may depend more on user familiarity

or skill than on the ways barcodes are deployed in the environment.

Our results confirm that one- and two-dimensional barcodes can be an effective mech-

anism for having a physical device influence a digital device for some users. For example,

10% of users (accounting for over 1.5 million devices) performed more than 43 million scans
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Figure 4.5: The distribution of code popularity. The top 1% of codes were extremely popular:
they made up over 42% of total scans. 10% of codes accounted for over 65% of the total
scans that occurred, while in the tail, just over half of codes were only ever scanned once.
We see similar trends among all codes, QR codes, and non-QR codes.

in our dataset. The existence of these users supports the use of QR codes in emerging tech-

nologies and research projects. On the other hand, QR codes do not currently seem to have

sufficient appeal for all users (e.g., the 30% of devices with only one scan), thus suggesting

that applications that involve a QR-code-based path may not (yet) see much adoption.

Codes. The 18.7 million distinct codes seen in the dataset also followed a typical heavy-

hitter vs. long-tail distribution, with a small number of codes scanned many times and many

codes scanned only once or a few times. Figure 4.5 shows the distribution of popularity

amongst codes. The most popular code in the dataset had 244,660 scans (0.28% of all scans)

while the top 11 individual codes accounted by themselves for 1% of all scans. (We note that

the proportion of unpopular codes is artificially inflated by the fact that codes introduced

near the end of our time period will necessarily show a low scan count, even if they were

subsequently scanned many times.)

Counter to our initial hypotheses, about half of all codes were only ever scanned once,

and only a small fraction of codes reach a large number of people. These popular codes

speak to a particular set of uses and user experiences of mobile barcode scanning; we explore
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Table 4.2: Distribution of barcode types appearing in all scans in our dataset. Note that
this table counts the appearance of code types in scans, i.e., codes that were scanned more
than once are counted once per scan.

Barcode Type Count
QR 76,304,319 (87.06%)

EAN-13 6,554,534 (7.48%)
UPC-A 3,701,269 (4.22%)
EAN-8 687,889 (0.78%)
UPC-E 399,493 (0.46%)
Total 87,647,504 (100%)

these popular codes in detail in Section 4.5.1. For example, we observe that many of the

most popular codes are web links to sites of corporations, suggesting that heavy-hitters may

be primarily scanned due to their presence in successful marketing efforts.

In addition, we find that less popular codes are more likely to correspond to a different

set of applications, including interesting emerging applications such as cryptographic coins,

business cards or WiFi pairing. These results thus suggest that QR codes are an attractive

tool for designers of emerging mobile technologies. We explore these less popular codes in

Sections 4.5.2 and 4.5.3.

Code Types and URI Schemes. Scan supports scanning both ordinary barcodes as well

as QR codes. QR codes dominate usage of the app: about 87% of all 87 million scans were of

QR codes, with the remaining 13% divided between different types of one-dimensional EAN

and UPC product barcodes. Table 4.2 shows this breakdown.

While one-dimensional product barcodes encode only numbers, QR codes can contain

arbitrary text. When this arbitrary text contains something more than a direct web URL,

it is often made more useful by structuring it to contain a URI scheme, such as tel: for

telephone numbers or mecard: for business cards. Table 4.3 describes the distribution of

URI scheme among the scans in our dataset.

In our dataset, we find that the use of QR codes to encode web URLs dominates: as
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Table 4.3: Distribution of URI schemes appearing in all QR code scans in our dataset. This
table shows the number of scans of codes encoding actions in various protocols. Percentages
are reported out of the 76 million QR code scans, not the total 87 million scans (that include
barcode scans).

URI Scheme Note Count

http:// 58,488,390 (76%)
https:// 7,640,420 (10%)
mecard:/vcard: Business cards 1,759,773 (2.3%)
market: Android app store 197,407 (0.25%)
smsto: Send SMS 180,752 (0.23%)
otpauth: Two-factor auth 172,091 (0.22%)
wifi: Connect to Wifi 133,963 (0.17%)
tel: Phone number 123,150 (0.16%)
bitcoin: Crypto currency 39,073 (0.05%)
itms-services: iOS app store 30,663 (0.04%)
litecoin: Crypto currency 11,796 (0.01%)
dogecoin: Crypto currency 317 (¡0.01%)
Other 7,526,524 (9.9%)

Total 76,304,319 (100%)

reflected in Table 4.3, about 86% of QR code scans (about 75% of all scans, including non-

QR code scans) contained a web URL. This suggests that quickly connecting a mobile device

to a website is by far the most common use case for QR codes. Of these web URLs, we find

that only about 10% specified SSL through the https: URI scheme.

Though web URLs dominate the QR code scans in our dataset, we nevertheless observe

that 14% of QR code scans (about 25% of all scans, including non-QR code scans) contain

something other than a web URL. These 10,175,509 scans represent a non-trivial engagement

with a variety of other use cases. For example, we did not initially anticipate the prevalence

of some URI schemes, such as wifi: and bitcoin:. We return to discussing such use cases in

Section 4.5. A key takeaway from this general analysis, however, is that our dataset provides

strong evidence that QR codes are used for many things besides websites.

Data Density. QR codes that encode less information are less visually dense. We in-

vestigate the distribution of densities among QR codes in our dataset. We find that on
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Table 4.4: Data density of codes of varying frequency of scanning.

Bytes/code
Popularity Mean Median

Infrequent (1-5 scans) 58.7 43
Moderate (6-100 scans) 49.9 32
Frequent (¿100 scans) 40.9 30
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Figure 4.6: Histogram of data density in codes, on a log scale. Codes of length 8-128 are
most common.

average, more popular codes encode about 18 fewer bytes of information than unpopular

codes. The difference is smaller in the median, with a difference of 13 bytes between popular

and unpopular codes.

This information suggests that successful, widely scanned QR codes tend to be shorter.

We cannot tease apart from this fact whether people who create popular codes tend to

make shorter codes (e.g., they tend to include nothing but a URL or explicitly optimized)

or whether shorter codes are more likely to be scanned (e.g., a shorter code is processed by

scanning applications more quickly, and therefore is more likely to be scanned before the

user gives up in frustration).
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Figure 4.7: Comparisons between scans per week and new devices appearing in the data per
week, which is a proxy for user adoption of the app. These two properties are significantly
correlated (R2 = 0.295), suggesting that new users of these types of technologies may be
a significant driver of the technology’s usage in general. Note that the first and last data
points are low because our data for those weeks is incomplete; similarly, the last week of
2013 is low because it is not a full seven days.

4.4.2 Analyses over Time

Usage Trends. Our above analyses suggest that one- and two-dimensional barcodes are

effective means to reach some users. We now ask: how do users engage with QR codes over

time? For example, once a user installs the app, do they steadily scan codes over time, or

does their usage peak initially due to factors like the novelty of the technology?

To investigate this question, we first examined user adoption rate throughout the time

period of the data, looking at the first time each device was seen. Adoption rate remained

relatively constant throughout the 10 month span — Figure 4.7 shows the weekly adoption

rate by new devices, which hovers below 500,000.

