
c©Copyright 2013

Alexei Czeskis

Practical, Usable, and Secure Authentication and Authorization on
the Web

Alexei Czeskis

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2013

Reading Committee:

Tadayoshi Kohno, Chair

Arvind Krishnamurty

Hank Levy

Raadhakrishnan Poovendran

Program Authorized to Offer Degree:
UW Computer Science and Engineering

University of Washington

Abstract

Practical, Usable, and Secure Authentication and Authorization on the Web

Alexei Czeskis

Chair of the Supervisory Committee:

Associate Professor Tadayoshi Kohno

Department of Computer Science and Engineering

User authentication and authorization are two of the most critical aspects of computer

security and privacy on the web. However, despite their importance, in practice, authen-

tication and authorization are achieved through the use of decade-old techniques that are

both often inconvenient for users and have been shown to be insecure against practical at-

tackers. Many approaches have been proposed and attempted to improve and strengthen

user authentication and authorization. Among them are authentication schemes that use

hardware tokens, graphical passwords, one-time-passcode generators, and many more. Sim-

ilarly, a number of approaches have been proposed to change how user authorization is

performed. Unfortunately, none of the new approaches have been able to displace the tradi-

tional authentication and authorization strategies on the web. Meanwhile, attacks against

user authentication and authorization continue to be rampant and are often (due to the

lack of progress in practical defenses) successful.

This dissertation examines the existing challenges to providing secure, private, and us-

able user authentication and authorization on the web. We begin by analyzing previous

approaches with the goal of fundamentally understanding why and how previous solutions

have not been adopted. Second, using this insight, we present three systems, each aiming to

improve an aspect of user authentication and authorization on the web. Origin-Bound Cer-

tificates provide a deployable and secure building block for user credential transfer on the

web. PhoneAuth uses Origin-Bound Certificates in order to allow users to securely authen-

ticate to service providers in the face of strong attackers while maintaining the traditional

username/password authentication model. Finally, Allowed Referrer Lists allow developers

to easily protect applications against authorization vulnerabilities.

We present the design, implementation, and evaluation for each of the three systems,

demonstrating the feasibility of our approaches. Together, these works advance the state

of the art in practical, usable and secure user authentication and authorization on the web.

These systems demonstrate that through deep consideration of fundamental stakeholder

values and careful engineering, it is possible to build systems that increase the security of

user authentication and authorization without adversely impacting the user and developer

experiences, while at the same time being deployable and practical.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Introduction . 1

Chapter 2: Background: Challenges and Previous Approaches 5

2.1 Challenges to Secure User Authentication and Authorization 5

2.2 Techniques for Authenticating Users . 8

2.3 Techniques for Authorizing Requests . 21

2.4 Summary . 32

Chapter 3: TLS Origin-Bound Certificates: Strengthening the Transport Layer . . 34

3.1 Motivation and Overview . 34

3.2 Design . 37

3.3 Implementation . 49

3.4 Evaluation . 50

3.5 Discussion . 55

3.6 Summary . 62

Chapter 4: PhoneAuth: Strengthening User Authentication 63

4.1 Motivation and Overview . 63

4.2 Design . 65

4.3 Implementation . 75

4.4 Evaluation . 80

4.5 Discussion . 85

4.6 Summary . 86

Chapter 5: Allowed Referrer Lists: Strengthening User Authorization 88

5.1 Motivation and Overview . 88

5.2 Design . 90

5.3 Implementation . 98

i

5.4 Evaluation . 100

5.5 Discussion . 110

5.6 Summary . 110

Chapter 6: Conclusion . 112

Bibliography . 114

ii

LIST OF FIGURES

Figure Number Page

1.1 Authentication Overview . 3

1.2 Authorization Overview . 3

2.1 TLS client certificate prompt . 17

2.2 Cookie setting protocol . 22

2.3 Example CSRF attack . 23

3.1 TLS-OBC extension handshake flow . 40

3.2 Setting an OBC-bound cookie . 43

3.3 A MITM attack during a TLS handshake . 44

3.4 OBCs protecting against a MiTM attack . 45

3.5 Federated authorization flow using OBCs . 47

3.6 Chromium network latency with TLS-OBC cert generation 51

3.7 Chromium network latency with TLS-OBC certs pre-generated 52

3.8 NSS certificate generate times (ms) . 52

3.9 Server-side memory footprint of various client-side key sizes. 54

3.10 Server-side CPU utilization for various client-side key sizes. 55

3.11 Latency without client certificates . 55

3.12 Latency with 1024-bit RSA certificate . 56

3.13 Latency with 2048-bit RSA certificate . 56

3.14 Latency with 163-bit ECDSA certificate . 57

3.15 TLS encrypted client certificates . 58

4.1 PhoneAuth overview . 67

4.2 Login ticket structure . 71

4.3 Assertion request structure . 72

4.4 Identity assertion structure . 73

5.1 ARL policy example . 94

5.2 Restricting HTTP Authentication . 95

5.3 Disallowing requests . 96

iii

5.4 ARL proxy . 101

iv

ACKNOWLEDGMENTS

I would like to extend sincere gratitude to my advisor, Prof. Tadayoshi Kohno for

mentoring, guiding, and supporting me (academically, financially, emotionally) through all

aspects of my doctoral career. Thank you to all other members of my dissertation committee

(Prof. Arvind Krishnamurty, Prof. Hank Levy, and Prof. Raadhakrishnan Poovendran) for

their valuable feedback and support.

I would like to thank all my collaborators and coauthors through the years for their

insight and for allowing me the privilege of working with them. Particularly, I would like

to thank Dr. Dirk Balfanz, Dr. Michael Dietz, Dr. Alexander Moshchuk, Dr. Helen Wang,

and Prof. Dan Wallach for their collaboration on parts of this dissertation.

I would like to extend my gratitude to Dr. Lindsay Michimoto for providing invaluable

guidance through the Ph.D. process and to Melody Kadenko for making all administrative

aspects of my life easier (and for providing chocolate).

Thank you to my laboratory family: Tamara Denning, Miro Enev, Karl Koscher, Adam

Lerner, Temitope Oluwafemi, Franzi Roesner, and Alex Takakuwa. A special thank you to

Karl Koscher for his continuous collaboration with me throughout the years. Thank you to

Taryn Kohno for allowing me to steal Yoshi at odd times of the evening.

Additionally, thank you to Ivayla Dermendjieva, Hussein Yapit, and Ian Smith for al-

lowing me to mentor you.

Thank you to my amazing family — my sister, dad, and mom — for your motivation

and support. Finally, thank you to my girlfriend and friends (especially Alexandr Raevskiy)

for keeping me sane during my graduate career.

v

DEDICATION

To those who have been humble enough to lend me a hand.

vi

1

Chapter 1

INTRODUCTION

Secure and reliable communication on the web has many moving parts, but two of

the most critical aspects are user authentication and authorization. Authentication is the

process by which one entity (e.g., a server) identifies another entity (e.g., a user) remotely

over the web (see Figure 1.1). Authorization, on the other hand, is the process by which a

web service decides whether to allow or deny a user action (see Figure 1.2). It is important

that both authentication and authorization are performed securely, lest attackers be able

to impersonate legitimate users and gain access to sensitive user data, cause data loss,

or engage in identity theft. Authentication and authorization have been important since

the first day of multi-user systems and interconnected networks; now they have become

indispensable as virtually all aspects of an individual’s life are moving on-line.

While much of the web infrastructure has changed over the past several decades, user

authentication and authorization have seen little progress. Users authenticate to web ser-

vices much like they did in 1990 — by providing a username and password. In return,

web applications set cookies in the user’s browser which must then be returned (by the

browser) with subsequent HTTP requests. Any requests bearing the correct user cookies

are considered authenticated. Many websites, also consider cookie bearing requests to be

authorized. Since web browsers attach cookies to all requests (with or without user intent),

many requests thus have incorrect or ambient authority. Unfortunately, this leads to a class

of attacks called Cross-Site Request Forgery (CSRF) — see Chapter 5 for more details. To

protect against CSRFs, the long-term best-practice is to use an approach called tokeniza-

tion, whereby secret tokens are included in webpages and must be returned in order for

subsequent requests to be considered legitimately authorized.