We then examined the number of scans that took place in each week of the studied 10-

month time period. The results are also shown in Figure 4.7. The rate fluctuated from about

1.3 million at the start to about 2.67 million in February of 2014, increasing initially and

then leveling off around 1.5 million scans per week.



97

May June July August September October November December January February March

Time (Month)

0

500000

1000000

1500000

2000000

2500000

N
u
m
b
e
r 
o
f 
n
e
w
 c
o
d
e
s 
se

e
n New Codes Seen per Month

Figure 4.8: Number of new codes seen per month.

Comparing the two lines in Figure 4.7, we observe that although new users appear in the

dataset at a regular rate, the number of scans does not increase at the same rate. There are

several possible factors that may contribute to this trend besides users whose usage decreases

after initial installation and exploration. For example, when a user replaces one device with

another, that new device will contribute to the adoption rate but not cause an increased

number of scans. Overall, however, this trend suggests that not all users continue to use the

app at the same rate after initial installation.

Codes. We also explore the appearance of new codes over time. Figure 4.8 shows the rate of

the appearance of new codes. Each bar shows the number of codes with unique text content,

never seen up to that point in time, that were first scanned during that month. The high

rate of appearance of new codes suggests that the ecosystem of QR and barcodes present in

the physical world is constantly changing.

Note that the rate of new code appearance is quite similar to the rate of new user adoption.

This trend suggests an active interest in the QR code ecosystem for both creating new codes

and experimenting with the scanning of codes.

4.4.3 Variations by Geographic Region

Finally, we consider variations by geographic region in our dataset. We use location data

reported by devices themselves when they perform a scan.

Scans. Our data includes occurring in 241 countries. Of those countries, 19 had at least

1,000,000 scans and 60 had at least 100,000. We note that geographical diversity in scanning

might be explained by the popularity of different QR and barcode scanning apps rather than
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Figure 4.9: The distribution of scans across the 241 countries seen in the dataset. The
United States is at the top with an order of magnitude more scans than its nearest competitor,
Germany. Note, however, that the United States has a much larger population than Germany.
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Figure 4.10: Percentage of scans which were of QR codes (as opposed to 1D barcodes) per
country for all countries. The blue line indicates the 50% QR mark — countries below the
line performed more 1D barcode scans than QR code scans, whereas countries above the line
performed predominantly QR code scans. 6 out of 15 of these 1D dominated countries had
fewer than 1000 total scans in the database, and none of the 15 had more than 51,000 scans.

the popularity of QR codes themselves. Our vantage with this dataset cannot distinguish

such a difference.

Figure 4.9 shows the distribution of scans across countries worldwide, and Table 4.5

shows the number of scans in the most popular 32 cities in the dataset. We find that the

top-scanning cities are quite geographically diverse, including cities in the United States,

Europe, and Asia. These results suggest that QR codes are a global phenomenon, and not

something restricted to a particular region of the world.

Codes. Looking across geography, we find that countries vary dramatically in the patterns of

their usage of barcodes. Figure 4.10 shows the ratio of QR code scans to 1D barcode scans

in each country as a PDF. Only a small number of countries have more one-dimensional
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Figure 4.11: Percentage of scans which were of QR codes (as opposed to 1D barcodes)
per country for the most scanning countries. The blue line indicates the y-coordinate for
50% QR codes — all countries with at least 100,000 scans are above the line and performed
predominantly QR code scans.

barcode scans than QR scans, but there is notable variance even between those countries

which are dominated by QR code scans. For example, QR code scans in one country (Bosnia

and Herzegovina) make up about 99% of its 631,812 scans, while scans in Russia (4,482,254

total scans) were split 60%/40% between QR codes and one-dimensional QR codes barcodes.

Figure 4.11 shows the same data limited to the countries in which at least 100,000 scans

were performed over the studied period. None of these 59 most scanning countries scanned

more one-dimensional barcodes than QR codes, suggesting that QR code based use cases

dominate among frequent users of the application. We emphasize that our geographical

findings may not be representative of the entire QR code usage ecosystem because our results

are only from a single application, and the popularity of this application compared to other

applications may vary by geographic region.

Thus far, we have analyzed our dataset as a whole, considering distributions of the

frequency of scans and types of codes, analyses over time, and geographic variations. In

the next sections, we dive more deeply into specific popular and unpopular codes as well as

investigate specific use cases of QR codes.
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4.5 Use Case Analyses

Having analyzed the overall properties of the dataset, we now turn to analyzing specific use

cases of QR codes and barcodes. Our analysis is three-fold. First, we consider the most

popular codes (Section 4.5.1). These codes reflect the most common uses of QR codes in our

dataset, and hence our analysis of them gives insight into a sizeable and important fraction

of the one- and two-dimensional barcode ecosystem. However, our dataset contains many

codes that are scanned infrequently (half of all codes in the dataset appear only once). Thus,

we also conduct an analysis of infrequently scanned codes, which we define as codes that

appear 5 or fewer times in our dataset (Section 4.5.2). Given the diversity of the unpopular

codes, our analysis of unpopular codes in Section 4.5.2 is by necessity different than our

analysis of popular codes in Section 4.5.1. We cannot, for example, simply pick the 100 least

popular codes and analyze each of them (indeed, there are 16,792,603 codes scanned 5 or

fewer times). Instead, in Section 4.5.3, we turn to analyzing in more detail specific use cases

of QR codes (which span both popular and unpopular codes).

4.5.1 Popular Codes

Contents of Popular Codes

We first investigate the contents of the 100 most popular (i.e., most frequently scanned)

codes. The number of scans of the 100 most popular codes range from 244,660 for the most

popular code to 11,925 for the 100th most popular code. The fact that even the most popular

codes in the dataset are scanned a relatively modest number of times compared to the total

number of scans suggests that users encounter a huge diversity of codes in practice.

We observe that the QR codes real users encounter often contain web links, and that

many of the most popular of these links lead to corporate websites. Even among the most

popular, however, corporate marketing links do not stand alone, with religious organizations

and non-profits like Wikipedia appearing. We also observe a few niche but very popular uses

of QR codes, including a code which appears inside a video game and a Bitcoin transfer
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code.

Web Codes. The most frequently scanned codes in the dataset are dominated by links to

the web: 95 of the top 100 codes are web links. Most are explicit http:// links, with a

few exceptions: 5 are SSL (https://), while 2 are web links that don’t specify HTTP or

HTTPS explicitly. 40 of the links are to .com domains; 8 to .org; 3 to .com.hk or .hk; 4

to .de; 5 to .jp. At least 15 are shortened links from shortener services and/or QR-code

generation services such as goo.gl, bit.ly, j.mp, and tinyurl.com, qrs.ly, qr2.it, and

qrstuff.com.

The most popular web domains found in the top 100 codes were jw.org (Jehovah’s

Witnesses, 5 of the top 100 codes), mcd.com, mcdonalds.com, and happystudio.com (Mc-

Donalds Corporation, including their Happy Studio game, a total of 10/100), and costco.ms

(3/100). We discuss popular domain in our dataset further below.

Plain Text Codes. Three of the most popular 100 codes are plain text, including the

following texts: “**”, “tpl not defined”, and a multi-lingual free text message congratulating

the person who scans it for having “successfully identified and scanned a QR code! Great

job!” which was included in the video game Guacamelee! Gold Edition and was scanned

14,558 times by 8098 different devices. The popularity of QR codes displayed in the game

speaks to the viability of mobile system applications that use QR codes as an exchange

medium between two devices.

The meanings of “**” and “tpl not defined” are unclear to the authors of this study. We

hypothesize that the latter may come from the QR code at http://myopenapps.blogspot.

com/2014/04/twilight-war-apk-for-android-free.html, which appears that it intends to

be a QR code that links to the associated application. The resulting QR code may have

been created in error and published online before testing.

Other. The only non-QR code in the top 100 codes (#73) is an EAN-8 code for a bottle

of a Coca-Cola product, 54491472. The 90th most popular code, with 13,177 scans, is a

bitcoin: link specifying a Bitcoin transfer to a wallet belonging to thepiratebay.sx. We
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discuss the use of QR codes for Bitcoin and other cryptocurrencies in Section 4.5.3 below.

Popular Domains

As discussed above, a majority of QR codes contain web URLs. We break these URLs down

by domain: Table 4.6 shows the top 50 domains in codes, ordered by the number of times

each domain appeared in a code. Table 4.6 also shows the Alexa global rank of each domain

for comparison.3

Counter to our initial expectation, we find little correspondence between domains that

are popular on Alexa and domains that are popular in our dataset. While we do see some

of the expected popular sites, including google.com and facebook.com, we also see a large

presence of sites that are unpopular on the web in general. Indeed, 15 of the top 50 domains

in our dataset do not even appear in the top 1 million sites on Alexa; an additional 7 domains

do not appear in the Alexa top 100,000.

Instead of the conventionally popular websites, we observe increased prevalence of URL

shorteners (such as goo.gl and bit.ly), domains that appear to be specific to QR codes

(such as qrs.ly and kaywa.me), domains related to lotteries (such as 645lotto.net and

nlotto.co.kr), and more. These results suggest that the QR code-based web ecosystem

is different than the traditional browser based web, with some of the major QR code-based

web sites not having a proportionately large presence on the browser-based web.

Geography of Popular Codes

The most popular codes in the dataset are quite diverse in terms of geographic diversity.

On the one hand, some codes show very high geographic diversity, with the most popular

country for one of these popular codes responsible only for about 9% of scans. On the other

hand, some codes show almost no geographic diversity. 37 codes are dominated by scans

from a single country by a factor of 100: the most popular country for each of these codes

3Domain rank data acquired from http://www.alexa.com in November 2014. The domain ranks may
have differed at the time the codes containing the domains were scanned.
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Figure 4.12: The degree of geographic diversity in scans of the top 100 codes. The y-axis
represents the degree to which the most scanning country dominates scans from all other
countries, represented as a ratio of scans from that country to scans from all other countries.

has scanned the code 100 times more often than all other countries combined. In the most

extreme case, the most popular country for a particular code (Japan) has over 1800 times

the number of scans (12900 scans) as all other countries combined (12907 combined scans

total).

Figure 4.12 shows the ratio of top-country scans to all scans for the 100 most popular

codes. For a third of the most popular 100 codes, this ratio is under 1, indicating that no

single country was responsible for more than half the scans of these codes. The content

of these high-diversity codes are quite diverse, including the link to donate bitcoins to The

Pirate Bay, the code from the Guacamelee video game, English language Wikipedia, and a

link to a personal blog. 11 of these 33 high-diversity codes lead to pages which are primarily

offering the download of mobile apps or which include calls to action to download mobile

apps. This suggests that codes with high geographical diversity are more likely to be used in

at least two particular cases: more unusual/less corporate uses (religious and non-profits),

and to encourage installation of mobile applications.

The most popular code in the dataset (244,660 scans) links to a landing page for a mobile

game for iOS and Android. Its scans are dominated by scans from Taiwan (243,450 scans

in Taiwan), with a ratio of 200 Taiwanese scans to each scan from any other country (443

scans in the next-closest country, Malaysia). Digging deeper, those scans in Taiwan are
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dominated by scans in Taipai, but the code retains significant geographic diversity of scans

within Taiwan.

4.5.2 Unpopular Codes

Having considered popular codes, we now turn to unpopular codes. In particular, we consider

infrequently scanned codes, which we define to be those that appear 5 or fewer times in our

dataset. Note that while the vast majority of codes are infrequently scanned (89% of codes),

the scans of those codes account for only 31% of all scans in the dataset, since the frequently

scanned codes are often scanned hundreds or thousands of times (see Figure 4.5).

Given the large number of infrequent codes (16,792,603) and their diversity, we cannot

simply pick the 100 least frequently scanned codes (as we did for popular codes) and ana-

lyze each of them. Rather, we explore now the quantitative differences between frequently

scanned, moderately scanned, and infrequently scanned codes.

Specifically, we compare trends of content and usage among codes of differing scanning

frequency. For this analysis, we defined “frequently” scanned codes to be those scanned more

than 100 times in our dataset, “moderately” scanned codes to be those scanned 6-100 times,

and “infrequently” scanned codes to be those scanned 5 or fewer times. This division into

bins of 1-5, 6-100 and over 100 scans serves to divide the codes into groups each accounting

for approximately one third of all scans in the dataset.

Table 4.7 lists the fraction of codes for each content type (e.g., web, telephone, etc.) that

were infrequently, moderately, or frequently scanned. The important comparisons in this

table are not across columns — since most codes are scanned infrequently, a given code is

most likely to be an infrequent code. Instead, this table allows us to compare across content

types in a column: is one content type more or less likely than another content type to be

in that frequency category? For example, Android market: QR codes are more likely to be

scanned moderately than business cards.
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4.5.3 Specific Use Cases

We now turn to our analysis of specific uses — and misuses — of QR codes present in our

dataset. These use cases, which span both popular and unpopular codes, present a snapshot

of different actual uses of QR codes in the wild.

We organize this section into subsections corresponding to five themes: web-related use

cases, codes including private data, emerging uses, errors, and malicious uses. A single

use case may in fact span multiple themes, but we have organized the section this way to

highlight these themes.

Specific Web-Related Uses

We dive more deeply into two specific web-related use cases: shortened URLs and links to

adult websites.

Shortened URLs. Many of the web URLs scanned by users were shortened by one of

several URL shortening services (e.g., bit.ly or goo.gl). 984,447 of 11,763,834, or about

8% of URLs seen in the dataset were shortened. To find shortened URLs we checked them

against a list of about 40 shortening services that we compiled from sources on the Internet

and manually checking URLs which looked like they might be shorteners. A small number

of URL shortening services dominated the shorteners seen: 88% of shortened URLs were

shortened by Google’s URL shortener (goo.gl) or by Bitly (bit.ly, bitly.com). qr.net,

a service which simultaneously shortens a URL and generates a QR code linking to that

shortened URL, appeared as the 7th most popular shortener with 4224 shortened URLs.