One may be quick to assume that the permanence of these authentication and autho-

rization methods implies that “we got it right” or that passwords and cookies are sufficient

2

and no replacement is actually needed. However, the reality is quite different. Researchers

have continuously shown that the status quo is lacking in security and usability [22, 27]. For

example, on the authentication front, users have difficulty remembering complicated pass-

words, leading them to choose short, guessable passwords [51]. Additionally, since there

is a cognitive burden associated with remembering multiple passwords, users often reuse

passwords across sites [51]. This allows attackers to compromise passwords databases on

weakly protected sites and then use those passwords to compromise user accounts on more

strongly protected sites. On the authorization front, tokenization is difficult to implement

correctly, often leading to CRSF vulnerabilities (Chapter 5 covers this extensively).

The security community has provided developers with tools to address and patch many

of the “low-hanging”, easily exploitable vulnerabilities in software systems. Perhaps as a

result, attackers are increasingly pursuing user authentication and authorization as viable

attack vectors. Indeed, attacks on user authentication and authorization are being launched

in the wild, sometimes with serious consequences [3, 25, 87, 122]. For example, weaknesses

in authentication have allowed attackers to compromise user email accounts, send scam

emails to their family members, and then wipe the user’s account — deleting all contacts,

emails, and stored documents [47]. In another attack, attackers have compromised an email

account, impersonated the user on social networks (posting socially offensive remarks), and

then used the credentials in the email account to remotely wipe his laptop, phone, and

tablet [60].

On the authentication front, researchers have proposed a wide variety of alternative (and

complementary) mechanisms. For example, proposed schemes include graphical passwords

(e.g., requiring users to recognize faces [93] or to draw patterns [8]), hardware tokens (e.g.,

RSA SecurID [42]), biometrics (e.g., fingerprint [64]), and many others. Nevertheless, pass-

words still reign as the de facto authentication mechanism on the web. Practical progress

in user authorization has also remained largely stagnant — unable to move past tokeniza-

tion despite several proposals. Some natural questions are: Why? and How do we move

forward? This dissertation offers some insight into answering these questions.

Specifically, this dissertation analyzes the challenges that exist in the modern-day au-

thentication and authorization space, and proposes novel technologies to provide deployable,

3

Figure 1.1: Authentication. The goal of au-

thentication is for the server to identify if

the incoming request is being issued by a

legitimate user (if so, then which) or an at-

tacker.

Figure 1.2: Authorization. The goal of au-

thorization is for the web service to accu-

rately decide whether a particular user re-

quest should be allowed or not.

usable, and secure authentication and authorization on the web. By examining the current

technological landscape, we identify three underlying weaknesses, which in turn lead to

attacks against authentication and authorization: (1) web clients have no means of estab-

lishing strong authenticated channels with web servers; (2) current methods for augmenting

password-based user login with strong second factors are not practical because they do not

provide a sufficient mix of usability and security or do not consider deployability factors;

and (3) current authorization defenses are error-prone and heavyweight. As a result, many

web applications are built without adequate security protections and put user accounts and

data at risk.

Contributions The work presented in this dissertation seeks to address weaknesses in

current authenticaiton/authorization landscape and provide developers with practical tools

to protect user accounts against adversaries. Towards this goal, we presents the design,

implementation, and evaluation of three systems, each focusing on improving one of the

aforementioned underlying weaknesses in user authentication and authorization. Origin-

Bound Certificates [40] provide a deployable and secure building block for user credential

transfer on the web by allowing developers to establish strongly authenticated channels

between web clients and servers. PhoneAuth [31] uses Origin-Bound Certificates in order

4

to allow users to securely authenticate to service providers in the face of strong attack-

ers while maintaining the traditional username/password authentication model. Finally,

Allowed Referrer Lists [32] allow developers to easily protect applications against autho-

rization vulnerabilities.

Taken together, these systems demonstrate that it is possible to design and build solu-

tions for strengthening user authentication and authorization on the web without sacrificing

usability for both developers and end-users. A key step to making our systems deployable

was to understand the constraints and realities under which industry operates — we did this

by drawing insight from and collaborated with leaders in the IT industry such as Google

and Microsoft. As an additional contribution of this thesis, we share what we’ve learned

about the industry nuances that can often hinder the adoption of new approaches. For

example, Origin Bound Certificates are specifically designed to work with the way major

cloud providers deploy TLS terminators in data centers.

This thesis is organized as follows: Chapter 2 provides background and motivation for

our work by discuss the challenges of offering secure user authentication and authorization.

Additionally, Chapter 2 also explores prior efforts in this area, specifically focusing on how

other approaches have succeeded and failed. We then use this insight in Chapters 3 – 5,

where we present new systems along with their specific motivation, design, and evaluation.

Chapter 6 concludes and offers some future directions.

5

Chapter 2

BACKGROUND: CHALLENGES AND PREVIOUS APPROACHES

This chapter explores the current and past landscape of user authentication and autho-

rization on the web. We begin by considering the needs of key stakeholders involved (such

as users and service providers) as well as the attackers’ capabilities and the threat model

they create. We demonstrate how providing usable and practical authentication and autho-

rization for users and service providers creates non-trivial challenges in the face of trying to

build security against attackers. We then analyze the merits and shortcomings of a number

of previous approaches for providing usable, practical, and secure user authentication and

authorizatioon.

2.1 Challenges to Secure User Authentication and Authorization

Improving usable and secure user authentication and authorization on the web is deceiv-

ingly difficult. Specifically, both users’ and service providers’ goals and constraints must be

considered in evaluating any potential authentication approach. Additionally, any authenti-

cation or authorization mechanism must remain viable under adversarial pressure. We now

further consider the key stakeholders in turn below:

2.1.1 Users

We begin with the following premise: we assume that users want to do as little work as

possible in order to get access to their account. Furthermore, we assume that many users

don’t want anyone else to access or modify their data. To this end, users are willing to

spend a limited amount of time an effort authenticating. Exactly, “how much effort” is

an open question. We expect that users would be willing to spend more effort on security

while authenticating to a bank rather and less when authenticating to a link-sharing site.

Users have been trained to use passwords for authentication. Consequently, despite their

6

known usability issues [58], we believe that the usability of passwords is a good litmus test

for evaluating new approaches. That is, if it takes any more time or effort to authenticate

with some mechanism than with passwords, then users may find it too cumbersome; if it

takes less time, then users may consider it to be more usable.

On the authorization front, in most scenarios, users currently have to do little or no

work to authorize requests (this all happens “under the hood”). Though asking users to

confirm transactions (e.g., for banking) seems to be commonplace, asking users to authorize

every click or even e-mail is not. Approaches should be careful about creating additional

overhead for users when authorizing user requests.

2.1.2 Service Providers

We continue with these additional premises: on one hand, service providers want users

to authenticate as easily as possible (in order to please users); on the other hand, service

providers want to make user authentication thorough to ward off attackers and prevent user

account compromise.

Besides these constraints, service providers operate with business interest. That is, we

assume service providers will generally be reluctant to adopt authentication and authoriza-

tion solutions that cause them to perform significant software (or hardware) development or

that cause them a large per-user cost. The cost function includes, besides other variables,

time and money to set up authentication with a new user (e.g., mailing them a physical

token or sending an SMS) as well as the effort required to recover an account in case the

users lock themselves out (e.g., by forgetting a password).

2.1.3 Attackers / Threat Model

There are several main forms of attackers which are present both in literature and in practice.

We examine each in turn — from the least, to the most powerful types. For the purpose of

this thesis, we are interested in studying the case when users browse the web with patched

browsers and operating systems, making it difficult for attackers to silently install malware

on the user’s machine. While unpatched users exist (as do zero-day vulnerabilities), these

7

type of attackers are out the of scope of this thesis.