We can hypothesize a few purposes for shortening URLs in QR codes. While it may

seem odd to shorten URLs in a format which is already only machine readable, we note that

URL shorteners are often used for analytics purposes (e.g., to track clicks). Additionally,

QR codes with shorter URLs will have less data density, and hence may be easier to scan by

some QR code scanners.

Adult Websites. We observed a number of scans of URLs leading to websites which serve
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adult content. We manually identified 4 domains in the Alexa top 100 whose names clearly

indicate that they are adult sites (we may have missed adult sites with less obvious names).

We found 7736 scans of 1929 distinct links to these 4 domains.

The human-opaque nature of QR codes makes them a vector for displaying or referencing

age- or context-inappropriate material in plain view. We note that for many popular barcode

scanners, including the most popular one in the Android Marketplace, the scanner app

automatically fetches and displays the title of the specified website. Thus, even if the app

doesn’t automatically take the user to the site, and even if the site asks visitors for their

age (the most popular site in the dataset does not), users will be shown the title of the

video or page linked to, which may be inappropriate for them or their context. Further,

automatically fetching the website’s title will cause the user’s device to connect to the site

in question without the user’s explicit intention.

Our dataset shows that QR codes with links to adult content do exist and are scanned

by real users with some regularity. We thus suggest that the designers of QR code scanning

applications consider these concerns, perhaps using a list of known adult websites to mask

website titles, avoid automatically fetching titles at all, or show additional warnings before

redirecting users to such sites.

Private Data

We observe a number of use cases that involve encoding private information into a QR code.

Wifi Setup Codes. QR codes can be used to encode the information needed to connect a

device to a Wifi network. We found 55,809 unique such codes, which were scanned a total

of 134,121 times.

For private Wifi networks, these codes contain the plaintext password used to authenti-

cate with the network, exposing that password to anyone with a QR code reader in range

of the QR code. As always-on devices with the capability to read QR codes become more

prevalent (e.g., Google Glass), we might expect that the threat of (intentional or uninten-
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tional) shoulder surfing to read QR codes containing such sensitive information will increase.

Another lesson from these results is that designers of applications that emit QR codes should

consider the implications of putting private information in the QR codes — an untrustwor-

thy QR code scanner would be able to extract that information. The makers of QR code

scanners must also take precautions to protect the privacy of data contained in scanned QR

codes.

Two-Factor Authentication. We found 79,017 distinct codes using the otpauth://

scheme, which is used to set up two-factor authenticators (e.g., Google Authenticator). This

suggests that two-factor authentication is used by a significant number of people. The URIs

included codes to set up authenticators for Microsoft-related accounts (25,753), as well as

accounts for Facebook (15,977), Gmail (10,108), Dropbox (2360), Zoho (766), WordPress

(741), GitHub (524 codes), DigitalOcean (427), and a large number of others, some of which

appeared to be malformed. Most of these codes (78,680) used the standard time-based

(TOTP) version of the protocol; the remaining well-formed URIs specify the HMAC-based

(HOTP) version of the protocol.

Of the otpauth:// codes we found, the vast majority (about 99.5%) were only ever

scanned by a single device, indicating that only one device was set up to authenticate for

that account. Note that unlike Wifi setup codes containing passwords (discussed above),

viewing another user’s two-factor authentication setup code is not as dangerous, as they do

not allow the attacker to compromise the user’s account without the primary authentication

password. However, they would allow someone to compromise the user’s second factor by

obtaining the secret used to initiate it.

PGP Keys. A QR code containing a public key such as a PGP key is a natural way to

convey cryptographic credentials. For example, a person might include their public key as

a QR code on their business card to make it easy for acquaintances to import the key and

support subsequent communications. Key distribution has long been a topic of interest and

study for making cryptographic systems of trust usable and used. Physical artifacts such as
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QR codes represent an interesting point in the space of these solutions.

The dataset contains 30 codes representing PGP public keys and 4 codes representing

private keys. One of these PGP keys is found embedded in a business card format, while

the others stand alone, with the entire QR code representing a full PGP public key block.

The public keys were scanned only a total of 56 times, representing a tiny percentage of

the scans in the data. The 4 private keys were scanned only 7 times altogether. While we

cannot conclude anything in particular from these examples, we note that sharing a private

key instead of a public key could be a serious breach of cryptographic security, and that

code creator error could result in the inclusion of private keys in scenarios like QR code

generation. While these inclusions of private keys could be intentional, the danger of human

error in QR code creation is illustrated here. As with Wifi and two-factor setup codes, this

finding suggests that QR code creators and consumers should exercise care with private data.

Emerging and Niche Uses

Bitcoin and Other Crypto Currencies. Our dataset provides us with a glimpse into the

use of Bitcoin [131] and other crypto currencies, such as Dogecoin [41] and Litecoin [141].

The bitcoin: URI scheme is used for directing a device to make a Bitcoin payment and

includes the wallet to pay to and the number of bitcoins to transfer. We found 10,199 codes

containing Bitcoin URIs, specifying payments to 8541 distinct Bitcoin wallets. The most

popular Bitcoin URI in our data points to thepiratebay.se’s Bitcoin address, suggesting

that many people made (or considered making) donations to that site. This URI was popular

enough to be one of the 100 most scanned codes. Note, however, that the presence of a Bitcoin

transaction scan in our dataset does not necessarily mean that the transaction was confirmed

by the user and committed to the Bitcoin network.

Bitcoin is significantly more prevalent in our dataset than other cryptocurrencies; we

found only 186 Dogecoin URIs and 525 Litecoin URIs.

We also found codes which appear to represent Bitcoin private keys in Wallet Import



109

Format (WIF) [25]. Keys in WIF are 51 characters long and begin with 5 for private keys.

We found 2483 codes in the format of a bitcoin private key, according to the above definition,

and verified that 1260 of them are well formatted, i.e., that they can be decoded into private

keys which could be used to import the corresponding wallet. We did not import any of

them.

Boarding Passes and Event E-Tickets. We found electronic tickets, both for transporta-

tion as well as for events such as concerts, among the codes scanned in the dataset.

For boarding passes, we found 2416 codes which appear to be in a standardized format

for airline boarding passes containing confirmation codes, flight departure and arrival times,

airport codes, and names of passengers. These boarding passes were scanned a total of 5396,

with 1101 of them scanned only once, 668 scanned twice, and the remaining 647 were scanned

more than twice. One boarding pass was scanned 25 times by the same device.

We also found a variety of URLs and eTicket formats for event tickets. We note significant

diversity in the formats and strategies used by eTicketing systems. For example, some codes

included an https:// link to a backend ticket processing system which doesn’t seem to host

public content , while others lead to sites on the public web. These systems seemed not to

follow a common standard or format.

There is greater standardization in airline boarding passes than in other eTicketing sys-

tems. We attribute this naturally to the need for interoperability between different airlines,

security agencies and airports. The contrast between these two systems with similar purposes

(admission of a person to a restricted location or event) but differing levels of standardization

speaks to the different ways that technologies like QR codes can be used depending on usage

context.

Never Gonna Give You Up. A popular joke on the Internet is to link unexpectedly

to a video of the Rick Astley song “Never Going to Give You Up” (referred to as “rick-

rolling”) [174]. Because QR codes are not human-readable, they may be an appealing

mechanism for delivering this URL to an unsuspecting victim. Indeed, we found 1614



110

scans of 40 un-shortened codes and 24 shortened codes containing the URL of the video

(https://www.youtube.com/watch?v=dQw4w9WgXcQ) by devices in 63 countries. The sim-

plest code for a rickroll (with only the URL presented above) was scanned over a thousand

times and was likely created by many different people who all chose to create identical codes

which were scanned in a diversity of places and at differing times. The most popular country

for rickrolling was the United States (with 589 scans), followed by Great Britain and France

(with 194 and 154 scans respectively). This suggests that while a few dozen people may have

thought to use QR codes in such a joke, each individual creator is unlikely to have spread

their code far. While these numbers are small, it suggests that people are using QR codes

for innovative, homebrew purposes.

Similar in spirit to rickrolling, we find 993 scans, over 711 different devices and 597

different cities, of the following quote from the movie Fight Club: “It could be worse. A

female could cut off your Dick while your sleeping and throw it out a moving vehicle.” (sic)

This QR code, which consisted entirely of text and not a link, also demonstrates that QR

codes can be used as a vehicle for communicating directly with humans, rather than first to

a mobile device for processing (e.g., rather provide a URI or a PGP key).

TagMeNot. Our dataset gives us a unique opportunity to measure the prevalence of emerg-

ing uses of QR codes. For example, TagMeNot.info is a “pre-emptive, anticipatory, vendor

independent, and free opt-out technology for pictures taken in public places” [29]. TagMeNot

is an early example of cyber-physical interactions in which aspects of the physical world can

be interpreted in digital context. QR codes from TagMeNot indicate that the wearer of

the code wishes to opt-out of certain sharing or usage of their likeness or property by the

takers of photographs. We found that the code TagMeNot.info was scanned only 7 times

by 5 different devices in Mexico, Italy, Great Britain, and the United States, suggesting that

such opt-out QR codes have not been widely adopted for privacy in the face of ubiquitous

cameras.
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Erroneous Uses

Throughout our analysis of our dataset, we observed a variety of malformed QR codes. In

this section, we consider one potentially erroneous use in detail.

JavaScript. To our surprise, we observed a number of QR codes containing JavaScript

or HTML content. For example, 154 codes, which were scanned a collective 303 times,

contained JavaScript code under the URI scheme javascript:. Most of these codes are

treated merely as plaintext by most QR code readers (i.e., the readers do not attempt to

execute the JavaScript, or even offer the opportunity to do so).

We hypothesize that most of these codes suggest a lack of understanding of how to use

these code snippets or of the purpose and usage model of QR codes on the part of QR code

creators. For example, one of the JavaScript snippets is code for a browser bookmarklet that

creates a QR code [92]. Its presence in our dataset suggests that the creator misunderstood

how to use this code, which should be pasted into a browser bookmark rather than into a

QR code.

Malicious Uses

Finally, we consider a number of potential malicious uses of QR codes and investigate their

prevalence in our dataset.

Premium Telephone Numbers. In the United States and Canada, certain telephone

number area codes designate sets of numbers as toll-free or premium numbers [166]. One

might hypothesize that QR codes are a vector for tricking people into calling expensive

premium numbers. However, we did not find any numbers that we believe to be premium

numbers from the US/Canadian system. We did find 667 numbers which appear to be toll

free numbers (for example, 1-800 numbers). These numbers were overwhelmingly scanned

in the US (91% of scans), suggesting that our guess that these numbers are US toll free

numbers is correct.

Special Phone Numbers. Phones often respond with special actions, such as displaying
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statistics or factory resetting, when special codes are dialed. For example, some Samsung

phones display their IMEI number when “*#06#” is typed into the dialer. We find 126

scans of Samsung special codes in our dataset. One such code factory resets certain Samsung

devices (*2767*3855#) [126]. Putting such a code into a QR code may be dangerous, since

the code must only be displayed in the dialer (i.e., the user must not press the call button)

and the device does not ask for confirmation. Indeed, we find 17 scans of this code, suggesting

that someone may have attempted to test or actually carry out an attack. Fortunately, none

of the scans come from devices of the make and model that treats this code as a factory

reset.

Malicious URLs. Prior work [168, 176] has suggested that QR codes are a promising

vector for distributing malicious URLs. Intuitively, QR codes seem like a natural conduit

for phishing attacks or the distribution of malware (e.g., sending users to drive-by-download

sites). QR codes are opaque, machine readable pointers, which might make it harder for a

user to check that a link is trustworthy. Some QR code apps (including Scan) can be config-

ured to automatically load the URL in a browser without user confirmation. Additionally,

the real-world context surrounding a QR code (e.g., its placement on a marketing poster for

a trusted brand) might cause the user to trust the code. Our dataset gives us the unique

opportunity to study whether users encounter malicious QR code links in the wild.

We investigate this question using Google’s Safe Browsing API4, which provides classi-

fications of a URL as malware and/or phishing, or ok. We randomly sampled URLs in our

dataset and queried them against this API (unshortening any URLs shortened by bit.ly

in the process, using bit.ly’s API). Note that the malware/phishing status of a website

may change over time (e.g., as a malicious site is taken down or a legitimate site is compro-

mised), but the Safe Browsing API does not provide us with historical data, so our results

are necessarily limited.

Of the 1,017,955 unique URLs that we tested, we found 209 URLs flagged as malware

4https://developers.google.com/safe-browsing/
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(0.02%) and zero URLs flagged as phishing. We were surprised by the latter result, which

may suggest that QR codes are presently not a common way to distribute phishing websites.

The 209 malicious URLs represent 106 unique domains. Though the fraction of malicious

URLs in our dataset is low, the fact that we observe some instances of potentially dangerous

URLs suggests that QR code scanning applications should integrate the Safe Browsing API

or similar to check URLs before automatically visiting them or allowing the user to visit

them.

Note that like QR codes, shortened URLs hide the destination URL and thus might serve

as convenient vectors for distributing malware and phishing links. However, similar to our

findings, prior work has found that users rarely encounter malicious shortened URLs [113].

Malicious Android Applications. Digging deeper into the many web URLs in the

dataset, we find that a non-trivial number point to Android applications (i.e., apk files). Of

QR codes containing web URLs, 49,282 (0.07%) contain such links. Whereas the market:

URI scheme points to Android applications on the official Google Play app store, apk files

referenced by web URLs do not come from the official store. Users who have enabled the

setting on their Android device allowing application installs from untrusted sources may be

prompted to install apps they download through a link.