Web attackers

Entities who operate malicious websites (e.g., bad.com1) are called web attackers. We

assume that legitimate users will eventually accidentally visit bad.com. The attacker may

design bad.com to visually mimic the user’s bank or e-mail website in an attempt to get

(i.e., phish) the user’s login credentials. As the attackers are quite skilled, and may occupy

clever URLs (such as 6ank.com2), we assume that most users will fall for this trick. That

is, they will enter credentials (such as their password) into the attacker controlled bad.com.

Therefore, we assume that attackers will be able to steal user passwords in this manner.

Additionally, web attackers can cause users’ browsers to make arbitrary HTTP requests

to legitimate sites by including content (such as iframes or links to images) in the malicious

sites. This is an important capability as it allows attackers to perform Cross-Site Request

Forgery (CSRF) attacks. The attack is illustrated in Figure 2.3 and works as follows: The

user logs into the legitimate site (e.g., bank.com), which then sets a cookie on the user’s

browser. Sometime later, the user visits the malicious site (e.g., bad.com), which includes

content (such as an image tag) that causes the user’s browser to make an HTTP request

to the legitimate site (e.g., bank.com/transfer funds?to=eve). Furthermore, since the

browser has cookies stored for the legitimate site, the browser will attach those cookies

with the request. If the legitimate site is not careful, it may assume that this request was

authorized by the user and perform the malicious transaction.

Network attackers

Entities who are able to observe and modify the network traffic between the user and

the legitimate site are called network attackers. A network attacker may be as localized

as an adversary sniffing wireless traffic in a coffee shop. This attack is not difficult and

tools for doing so are readily available on the Internet [5, 25]. A larger scale example of a

1This is just an example, the real bad.com may not be malicious

2This is just an example, the real 6ank.com may not be malicious

8

network attacker is a nation-state that interposes themselves on all traffic entering, leaving,

or transitioning the country. Countries such as China, Iran, Armenia, and many others are

known to do so [61, 98]. These type of attacks are called man-in-the-middle attacks.

Network attackers can clearly extract sensitive authentication data (such as passwords

and cookies) out of unencrypted network traffic (e.g., HTTP). The Transfer Security Layer

(TLS) [38] is specifically designed to defeat such attacks by providing message confidentiality

and integrity between the user and the legitimate server. Unfortunately, attackers have

been able to defeat the security properties offered by TLS by forging rogue server TLS

certificates [3] or exploiting vulnerabilities in the TLS cryptographic layer [99, 6]. The

net result is the same — attackers are able to extract sensitive data (such as cookies and

passwords) out of network traffic.

Related-site attackers

Some attackers will compromise sites having weak security practices in order to steal the

site’s user credentials. As users often reuse credentials across sites [51], related-site attackers

will try to reuse the stolen credentials on more secure sites in hopes of gaining access to the

user accounts [50].

2.2 Techniques for Authenticating Users

A number of alternative techniques have been proposed for authenticating users. We now

examine these techniques and comment on their technical and usability contributions, their

security properties, and their potential for practical deployment. Enumerating all proposed

authentication approaches is not possible, therefore we attempt to give a good background

of the field as a whole through several canonical examples. While we take a somewhat

informal approach to analyzing these mechanisms, other works have attempted to quantify

the differences between these schemes (e.g., Bonneau et al. [22]). While the Bonneau et al.

work was very informative in writing this chapter, we attempt to offer a more broad coverage

of the authentication space (e.g., Bonneau et al. doesn’t cover TLS client certificates, but

we do) while at the same time providing more (somewhat subjective) insight into why a

scheme failed or succeeded to be adopted.

9

2.2.1 Password Managers

As we saw in Section 2.1.1, users struggle with producing and remembering distinct strong

passwords. Password Managers help users overcome this usability barrier by (as their name

implies) storing and managing users’ passwords.

Most major browsers (such as Mozilla Firefox, Google Chrome, and Microsoft Internet

Explorer) offer to remember and auto-complete user generated passwords [52, 80, 83]. Some

browsers (e.g., Chrome and Firefox) support syncing password data across different com-

puters, allowing users to freely move between different devices without fear of losing access

to their passwords. The syncing is done through the service provider’s servers and requires

users to provide a “master” password. Additionally, browser-based password managers al-

low users to view their stored passwords — a really useful feature as users can forget their

passwords since users no longer have to type them.

Besides in-browser password managers, several third-party password managing applica-

tions exist — of which LastPass [72] is currently the most prominent. LastPass supports

installation on the top five browsers, across the three most popular operating systems, and

on all of the popular mobile phone platforms. Like the in-browser password managers,

LastPass records, auto-completes, and syncs users’ passwords across devices. LastPass also

offers advanced options such as using two-factor authentication mechanisms (e.g., hardware

tokens, see Section 2.2.7) and the ability to auto-generate passwords during account creation

on websites.

Similar to LastPass, another class of password managers attempts to more proactively

prevent users from sharing passwords across sites. Two notable examples are PwdHash [100]

and Password Multiplier [56]. Both extensions work by using a cryptographic hash to

generate a site-specific password. In order to invoke the password manager, users must

perform a particular action (such as typing “@@” or double-clicking the password field).

Analysis Password managers help users with keeping track of all their passwords. With

the recent advances in cross-platform password syncing and storing passwords in the cloud,

users are no longer “locked out” of their accounts as they move from device to device.

10

Since password managers don’t change the low level way in which users authenticate to web

services (with passwords), they require no server-side changes — making password managers

very deployable.

However, user studies have shown that users are uncomfortable with relinquishing control

over their passwords [28]. Furthermore, since most password managers allow users to view

their passwords, users are still vulnerable to phishing as attackers can ask users to copy-

paste the password into a web form. Password managers that sync passwords through the

cloud are secured using a master password. If this password leaks, so do all of the users’

other passwords. Finally, password managers do nothing to stop man-in-the-middle attacks.

2.2.2 Single Sign-On

Single Sign-On (SSO) are technologies for allowing users to authenticate once to an Identity

Provider and then have access to many systems (potentially from different organizations)

without having to authenticate again. Microsoft Passport [79] (closely related to and in-

terchangeable with Windows Live ID), OpenID [96], Google ID [53], Facebook Login [45],

and Kerberos [81] are examples of SSO. The typical user experience is for users to navigate

to example.com, indicate which account (Google, Facebook, etc...) they would like to au-

thenticate with, be redirected to the respective identity provider, and either authenticate

(typically by providing a username and password) or just approving the login (if already

authenticated). Kerberos is the most well-known SSO solution, but is not used on the Web

in its raw form. Microsoft Passport, though meant to be used by non-Microsoft entities

is mostly used by Microsoft or business doing business with Microsoft (to our knowledge).

Facebook Login appears to be the most popular SSO product deployed as of this writing.

Analysis Similar to password managers, SSO allows users to enter passwords less often

— thereby reducing the risk of phishing and increasing usability. Additionally, SSO allows

smaller sites, which may not have a sufficient developer force, to not have to store or deal

with user passwords — a security win.

At the same time, however, just as with the master password for password managers,

losing or exposing the user’s password becomes much more catastrophic as it now gives the

11

attacker access to many more accounts. By opting into an SSO solution, websites hand

authentication over to another party. While this may be good for smaller sites, larger sites

view loss of control as a downside — partly for security reasons (sites don’t want to rely on

the other site’s security measures), for availability reasons (sites don’t want to lock users

out if the other site goes down), and for business reasons (user data is financially valuable).

This means that many large sites create authentication/SSO solutions of their own. In

turn, this creates usability issues for users, whereby users are presented with many different

authentication options. This is colloquially known as the NASCAR problem3. Finally, by

using SSO, users share their browsing patterns with their identity provider.

2.2.3 Authentication Proxies

Closely related to Single Sign-On and password managers, some researchers have proposed

proxy-based authentication. In this scheme, users first register all of their accounts and

passwords at the proxy. When the user wants to authenticate to an actual website, the user

first authenticates to the proxy (we’ll describe how below), which then authenticates to the

server on the user’s behalf using the stored username and password credential.