Since QR codes visually obfuscate links, an attacker may be able to trick an unsuspecting

user into installing an Android application in this way. Thus, a natural question to ask is

whether any of the apk links in our dataset point to malicious Android applications. To

investigate this question, we first downloaded each of these apk files that was still accessible

on the web, and then submitted it to the VirusTotal API for scanning. VirusTotal5 is a

subsidiary of Google that scans files and URLs using multiple antivirus scanners and website

engines.

Indeed, we do find instances of known Android malware among the apk links in our

dataset. We attempted to download the apk files from a random sample of 4000 scans

5https://www.virustotal.com/
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containing apk links. Of these, 2591 downloads were successful, with the rest failing due to

404 (not found) errors or connection timeouts. We submitted each of these applications to

VirusTotal, receiving a result specifying the number of third-party virus scanners checked

(generally 40-60) and the number of these that flagged the file. We investigate the VirusTotal

report for each application that triggered more than 5 warnings. We find that 26 applications

(1.0% of the 2591 apps we downloaded and scanned) are classified as explicit malware (e.g.,

Trojans). Another 45 applications (1.7%) are classified as Adware, and another 26 (1.0%)

are classified as otherwise suspicious. None of these flagged applications appeared twice in

the 4000 scans we considered.

We were surprised at the relatively high percentage of apk files flagged as malicious or

suspicious. Possibly, some users scan QR codes with the intent of downloading applications

to help them root their phones (such apps are considered malware by VirusTotal). For

example, this video walks a user through the process of rooting their phone and shows a QR

code that, when scanned, will download the rooting application: https://www.youtube.

com/watch?v=np18BC6B0OY (at 1:35). This use case may account for the relatively high

number of malicious apk files in our dataset.

We spot-checked some of the URLs pointing to malicious apk files against the Google Safe

Browsing API. The API does not necessarily flag these URLs as malicious. This suggests

that it may not be sufficient for a scanning app to check URLs against the Safe Browsing

API or similar.

4.6 Discussion and Future Work

We conducted a systematic, in-depth analysis of barcode and QR code usage in the wild. Our

results show that barcodes and QR codes, which can enable a physical object to communicate

information to a mobile device via a visual channel, are widely used. We analyze that

usage in depth. Overall, we believe that our results should be encouraging the researchers

and industry practitioners developing new ways of leveraging barcodes and QR codes with

mobile devices. We see strong evidence of emerging use cases in our dataset. Our results do,
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however, provide a cautionary note: while some users seem to frequently scan codes, other

users seem to use their code scanner more as a novelty (with some users only scanning a

single code).

We now turn to several lessons from our study, as well as recommendations to the de-

signers of QR and barcode scanning applications.

Key Lessons. Stepping back, we summarize the key lessons our analyses reveal about the

use cases for QR codes and the frequency with which real users encounter these use cases in

practice. These lessons include:

• QR codes are an effective way to reach some users, but many users are infrequent. QR

codes are still an active technology. However, their use is not universal or uniform:

the top users in our dataset performed a stunning number of scans. Half of scans were

performed by only 10% of devices, suggesting that this set of users is easily reached by

QR codes (e.g., in marketing campaigns). However, many users scan only infrequently:

almost one third of devices in our dataset scanned only once. Indeed, we find that

despite a steady adoption rate by new devices, the rate of total scans levels out.

• Web use cases dominate QR codes. The majority (75%) of scans are of QR codes

containing web URLs, suggesting that QR code use is dominated by the use case of

quickly connecting users to websites. The popular domains appearing in QR codes

do not correspond with domains that are popular on the web in general, with higher

popularity of domains specific to QR codes (e.g., qrs.ly) and certain use cases (e.g.,

lottery).

• Nevertheless, non-web uses are prevalent and varied. Though non-web codes accounts

for only about 25% of all scans (14% of QR code scans), the raw numbers of such scans

are still significant. Moreover, the non-web use cases are distributed across a variety of

different uses, including Wifi and one-time password setup codes, Bitcoin transactions,

and other more niche uses cases. Thus, QR codes appear to be commonly used for a

variety of emerging uses.
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• Some codes are intended for broadcast, while others are more limited use. In comparing

frequently and infrequently scanned QR codes, we observe that unique instances of

some types of codes (e.g., Android app store URLs) are scanned more frequently than

unique instances of other types (e.g., device pairing codes).

• Scans and codes show no predictable geographic trends. We observed no consistent

geographic distributions of top codes: some are scanned only in one country, others are

widely distributed. The cities where we observe the most scans are also geographically

diverse. Our caveat about perspective of a single app still applies.

• QR codes are not commonly used for malicious purposes, but users do encounter some

malicious codes in practice. Though we find that users in our dataset rarely encounter

malicious QR codes, our dataset does several examples of malicious QR codes ap-

pearing in the wild, including URLs flagged as malicious by Google, links to Android

applications containing malware, and a (possibly malicious) factory reset telephone

code. Though these cases are rare, users may still encounter them, which informs our

recommendations to creators of QR codes and scanning applications below.

• Some code creators struggle to create correct QR codes. We observed evidence of mal-

formed QR codes of various types, including QR codes that containing Java-Script

intended for a browser bookmarklet. In fact, we hypothesize that one of the top 100

most frequently scanned QR codes was created in error. System designers should not

trust code creators to always create correct codes, and researchers should consider code

creation as a possible point of failure.

Recommendations. Based on our findings, we make the following recommendations to the

designers of QR and barcode scanning applications. Scan plans to take these recommenda-

tions into account in future version of the application.

Check for malicious or questionable URLs before automatically opening the link found in a

QR code. Although we find that malicious URLs are uncommon, we nevertheless find some

examples of malicious links in our dataset, including links to malicious Android applications,
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URLs marked as malware by the Google Safe Browsing API, and telephone codes that can

factory reset some devices. We also find a significant number of links to adult sites, which,

while not malicious, may not be appropriate for all users and in all contexts. Since users are

unable to evaluate the content of a QR code visually, QR code scanning applications should

be careful not to automatically load content, including a website’s title, for potentially ques-

tionable links without first obtaining explicit user consent. We note that checking whether

a link is malicious may not always be straightforward — for example, we observed that not

all URLs leading to malicious apk files are flagged by the Safe Browsing API.

As wearable devices with the capability to quickly and automatically read QR codes, such

as Google Glass, become more common, this recommendation will become even more critical.

There have already been attacks against Google Glass that take advantage of automatic QR

code reading, tricking Glass devices into joining unsafe Wifi networks [62].

Take steps to protect private information. Some codes contain private information, such as

secrets used to authenticate to Wifi networks, initialize one-time passwords, or access Bitcoin

private keys. These codes expose secrets to bystanders, who may be able to intentionally

or unintentionally shoulder surf (especially if the bystander has a wearable devices such as

Google Glass). Thus, designers of systems that use QR codes should consider the privacy

needs of the data in the codes. They also need to consider the set of all potential scanning

apps as part of the system’s trusted computing base since, if the scanning applications are not

trustworthy, the system’s privacy properties may not be met. On the scanning side, perhaps

the results of a scan of a QR code that contains certain classes of private information (such

as private keys) should not be shown to users unless the user (rather than the device) has

explicitly initiated the scan; this design would eliminate accidental shoulder surfing.