Two examples of proxy-based authentication are URRSA [49] and Impostor [92]. With

URRSA, each of the user’s passwords is stored n times, encrypted with n different keys. At

registration time, the user prints out a sheet of one-time-codes. The codes are the passwords

encrypted under the n different keys. The codes are organized into groups — each group

represents a username / password combination that the user originally registered. In order

to authenticate to the proxy and to indicate to which site the user wants to authenticate,

the user chooses the next unused code off their sheet in the appropriate group. The proxy

decrypts the code and then forwards the password to the appropriate site.

At registration time, Imposter stores the user’s usernames / passwords and requires

the user to remember a passphrase. In order to use a web service, the user must first

authenticate to Imposter, this involves first configuring the browser proxy settings to use

Imposter as a proxy. Next, Imposter asks the user for random letters of the secret phase.

3in the sense that NASCAR cars have many company logos — just like SSO login pages have many
identity provider logos

12

This allows the user to authenticate from untrusted clients as the client will not learn secrets

that it can replay in the future to get access.

Analysis Both of the proxy-based approaches do a good job of protecting users against

authenticating from untrusted devices. Similar to password managers and SSO schemes,

proxy-based approaches allow users to type their passwords less often. However, with

URRSA, users end up typing one-time codes instead. Imposter’s pass-phrase has the same

weakness as the master password for password managers and SSO approaches — if it is lost

or stolen, the consequences could be dire. Furthermore, if the proxy is compromised, then

security for multiple sites could be compromised. Since passwords are still used under the

hood by the proxy to authenticate to web services, these approaches are still vulnerable to a

man-in-the-middle attacker between the proxy and the web service. These approaches also

create a single point of failure — if the proxy becomes unavailable, the user is prevented

from accessing any of his accounts. Furthermore, both approaches change the user expe-

rience during the authentication flow. To our knowledge, neither proxy-based approach is

deployed on the general internet.

2.2.4 Graphical Passwords

A set of authentication approaches relies on the human ability to recognize and remember

visual patterns; these are called Graphical Passwords. Biddle et al. [16] give a good summary

overview of the last 12 years of graphical passwords. The canonical example of a graphical

password is a type of draw-a-secret scheme [65] or PassGo [114] where the user must recall

and draw a secret pattern. The most in-use example of this scheme is perhaps the connect-

the-dots pattern available on android mobile phones that users can enable in order to unlock

their screen [8].

Another example of graphical passwords utilizes the ability of people to recognize human

faces. One prominent example is PassFaces [93]. To use PassFaces, users must select n

(where n is typically less than 10) faces to remember. During the authentication phase, the

user is presented with a grid of faces, from which the user must select the correct faces. A

variant of this scheme is used by Facebook when risky/suspicious activity is detected on

13

a account (such as logging in from a strange IP address) [46]. The user is shown several

images of his/her “friends” and asked to identify the name of the person in each picture.

Yet another form of graphical passwords is click-based, where users must click (or touch)

the correct sections of the screen. Many other graphical password schemes exist. For

example, some have users recognize icons [15], while others have users recognize art [35].

Analysis Graphical passwords have somewhat recently become deployed on major ser-

vices (Android and Facebook being the prominent examples). It’s not yet clear whether

these approaches will grow in popularity or wane away into non-existence.

Studies have shown that, just as users predictably choose passwords, they also predic-

tively choose faces to remember (attractive female faces being the most popular) [44]. These

studies suggest that systems choose faces, instead of letting users do this. Additionally, it’s

not clear that remembering many distinct graphical passwords (one for each site) is cogni-

tively simpler than remembering multiple passwords [44]. Implementing graphical password

authentication on the server requires redesigning the server architecture. From a security

point of view, graphical passwords are still vulnerable to phishing and man-in-the-middle

attacks.

2.2.5 Cognitive Authentication

A new and fresh approach is based on modifying and analyzing a user’s subconscious.

Bojinov et al. [20] recently proposed an authentication scheme where they carefully designed

a computer game to implant a secret in the user’s brain without the user knowing. To

authenticate, the user would be asked to play a game and would (unknowingly) prove

knowledge of the secret through the way he/she played the game. During the learning

phase, the user was trained to do a specific task called Serial Interception Sequence Learning

(SISL) — a specific set of keystrokes. To authenticate, the user was presented with multiple

SISL tasks (where one of the tasks includes some of the previously trained elements), and

the user ends up performing better on these trained tasks. In the paper, training took

approximately 30 minutes and authentication took approximately five minutes.

Denning et al. [34] proposed a similar approach using pairs of images: a complete

14

image and their degraded counterparts. Users would be shown a random subset of complete

images during the priming phase. During the authentication phase, users would be asked to

identify complete images from their degraded versions. Some of the degraded images shown

to the user included images that were shown to the user during the priming phase. Denning

et al. found that users were able to better identify images on which they had previous been

primed. As a result, they conclude that this is a viable potential authentication method.

Analysis One interesting property of the Bojinov approach is that the user does not

know the secret. In their paper, Bojinov et al. observer that this property allows the

authentication scheme to be resistant against “rubber-hose cryptanalysis” whereby the user

is physically coerced into revealing the password. While this claim seems to be plausible, at

the present the scheme has too much overhead for being practically deployable. Not only

would it require significant restructuring of server infrastructure, but also takes too long to

authenticate (five minutes is too long to login on the web). Indeed, Bojinov et al. observed

that their approach is appropriate for “on-site” authentication, not remote authentication

over the web.

The approach proposed by Denning et al. seems viable, but has a couple of shortcomings.

The most significant weakness is the low entropy throughput; that is, it is necessary to show

many images to users before being able to successfully authenticate them. The authors note

this weakness and suggest that the scheme is most applicable to password recovery, rather

than being a replacement for password authentication.

2.2.6 Biometrics

Biometric authentication strategies are based on unique physical properties of humans —

also known as the “what you are” method of authentication. Many biometric schemes

are possible; common examples of biometrics are fingerprints matching, iris scans, vein

matching, voice recognition, face recognition, and keystroke dynamics [64].

Analysis Biometrics has some well known and well studied trade-offs. For example, if a

biometric leaks, it becomes very hard to revoke or change (e.g., we are born with only one

15

set of fingerprints). Additionally, for high value targets, attackers have been known to cut

off fingers in order to get access to protected resources [68]. With the exception of voice

recognition and keystroke timing, biometrics require the existence of dedicated sensors at the

client’s computer. These additional sensors are not available on most computers. However,

some modern laptops and mobile phones are experimenting with biometric authentication.

For example, Android phones have an experimental feature allowing screen unlock based on

facial recognition and several notebooks come with fingerprint readers that can be enabled

to unlock the screen. However, to our knowledge, biometrics have not seen any deployment

for user authentication over the web — perhaps because it requires re-architecting login

systems. Additionally, service providers may be wary of handling such personal data for

authentication.

2.2.7 One-Time Passcodes

One-Time Passcodes (OTP) enable non-replayable login credentials. One popular example

of a hardware OTP generator is the RSA SecurID [42] family of tokens. The SecurID token

is usually in the form-factor of a small token which has a small output window — capable of

showing six or so digits. Each device is programmed with an initial secret seed. This seed is

then used as input to a function that outputs a pseudo-random six digit code approximately

every 60 seconds. The secret seed also stored by the server; this allows the server to generate

and verify the correct code at any point in time. Each user is issued a token with a different

seed. The seed is very difficult to physically extract from the SecurID token. In order to

log into a web service, users first type their password and then copy the current 6 digit code

into the web browser.

A closely related hardware token is made by Yubico and is called the YubiKey [120].

Similar to the RSA SecurID, the YubiKey stores a secret seed and generates pseudo-random

six-digit one time codes. However, the YubiKey takes the form factor of a USB key with a

single button. To use it, users plug the YubiKey into the USB drive and press the button on

the token. The YubiKey imitates a keyboard and the enters/types the next valid code into

the currently selected window — the advantage being that users don’t have to manually

16

type the code. Similar to RSA SecurID, the YubiKey is meant to be used as a second factor

in conjunction with a regular password.