Users may face significant security risks if the ways in which scanning tools and system

designers use QR codes don’t match up well with users’ expectations of the sensitivity of

code data. While system designers should take steps behind the scenes, communicating a

better model to users of which actions may be risky and which data may need to be protected
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could improve security significantly.

As a result of these findings, Scan plans for future releases to (1) add a user-friendly option

to opt-out of data collection and to (2) emphasize their data collection policies directly in

the user interface of the app.

Future work. We briefly outline directions for future work.

First, an additional investigation of QR code misuse that we may be able to conduct

with our dataset is an exploration of QR code based attacks attempting to exploit QR

and barcode scanning applications themselves (e.g., via input validation vulnerabilities and

other attacks described in related work [36, 91]) or the website linked to in the QR code (e.g.,

via malicious query parameters). We did not study these exploit attempts in this chapter

because, for example, we do not know of a public repository of exploits against different

scanning app + operating system configurations. A rigorous analysis might involve running

each QR code through different combinations of scanning apps and operating systems, e.g.,

as was done for web browsers [172, 127].

We would also like to explore how much of the web linked from QR codes is not reachable

by crawling the general web. The answer to this question has implications for any application

that relies on the reachability of sites via a web crawl. For example, an application like Google

Safe Browsing may find webpages to scan based on a crawl and might therefore miss websites

linked only in the QR code based web. This gap would in turn pose challenges to QR code

scanning applications attempting to test scanned URLs for safety.

This study focused on what we can learn about QR code use from our dataset of real-

world scans. It would be valuable to extend our knowledge with a user study that more

directly investigated both code creators’ and scanners’ motivations and experiences with

creating and scanning QR codes — e.g., building on [168] to understand how frequently users

scan codes in specific physical locations. A user study would also allow us to learn about

non-users of QR and barcode scanning applications, a population that is inaccessible in our

current dataset by definition.
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Limitations. Finally, we mention several limitations of our dataset. First, while our dataset

is large and and diverse enough that we believe it provides us with general information about

the use of QR and barcodes, we are nevertheless limited to this single vantage point of one

QR and barcode scanning application. Other applications may be popular among different

user groups or in different regions with different behaviors. Similarly, because our dataset

ends at a particular date, we expect that devices and codes appearing late in the dataset

may be underrepresented; they may become more popular after the end of our dataset. As

discussed above, while we use the term “user”, we do not strictly have information about

users but about devices, which may not map one-to-one onto the set of users.

4.7 Conclusion

One- and two-dimensional barcodes, including QR codes, present a convenient way to link

physical objects to digital actions and have been widely adopted in both commercial and

academic settings. In this chapter, I have presented work that is, to the best of our knowledge,

the first in-depth study of QR and barcodes in the wild, leveraging a unique dataset of 87

million scans from users of Scan, a popular QR code scanning application.

In our analysis, we examined general use patterns of QR and barcodes in the wild, finding

that QR codes dominate barcodes and that some users interact frequently with QR codes

in the wild whereas other users scan only a single code. We find that a majority of scans

contain web URLs, but we also identify a wide range of varied and emerging uses of QR codes,

including device pairing and crypto currencies (e.g., Bitcoin). We also identify misuses of QR

codes, both by code creators who create malformed codes, as well as potentially intentional

malicious behaviors, including links to malware.

Our findings allow us to develop an informed understanding about the types of QR

codes being created and how users interact with them in the wild. From these findings, we

distill concrete recommendations for QR and barcode scanning applications (e.g., to protect

private data and check for malicious URLs). The sheer number of users, scans, and use cases

represented in our dataset should be encouraging to researchers and industry practitioners
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developing new ways of leveraging QR and barcodes with mobile devices.
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Table 4.5: Number of scans in the cities where we observe the most scans.

Count Country City
1458830 TW Taipei
756964 HK Central District
436141 RU Moscow
362383 JP Tokyo
288478 US New York
287529 MX Mexico
235983 CA Toronto
233458 US Chicago
223886 US Austin
223373 US Houston
220564 US Minneapolis
194981 SG Singapore
187634 FR Paris
180562 GB London
179355 CA Montreal
171356 US San Antonio
170302 US Las Vegas
164443 DE Berlin
161584 US Los Angeles
159301 US Virginia Beach
153074 KR Seoul
151308 TW Nankang
150853 US Brooklyn
149544 US Charlotte
143165 DK Copenhagen
140164 US Dallas
137590 RU Saint Petersburg
136527 CH Full
135315 US Arlington
134301 US Washington
133922 DE Hamburg
130249 US San Diego
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Table 4.6: The most popular domains found in URLs in codes scanned. These counts are of
distinct codes which included one of these domains — multiple scans of a code are not counted
here. Note that the count for google.com includes subdomains such as play.google.com

and docs.google.com. The righthand column shows the global Alexa rank for each domain
as of November 2014 (values of N/A mean that Alexa does not have data for this domain).

Domain Unique Codes Alexa Rank
goo.gl 2732005 462
youtube.com 2474840 3
google.com 1685677 1
bit.ly 1453335 4406
facebook.com 1436226 2
apple.com 1266273 35
qrs.ly 1063665 2789080
kaywa.me 689613 3124084
delivr.com 566530 243915
premier-kladionica.com 527672 133052
scn.by 507066 N/A
645lotto.net 374325 288448
youtu.be 369834 10515
mcd.com 347196 152098
jw.org 341542 1415
qq.com 316432 10
naver.com 311335 112
bitly.com 309755 388
mta.info 293387 6151
scan.me 277870 140254
nlotto.co.kr 269148 57408
vqr.mx 266588 3349845
tagr.com 256771 13590936
naver.jp 250224 187
towerofsaviors.com 249296 98650
mon-gain.fr 239418 5561369
dropbox.com 237684 85
metrohk.com.hk 187164 81666
bby.us 181854 11907472
tinyurl.com 165680 591
2d-co.de 163990 17873277
augme.com 160901 N/A
safeshare.tv 160412 17952
windowsphone.com 158093 1245
phonegap.com 150780 6809
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Table 4.7: Comparison of QR code contents for three categories of code: frequent, moderate
and infrequent codes. We defined infrequent codes to be those with 1-5 scans, moderate codes
those with 6-100, and frequent codes those with over 100 scans. The table lists the fraction
of codes for each content type that were infrequently, moderately, or frequently scanned. For
example, 18.15% of codes leading to Android apps on the market (last row, market:) had
6-100 scans (moderate), while a business card is only 1.78% likely to be scanned that many
times. The dominance of infrequent codes in general is due to the fact that most codes in the
dataset are infrequently scanned — 89% of all codes had 5 or fewer scans (see Figure 4.5).

Scheme Total Codes Frequent % Moderate % Infrequent %
Business cards (vcard + mecard) 670359 0.01% 1.78% 98.20%
Dogecoin 184 0.00% 3.26% 96.74%
BBM (Blackberry Message) 71985 0.01% 3.45% 96.54%
Litecoin 525 0.19% 4.38% 95.43%
otpauth (2-factor auth) 79000 0.00% 4.87% 95.13%
Bitcoin 10199 0.16% 4.98% 94.86%
Wifi 55741 0.03% 6.58% 93.40%
iOS apps (itms-services: ) 10179 0.14% 7.51% 92.36%
Barcode 3647582 0.00% 8.14% 91.86%
Telephone # 38849 0.13% 8.62% 91.26%
HTTPS 1507300 0.43% 9.88% 89.69%
SMS 839 0.12% 10.73% 89.15%
HTTP 12254403 0.53% 11.13% 88.33%
Android Market (market:) 18544 1.15% 18.15% 80.70%
All (mean over all contents) 18763779 0.4% 10.2% 89.4%
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Chapter 5

CONCLUSION

In this dissertation, I explored a variety of security and privacy aspects of the web through

new measurements and through its relationship to several sister technologies — third-party

web tracking, web archives, and QR codes — which surround, expand, reference, and enhance

the web. This dissertation used measurement as its primary tool, with the chapters develop-

ing a novel measurement technique (Chapter 2), deploying that technique in a new context

(Chapter 3), and using a unique dataset to provide new perspectives on the web and these

surrounding technologies (Chapter 4) that can help us to understand their current uses, to

discover the security and privacy concerns that have arisen and may arise from those uses,

and to suggest paths forward.

This dissertation was motivated by the observation that the web has become an incredibly

important technology in our society, offering both opportunity and risk as it enhances and

exposes both our private and public lives to the Internet. In the preceding chapters, I have

presented work which illustrates the need for new developments in technology and policy,

and which lays the foundation for those developments. This work — and work that follows

it — will help us to ensure that the web and its sister technologies better serve human needs.
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[151] Myriam Ben Saad and Stéphane Gançarski. Improving the quality of web archives
through the importance of changes. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
6860 LNCS(PART 1):394–409, 2011.

[152] William Shakespeare. Hamlet. F.S. Crofts & Co., Inc., NY, 1946. Act I, Scene 3,
Lines 70-72, are apropos.

[153] Mark Simkin, Andreas Bulling, Mario Fritz, and Dominique Schroeder. Ubic: Bridging
the gap between digital cryptography and the physical world. In ESORICS, 2014.

[154] Tom Simonite. Popular Ad Blocker Also Helps the Ad Industry, June 2013. http:

//mashable.com/2013/06/17/ad-blocker-helps-ad-industry/.

[155] Natasha Singer. Do-Not-Track Talks Could Be Running Off the Rails. The New York
Times, May 2013. http://bits.blogs.nytimes.com/2013/05/03/do-not-track-

talks-could-be-running-off-the-rails/.

[156] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay Hoof-
nagle. Flash Cookies and Privacy. Social Science Research Network Working Paper
Series, August 2009.

[157] Kyle Soska and Nicolas Christin. Automatically detecting vulnerable websites before
they turn malicious. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 625–640, 2014.



135

[158] Kyle Soska and Nicolas Christin. Automatically Detecting Vulnerable Websites Before
They Turn Malicious. 23rd USENIX Security Symposium (USENIX Security 14), pages
625–640, 2014.

[159] Spivak, M.D., Ph.D. PCTEX Manual. Personal TEX, Inc., CA, 1985.

[160] Spivak, M.D., Ph.D. The Joy of TEX. American Mathematical Society, RI, 1986.

[161] Steven Englehardt. Do privacy studies help? A Retrospective look at Canvas Fin-
gerprinting. https://freedom-to-tinker.com/blog/englehardt/retrospective-

look-at-canvas-fingerprinting/.

[162] The National Archives. UK Government Web Archive. https://www.

nationalarchives.gov.uk/webarchive/, 2017. Accessed: 2017-05-12.

[163] ThreatMetrix. Tech. Overview. http://threatmetrix.com/technology/

technology-overview/.

[164] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon Baro-
cas. Adnostic: Privacy Preserving Targeted Advertising. In Proceedings of the Network
and Distributed System Security Symposium, 2010.

[165] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor, Richard Shay, and Yang Wang.
Smart, useful, scary, creepy: perceptions of online behavioral advertising. In 8th Sym-
posium on Usable Privacy and Security, 2012.

[166] US Federal Communications Commission. What is a toll-free number and how does
it work?, 2014. https://www.fcc.gov/guides/toll-free-numbers-and-how-they-
work.

[167] Robert Vamosi. Device Fingerprinting Aims To Stop Online Fraud. PCWorld, March
2009. http://www.pcworld.com/businesscenter/article/161036/.

[168] T. Vidas, E. Owusu, S. Wang, C. Zeng, L. Cranor, and N. Christin. QRishing: The
susceptibility of smartphone users to QR code phishing attacks. In Proceedings of the
2013 Workshop on Usable Security (USEC), 2013.

[169] Thomas Vissers, Nick Nikiforakis, Nataliia Bielova, and Wouter Joosen. Crying wolf?
on the price discrimination of online airline tickets. In HotPETS, 2014.

[170] Cassie Wagner, Meseret D Gebremichael, Mary K Taylor, and Michael J Soltys. Dis-
appearing act: decay of uniform resource locators in health care management journals.
Journal of the Medical Library Association : JMLA, 97(2):122–130, 2009.

[171] David Y Wang, Stefan Savage, and Geoffrey M Voelker. Juice: A Longitudinal Study
of an SEO Botnet. In NDSS, 2013.

[172] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Verbowski, Shuo Chen,
and Sam King. Automated web patrol with Strider HoneyMonkeys: Finding web sites
that exploit browser vulnerabilities. In Proceedings of the 13th Annual Network and
Distributed Systems Security Symposium (NDSS 2006), 2006.

[173] Washington Post. From Lycos to Ask Jeeves to Facebook: Tracking the 20 most pop-
ular web sites every year since 1996. https://www.washingtonpost.com/news/the-

intersect/wp/2014/12/15/from-lycos-to-ask-jeeves-to-facebook-tracking-

the-20-most-popular-web-sites-every-year-since-1996/.



136

[174] Wikipedia. Rickrolling. http://en.wikipedia.org/wiki/Rickrolling.

[175] Craig E. Wills and Can Tatar. Understanding what they do with what they know. In
Proceedings of the ACM Workshop on Privacy in the Electronic Society, 2012.

[176] Huiping Yao and Dongwan Shin. Towards preventing QR code based attacks on android
phone using security warnings. In AsiaCCS, 2013.

[177] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. Host
Fingerprinting and Tracking on the Web: Privacy and Security Implications. In Pro-
ceedings of the Network and Distributed System Security Symposium, 2012.

[178] Harlan Yu. Do Not Track: Not as Simple as it Sounds, August 2010. https://

freedom-to-tinker.com/blog/harlanyu/do-not-track-not-simple-it-sounds.

[179] Zack Whittaker. PGP co-founder: Ad companies are the biggest privacy problem today,
not governments, 2016. www.zdnet.com/article/pgp-co-founder-the-biggest-

privacy-issue-today-are-online-ads/.