OTP generators can also be based in software or paper. For example, Google Authenti-

cator [110] is a software based OTP generator that runs on many mobile phones (Android,

IOS, Blackberry). Some services (such as Google’s 2-step verification [54]) allow users to

print out a sheet of one-time passcodes to use. Several financial institutions in the U.S. such

as PayPal and Bank of America allow users to optionally enroll in additional verification

that forces the user to submit, in addition to their username and password, a code sent to

the users mobile phone via SMS; the practice is much more common in some other parts of

the work like Europe.

Analysis The use of one-time passcodes as second factor to authenticating with a pass-

word has positive security implications. Specifically, it’s no longer sufficient for the attacker

to simply steal a user’s password. The attacker must also get access to a valid code in

order to authenticate as the user. Unfortunately, attackers can do this through phishing

or a man-in-the-middle attack. Additionally, the use of one-time passcode generators adds

overhead to the user authentication experience. For hardware-based OTP generators, users

must carry around an additional piece of hardware and/or must manually type in the code

from the device into their web browser. Hardware OTP generators do not scale well, as

users must have a separate OTP generator for each web service for which they would like

to use two-factor authentication. Software OTP generators and OTP over SMS have better

usability implications, but still require users to take phones out of their pocket, unlock them,

and manually copy the codes into the browser. At the end of the day, these approaches are

also vulnerable to phishing and man-in-the-middle attacks.

2.2.8 TLS Client Certificates

User authentication at the TLS layer (via client certificates), if implemented and deployed

correctly, solves the problem of phishing and man-in-the-middle attacks. In this scheme,

users are issued certificates that bear the user’s identity. These certificates can be stored

in the user’s browser or on external hardware devices (such as a smart card). In order to

17

Figure 2.1: TLS Client Certificate Prompt. The prompt shown to a user during TLS Client

authentication. The user must select the correct certificate to use. The prompt contains

many fields that may be confusing to users.

authenticate, users navigate to a web service that requires TLS client authentication. This

will cause the browser to prompt the user for their client certificate. Once the user selects

the correct certificate to use, it will be sent to the requesting website. This will authenticate

the user without the user having to enter a username or password. TLS client authentication

is part of the standard TLS protocol and is resistant to phishing and man-in-the-middle

attacks [38]. The particular security details of this protocol is outside the scope of this

chapter.

Analysis TLS client certificate authentication provides significant security benefits over

passwords. Unfortunately, it has significant downsides:

• Poor User Experience. One issue that prevents conventional TLS client authentication

from becoming the standard for web authentication is the cumbersome, complicated,

and onerous interface that a user must wade through in order to use a client certificate.

18

Typically, when web servers request that browsers generate a TLS client certificate,

browsers display a dialog where the user must choose the certificate cipher and key

length. Even worse, when web servers request that the browser provide a certificate,

the user is prompted to select the client certificate to use with the site they are

attempting to visit (see Figure 2.1. This “login action” happens during the TLS

handshake, before the user can inspect any content of the website (which presumably

would help her decide whether or not she wanted to authenticate to the site in the

first place).

• Layer Confusion. Arguably, TLS client authentication puts user identity at the wrong

layer in the network stack. An example that reveals this layer confusion is multi-login:

Google has implemented a feature in which multiple accounts can be logged into the

website at the same time (multiple user identities are encoded in the cookie). This

makes it easy to quickly switch between accounts on the site, and even opens up

the potential to show a “mashup” of several users’ accounts on one page (e.g., show

calendars of all the logged-in accounts). With TLS client authentication, the user

identity is established at the TLS layer, and is “inherited” from there by the HTTP

and application layers. However, client certificates usually contain exactly one user

identity, thus forcing the application layer to also only see this one user identity.

• Privacy. Once a user has obtained a certificate, any site on the web can request TLS

client authentication with that certificate. The user can now choose to not be logged

in at all, or use the same identity at the new site that they use with other sites on the

web. That is a poor choice. Creating different certificates for different sites makes the

user experience worse: Now the user is presented with a list of certificates every time

they visit a website requiring TLS client authentication.

• Portability. Since certificates ideally are related to a private key that can’t be extracted

from the underlying platform, by definition, they can’t be moved from one device to

another. So any solution that involves TLS client authentication also has to address

and solve the user credential portability problem. Potential solutions include re-

19

obtaining certificates from the CA for different devices (or allowing users to procure

certs for their own devices), extracting private keys (against best security practices)

and copying them from one device to another, or cross-certifying certificates from

different devices. So far we have not been able to come up with good user interfaces

for any of these solutions.

• Trusted Computing Base in Datacenters. Large datacenters often terminate TLS con-

nections at the datacenter boundary [11], sometimes using specialized hardware for

this relatively expensive part of the connection setup between client and server. If

the TLS client certificate is what authenticates the user, then the source of that au-

thentication is lost at the datacenter boundary. This means that the TLS terminators

become part of the trusted computing base — they simply report to the backends who

the user is that was authenticated during the TLS handshake. A compromised TLS

terminator would in this case essentially become “root” with respect to the applica-

tions running in the datacenter.

Contrast this with a cookie-based authentication system, in which the TLS terminator

forwards the cookie that the browser sends to the app frontend. In such a system, the

cookies are minted and authenticated by the app frontend, and the TLS terminator

would not be able to fabricate arbitrary authentic cookies. Put another way, in a

cookie-based authentication system a compromised TLS terminator can modify an

incoming request before it is delivered to the backend service, or harvest seen cookies,

but cannot forge a completely new request from an arbitrary user.

In summary, TLS client authentication presents a range of issues, ranging from privacy

to usability to deployment problems that make it unsuitable as an authentication mechanism

on the web.

2.2.9 Mobile Phones (or PDAs)

Mobile phones (and formerly PDAs) are both powerful and fairly ubiquitous, making them

attractive tools for securing user authentication over the web. For example, Phoolproof [91]

20

effectively outsources TLS client authentication from the browser to the mobile phone.

Users must first pair their phone with a PC and with several websites. For each paired

website, the user’s phone displays a bookmark. Clicking on this bookmark will cause the

user’s browser to navigate to the specified page.

Another system, MP-Auth [74] employs the user’s mobile phone as a secure input ter-

minal for passwords. That is, in order to log into a website, users type their passwords

into their phone, which then participates in a challenge-response scheme with the website

(through the user’s browser) in order to authenticate the user.

Analysis While mobile phones are indeed powerful, systems to-date fall short of providing

the necessary combination of usability and security. Both Phoolproof and MP-Auth require

users to interact with their phones during the login process. We believe this change in the

authentication procedure may be confusing and too onerous for users. Finding the phone

(in their purse or backpack), unlocking the screen, and entering their password is a task

that users shouldn’t have to do. Both Phoolproof and MP-Auth are research systems, and

unfortunately, leave several important questions unanswered. It’s not clear how easy it

would be for users to enroll in the system or what users would do if their phone became

unavailable either temporarily (e.g., dead batteries) or permanently (e.g., lost or broken).

To our knowledge, neither of these schemes has been deployed in practice.

2.2.10 Identity in the Browser

Several approaches have tried to manage user identity in the browser. One notable example

is Microsoft CardSpace [77]. CardSpace replaced passwords with a public-key based pro-

tocol. Users would manage their digital identities through virtual identity “cards.” When

visiting a website that supported CardSpace, users would be presented with a UI that al-

lowed them to choose which card, and thus which identity, to use with the site. Under the

hood, CardSpace authenticated users by creating cryptographic attestations of the user’s

identity that could be communicated to the verifying website. This approach had the advan-

tage of not revealing the authentication secret (typically a private key) to the verifying site.

Furthermore, because users logged in by selecting a “card” rather than typing a password

21

they could not be phished.

Mozilla has recently developed a prototype of an authentication mechanism called Per-

sona (formerly known as BrowserID [2]), which abstracts identity to the level of email

addresses. With Persona, instead of using a password, users authenticate by providing

a cryptographic proof of email address ownership. Similarly to CardSpace, the browser

maintains a cache of email addresses (identities) and generates the respective proofs (to-

kens) for the user. Unlike CardSpace, Persona is based on both a simpler model of identity

(email addresses vs. a variety of claims) and a simpler implementation platform (JWTs vs.

WS-Trust).

Analysis Unfortunately, CardSpace was not widely adopted and was eventually discon-

tinued altogether. We believe that CardSpace’s attempt to provide many new features

increased its overall complexity and contributed to its demise by unnecessarily complicating

the user interface, interaction, and development models. Unfortunately, it’s too early to tell

whether Persona will see mass adoption.

2.3 Techniques for Authorizing Requests

We now describe existing defenses for authorizing user requests. We explain how existing

approaches fall short of a comprehensive solution. We dive deep into how current solu-

tions are designed, deployed, and used across the web, looking at both currently deployed

defenses and those that have been proposed but not yet adopted. We begin by providing

a bit of background regarding authorization on the web and how incorrectly performing

authorization leads to Cross-Site Request Forgery (CSRF) attacks. We then discuss CSRF

defenses, which come in three flavors: server-side, client-side, and server/client hybrids; we

will consider each in turn.

2.3.1 Background

E-commerce web sites, webmail services, and many other web applications require the

browser and server to maintain state about user sessions. Today, the de facto method

of doing so is through HTTP Cookies, which are simply key/value pairs that a server

22

Figure 2.2: Example of a server bank.com setting a cookie. The cookie name is

“UID” with a value of 11Ap4P765U2da. The cookie will be sent by the browser with every

request to *.foo.com/* (“domain” and “path”), but only over HTTPS (“secure”). The

cookie cannot be read or set from JavaScript (“HttpOnly”), and will expire on 13-Jan-2021.

can pass to and retrieve from the user’s browser. A server “sets” a cookie by adding a

Set-Cookie HTTP header to an HTTP response. By default, the browser stores the cookie

for the current browsing session and uses the Cookie header to attach it to any subsequent

HTTP requests it makes to the same web domain. The server may add attributes in the

Set-Cookie header to change how the browser should handle the cookie. For example, the

server can set a cookie’s expiration date with the “Expires” attribute (making the cookie

persistent), restrict the cookie to be sent only over HTTPS with the “Secure” attribute,

and disallow JavaScript access to the cookie with the “HttpOnly” attribute. Additionally,

the server may limit the cookie’s scope to particular sub-domains and/or URL paths via

the “Domain” and “Path” attributes. Figure 2.2 shows an example of how a server sets a

cookie.

Web servers use cookies to store a variety of client-side state. For example, to tie HTTP

requests to users, many servers store the user ID or session ID in a cookie. Some web

applications also reduce load on their backend servers by using cookies to store frequently

queried values, such as language preferences or UI settings.

23

Figure 2.3: An example CSRF attack. When the user visits the adversary’s page,

the HTTP reply (step 2) includes code that causes the user’s browser to make a request

to bank.com (and attach bank.com’s cookie). Bank.com erroneously treats this request as

legitimate since it has the user’s cookie.

Cross-Site Request Forgery

As mentioned above, cookies are often used for authentication — as bearers of user identity.

Many web applications, however, mistakenly use the same cookie not only for authentication,

but also for authorization. Specifically, many sites assume that an HTTP request bearing

the user’s cookie must have been initiated by the user. Unfortunately, this is not necessarily

true in today’s web. In fact, if the user visits an attacker’s web page, the attacker can cause

the user’s browser to make HTTP requests to any web origin. Figure 2.3 explains how this

mechanism can be used by adversaries in order to attack users. This is known as Cross-Site

Request Forgery (CSRF)

Cause of CSRFs: Ambient Authority The root cause of CSRFs is the prevalence of

ambient authority on today’s web. Ambient authority means that web sites rely on data

automatically sent by browsers as an indication of authority and thereby legitimate user

intent. While cookie misuse is the most widespread cause of ambient authority and CSRF

attacks, there are a number of lesser-known means by which CSRF can happen:

• HTTP Authentication: Some web sites use HTTP Authentication [14] to authen-

ticate users. Browsers prompt the user for a username/password and send the user-

supplied credentials in an “Authorization” HTTP header. The browser then caches

24

these credentials and resends them whenever the server requests them. Note that

authentication data is being sent in an authorization header — both confusing and

misleading. Attackers may create CSRFs by causing the user’s browser to send re-

quests to an origin with cached HTTP Authentication credentials. A separate “Proxy-

Authorization” header similarly authenticates users to proxies, with similar implica-

tions for CSRF. More advanced techniques such as NTLM [78] exist for verifying

authenticated clients, but they eventually cause similar tokens to be sent in an HTTP

header.

• Source IP Address: A corporation may grant access to intranet sites based on a

client’s source IP. For example, employees may request vacation days, add depen-

dents, or divert parts of their paycheck towards a charitable organization through

the intranet. When visiting an attacker’s site, a user’s browser may be instructed to

connect to an intranet IP address with potentially malicious consequences.

• Client-Side TLS Certificates: The TLS protocol has support for both TLS server

and (less popular) TLS client certificates. Client certificates can encode the user

identity and, just like cookies, be used to identify a user. Unlike cookies or HTTP

Authentication, TLS client certificates are not sent with every request. Instead, they

are used to initially establish an authenticated TLS session. A web application can

then consider any data sent through the authenticated TLS session as belonging to the

respective user. However, if a site uses TLS client certificates for authorization (rather

than purely authentication), the site may be vulnerable to CSRFs, since attackers can

cause browsers to send requests over authenticated TLS sessions.

In each of the above scenarios, a web application relies on a single “token” (IP address,

cookie, HTTP header, or client certificate) as an indication of authorization. We call these

tokens bearer tokens. Because most of today’s web sites implement authorization based on

cookies, the majority of known CSRF attacks are cookie-based. Nevertheless, other types

of attacks have been observed in the wild. For example, “router pharming” attacks [111]

use JavaScript in the user’s browser to change DNS settings in home routers, many of which

25

use Basic Authentication or source IP for user authorization.

2.3.2 Server-side Defenses

Server-side solutions rely solely on server logic for CSRF protection. They are currently the

most popular type of CSRF defense.

Tokenization

The current best practice for CSRF protection involves the use of a secret token. This

approach works as follows:

1. When the user loads a page from the web application, the web server generates a

secret token (a string) and includes it in the body of the web page.

2. As the user interacts with the web page and causes state-changing requests to be

issued back to the web server, those requests include the secret token.

3. The web server then verifies the existence and correctness of the token received in the

request before continuing execution.

Note that the secret token is not sent automatically by the browser (as is the case with

cookies). Instead, the secret token is stored in the web page’s DOM, and the page attaches

it to requests programmatically via scripts or HTML forms. The security of this approach

stems from the token being tied to the user’s current session and being random enough to

not be guessable by an attacker.

Implementing anti-CSRF tokenization involves three steps: (1) limit all “unsafe” opera-

tions to POST requests (as per RFC 2616 [48]), (2) include tokens in all HTML forms and

AJAX requests that issue POSTs back to the server, and (3) verify the existence of the

correct CSRF token when processing POST requests at the server.

Traditionally, developers implemented tokenization in a manual manner. A developer

would write code to generate and validate tokens and then find and secure each part of the

application that generates or handles POST requests. To simplify this daunting process,

26

several CSRF protection frameworks have been developed (e.g., CSRF Guard [88, 95]). Most

frameworks automate POST request tokenization by rewriting HTML forms and adding

token information to AJAX queries. Although these frameworks exist, we believe that many

web applications still implement CSRF protection manually; this appears to be especially

true for applications written using older web platforms, such as PHP or Perl.

More recent web development platforms (e.g., Ruby on Rails, ASP.NET, and Django)

include token-based CSRF protection as part of the standard development platform pack-

age. In some cases, CSRF protection is enabled for all pages; in others, developers must

mark specific classes, controllers, views, or other platform components as requiring CSRF

protection. In these cases, the web platform issues CSRF tokens when creating HTML

output and validates the tokens when processing POST data submissions.

While CSRF frameworks and integrated tokenization in web platforms have simplified

tokenization’s deployment, we argue that tokenization is an incomplete defense having many

drawbacks.

Incompatible with GET requests Tokens must not be sent over GET requests since

GET requests may be logged by proxies or other services, or may be posted on the web by

users, thus leaking the token. One may think that this problem does not arise in practice, as

RFC 2616 specifically designates GET as a safe and idempotent method, which would make

tokens unnecessary for GETs. However, real web applications don’t follow this paradigm.

For example, we investigated several popular web sites and found that (as of late 2012)

Google, Amazon, live.com, and PayPal all use GET URLs to log users out. This is clearly not

an idempotent action and, because none of the four web applications use CSRF protection

for the logout action, an attacker can terminate a user’s session with any of these applications

without user consent. As another example, we found that Flickr.com (as of early 2012) uses

GET requests for actions like changing the display language. Flickr does protect these

requests with a CSRF token (sent as a URL parameter), but unfortunately uses the same

token for POST requests as well. Because a Flickr user’s token is the same from session to

session, token leakage over a GET request could lead to more serious CSRF attacks that

target POST APIs. Tokens may leak because URLs for GET requests may be stored in

27

the browser history, server and proxy log files, bookmarks, etc. Attackers may then use

techniques such as browser history sniffing to discover CSRF tokens [63].

Potentially extractable In some situations, attackers may be able to extract CSRF

tokens directly. For example, attackers could convince users to drag content that includes

tokens from one web frame (the victim) to another (the attackers), or to copy-and-paste

the token into the attacker’s frame [69]. Attackers have used these techniques to trick

Facebook users into exposing their CSRF tokens [124]. Researchers have also shown that

many web sites are vulnerable to CSRF token extraction through a variety of HTML and

script injection attacks [121, 26]. Recent work shows how CSRF tokens may be extracted

using only cleverly formed CSS [57].

Error-prone manual implementation Tokenization has many “moving parts”, and

custom implementations may thus be quite prone to errors. For example, a developer can

easily overlook an important location where tokenization is needed and leave the application

open to CSRFs. On the other hand, if the developer is overzealous with tokenization, tokens

can leak; this is particularly bad if tokens are not ephemeral (like with Flickr) or made easily

reversible to a session ID as suggested by some tutorials [43].

Frameworks confuse developers On the other end of the spectrum, developers using

a CSRF protection framework may misuse it, or they may falsely believe that it protects

them from all types of CSRF attacks. For example, some frameworks do not tokenize

AJAX requests [41, 19]. Other frameworks may only rewrite forms generated using web

platform calls, leaving forms written using raw HTML unprotected. As another example,

without understanding how CSRF frameworks work, developers can accidentally cause cross-

domain POSTs to send a CSRF token to an untrusted third party. Finally, it’s possible for

developers to unwittingly accept GET requests while thinking the data came from POSTs

— popular libraries such as Perl’s CGI.PM module allow a developer to fetch a parameter

without caring if it came in via a GET or POST request. Thus, attackers using GET

requests would still succeed [7].

28

Poor third-party subcomponent support Many modern web development platforms

(such as Drupal, Django, and Ruby on Rails) allow developers to use third-party components

or plug-ins for added functionality. By integrating a poorly written component, developers

might introduce a CSRF into their application. In such cases, it may be difficult to check

whether a component correctly protects all actions, especially if it has a large code base [108].

Language dependence For large, complicated web applications (such as large e-commerce

sites) each part of the page may be generated using a different programming language. CSRF

token generation and verification may need to be implemented separately by every one of

those components.

Origin Checking

Besides tokenization, web application developers may opt to use the proposed Origin HTTP

header [12, 119], a privacy-preserving replacement for the Referer header. Like its prede-

cessor, the Origin header is used by browsers to convey the originating domain of a request

to the server. Web application developers can use that information to decide whether a

request originated from a web origin the application trusts and hence is a legitimate re-

quest. For example, bank.com may trust broker.com and treat any request having an Origin

header value of broker.com or bank.com as a valid state-modifying request, and treat all

other requests as untrusted. As of late 2012, the Origin header is supported in Chrome and

Safari.

In practice, the Origin header has restrictions that complicate and impede the ability of

developers to use it as an anti-CSRF mechanism. Next, we discuss two such challenges.

No path information To preserve privacy, the Origin header does not contain the path

part of the request’s origin. For example, suppose bank.com wants to assert that only

requests from broker.com/accounts/ can have side-effects on bank.com, but requests from

any other location from broker.com, such as broker.com/forum/, may not. By design, the

Origin header lacks the path information necessary for a web application to make this

decision; making it impossible for bank.com to distinguish a request for the (legitimate)

29

accounts page from a CSRF attack inside a malicious post on the forum page.

One workaround could be for broker.com to separate the /forum/ and /accounts/ web

applications into multiple subdomains (e.g., accounts.broker.com and forum.broker.com),

but subdomain configuration may be problematic. Many open-source web applications

(such as forums or blogs in a box) do not support subdomain creation via scripts, instead

forcing the web developer to manually perform potentially confusing server configuration.

Moreover, subdomain creation may be disallowed or may incur additional cost from hosting

providers [109]. Finally, if using TLS, web developers would have to procure additional

costly TLS certificates for subdomains or pay more for a wildcard certificate. Because of

these complications, developers often separate web application modules by path rather than

by subdomain.

Origin sent as null If a request originated from an anchor tag or a window navigation

command such as window.open, the Origin header is sent as null. The rationale is that

“hyperlinks are common ways to jump from one site to another without trust. They should

not be used to initiate state-changing procedures” and “many sites allow users to post links,

so we don’t want to send Origin with links” [84]. The suggested workaround is to convert

all anchor tags and window navigation calls to a form GET. Such overhauls may be tough

for maintainers of legacy sites, making it difficult for them to rely on the Origin header for

CSRF protection.

Additionally, for business and security reasons, many sites (such as banking sites) do

not allow users to post links. For these sites, using anchor tags as trusted sources of state-

changing requests may be a valid decision. However, since the Origin header is null for all

requests originating from anchor tags, these sites would be forced into using forms instead

if they wish to leverage the Origin header.

2.3.3 Client-side Defenses

Some defenses check for CSRF on the client side (browser) rather than the server side.

Client-side solutions first identify “suspicious” cross-origin requests and then either block

the request outright [122] or strip the request of all cookies and HTTP authentication

30

data [102, 33, 66, 76, 75]. The biggest advantage of client-only solutions is that they do

not require any web site modifications, relying instead on either heuristics or central policy

sources. Unfortunately, this makes them prone to false positives which break legitimate

sites and/or false negatives which fail to detect CSRF.

CsFire

CsFire [102, 33] is a browser plug-in that strips cookies and authentication headers from

outgoing HTTP requests that are deemed unsafe. By default, all cross-origin requests are

considered unsafe, except for requests that pass a fairly strict set of rules to identify trust

relationships between sites (e.g., a.com may make a request to b.com if b.com redirected to

a.com earlier in the same browsing session). This policy breaks many legitimate sites, so

CsFire maintains a whitelist of exceptions on a central server (maintained by the CsFire

authors) and also allows users to add exceptions manually.

Unfortunately, in our experience, CsFire still results in false positives and breaks le-

gitimate functionality during normal browsing, such as logging into Flickr or Yahoo via

OpenID. This shows that such an architecture would need to rely on users and/or CsFire

developers to constantly update the list of whitelisted sites that are allowed to send au-

thentication data. Moreover, existing sites may change at any moment and break existing

CsFire policies. We believe maintaining such an exception list for the whole web is close to

impractical, as is relying on users to manually add exceptions.

In addition, CsFire’s policies make a binary decision to either send or strip all cookies

and HTTP authentication headers. This may cause overly restrictive policies, as cross-origin

requests could harmlessly include cookies that are not used for authentication (such as user

settings). Worse, this may also lead to insecure policies: if a site needs a non-sensitive cookie

in order to function, a user may be tempted to add a CsFire exception for such a site, which

would allow requests to the site to attach all cookies, including sensitive authentication

cookies, which could lead to CSRF.

31

RequestRodeo

RequestRodeo [66] is a client-side proxy, positioned between the browser and web sites,

that stops CSRFs by stripping authentication data from suspicious requests. Requests may

contain authentication headers only if they are initiated “because of interaction with a web

page (i.e., clicking on a link, submitting a form or through JavaScript), and if the URLs of

the originating page and the requested page satisfy the same-origin policy.”

To trace request sources, the proxy rewrites “HTML forms, links, and other means of

initiating HTTP requests” with a random URL token. The token and response URL is then

stored by the proxy for future reference. When the browser makes a request, the proxy looks

up the URL token and compares the destination URL with the request’s referring URL. If

they do not match, the request is considered suspicious. The proxy also detects intranet

cross-domain requests and validates them with explicit user confirmation.

This approach has several downsides. First, it mandates that all user traffic must go

through a TLS man-in-the-middle proxy. Second, many applications use JavaScript and

other active content to dynamically create forms and issue HTTP requests directly from the

client, making rewriting of such requests impossible in a proxy. Third, rewriting all HTML

content may have unpleasant latency implications. Finally, some cross-domain requests

can be legitimate (e.g., for federated login/single-sign-on or for showing users personalized

content when they visit a link); RequestRodeo does not support these cases.

BEAP

Browser-Enforced Authenticity Protection (BEAP) [75] attempts to infer whether a user

intended the browser to issue a particular request. User intent is determined via a browser

extension that monitors user actions. For example, if the user enters a URL into the address

bar, the request is considered intended. However, if the user clicks on a link in an e-mail

message or from the browser history list, the request is considered unintended. The browser

extension strips unintended requests of “sensitive” authentication tokens, which include (1)

all session (non-persistent) cookies sent over POST requests and (2) HTTP Authorization

headers. Persistent cookies are treated as non-sensitive, as are session cookies sent over

32

GET requests. BEAP authors note that these rules were generated by analyzing real-world

applications. However, this analysis does not hold today: for some web sites we analyzed,

such as Woot or Google, some sensitive cookies were persistent.

Cross-site Request Forgeries: Exploitation and Prevention

In their 2008 paper [122], Zeller and Felten identified a variety of high-profile CSRF vulnera-

bilities and gave general guidelines for how to prevent them, recommending tokenization and

using POSTs for state modifying requests. The authors also provided two tools for CSRF

prevention: a plug-in for developers to perform automatic tokenization, and a plug-in for

browsers to block cross-domain POST requests (unless the site has an Adobe cross-domain

policy that specifies exceptions).

We believe the auto-tokenization plug-in is useful, but suffers from the same drawbacks

as other tokenization frameworks (Section 2.3.2). We believe that all client-side solutions

will be both too coarse in how they handle POST requests and too permissive when they

freely pass any GET requests through, including potentially dangerous GETs (see examples

in Section 2.3.2).

Adobe Cross-Domain Policy

Adobe cross-domain files specify how Adobe clients (such as Flash Player and Reader) should

make requests across domains. These policies are hosted on remote domains and grant “read

access to data, permit a client to include custom headers in cross-domain requests, and are

also used with sockets to grant permissions for socket-based connections.” [4]

We believe these policies do not provide enough control over ambient authority to prevent

CSRFs without restricting functionality. For example, developers cannot specify names of

cookies to which the policies apply or control valid embedding.

2.4 Summary

We examined a number of proposed alternatives for password-based authentication and

found that previously proposed alternatives have non-trivial security, usability, and de-

33

ployability drawbacks. While some approaches increased security (such certificate-based

authentication in Section 2.2.8), they simultaneously reduced usability. While other ap-

proaches such as Single Sign-On might be considered more usable than passwords, they

have deployability drawbacks. Since no approaches could “best” passwords, it seems logical

that passwords still reign as the main user authentication mechanism.

Similarly, for authorization we found that all current approaches have significant draw-

backs. For example, server-side approaches required nontrivial development effort, failed to

protect web applications against state-modifying GET requests, and were vulnerable to some

types of attacks (e.g., token extraction). Client-side approaches used heuristics to identify

“suspicious” requests and “important” authentication tokens. However, because client-side

solutions cannot know developer intentions, they were prone to either false positives which

broke sites or to false negatives which missed attacks due to being too lenient with allowed

requests.

In the end, we found that currently existing approaches for performing both user au-

thentication and authorization are insufficient. We believe new approaches are needed in

both areas that carefully consider all of the challenges, stakeholders, and tensions. For au-

thentication, we believe that approaches utilizing ubiquitous second factor devices (such as

smartphones) have a promising future; we present such a system in Chapter 4. For autho-

rization, we anticipate the development of new policy-like solutions that allow developers

to have more control of how cookies (and other credentials) are sent by the browser; we

present such a system in Chapter 5. However, first, in Chapter 3 we propose Origin Bound

Certificates with the goal of strengthening the transport layer in order to support secure

authentication and authorization.

34

Chapter 3

TLS ORIGIN-BOUND CERTIFICATES: STRENGTHENING THE
TRANSPORT LAYER

In this chapter we examine the fundamental transfer layer upon which user authentica-

tion and authorization are built. We consider the ways in which this layer is vulnerable and

how previous approaches have failed to fix it. We then present a novel approach called TLS

Origin-Bound Certificates for strengthening this layer and providing a strong foundation

for addressing user authentication and authorization. TLS Origin-Bound Certificates were

originally described in a 2012 publication [40]. We begin by providing a high-level overview

and motivation for TLS Origin-Bound Certificates.

3.1 Motivation and Overview

In the summer of 2011, several reports surfaced of attempted man-in-the-middle attacks

against Google users who were primarily located in Iran. The Dutch certification authority

DigiNotar had apparently issued certificates for google.com and other websites to entities

not affiliated with the rightful owners of the domains in question1. Those entities were

then able to pose as Google and other web entities and to eavesdrop on the communication

between users’ web browsers and the websites they were visiting. One of the pieces of data

such eavesdroppers could have conceivably recorded were authentication cookies, meaning

that the man-in-the-middle could have had full control over user accounts, even after the

man-in-the-middle attack itself was over.

This attack should have never been possible: authenticating a client to a server while

defeating man-in-the-middle attacks is theoretically a solved problem. Simply put, client

and server can use an authenticated key agreement protocol to establish a secure permanent

“channel.” Once this channel is set up, a man-in-the-middle cannot “pry it open”, even

1It later turned out that the certificates had, in fact, been created fraudulently by attackers that had
compromised DigiNotar.

35

with stolen server certificates.

Unfortunately, this is not how authentication works on the web. We neither use sophis-

ticated key agreement protocols, nor do we establish authenticated “channels.” Instead, we

send secrets directly from clients to servers with practically every request. We do this across

all layers of the network stack. For example, to authenticate users, passwords are sent from

clients to servers; SAML or OpenID assertions are sent from clients to servers in order to

extend such user authentication from one website to another; and HTTP cookies are sent

with every HTTP request after the initial user authentication in order to authenticate that

HTTP request.

We call this pattern bearer tokens: the bearer of a token is granted access, regardless of

the channel over which the token is presented, or who presented it2.

Unfortunately, bearer tokens are susceptible to certain classes of attacks. Specifically,

an adversary that manages to steal a bearer token from a legitimate user can impersonate

that user to web services that require it. For different kinds of bearer tokens these attacks

come in different flavors: passwords are usually obtained through phishing or keylogging,

while cookie theft happens through man-in-the-browser malware (e.g., Zeus [86]), cross site

scripting attacks, or adversaries that manage to sniff the network or insert themselves into

the network between the client and server [3, 25]).

The academic community, has known of authentication mechanisms that avoid the weak-

nesses of bearer tokens since before the proliferation of the Internet. These mechanisms

usually employ some form of public-key cryptography rather than a shared secret between

client and server. Authentication protocols based on public-key cryptography have the ben-

efit of not exposing secrets to the eavesdropper which could be used to impersonate the

client to the server. Furthermore, when public/private key pairs are involved, the private

key can be moved out of reach of thieving malware on the client, perhaps using a hardware

Trusted Platform Module (TPM). While in theory this problem seems solved, in practice

we have seen attempts to rid the web of bearer tokens gain near-zero traction [37] or fail

outright [77].

2Bearer tokens, originally called “sparse capabilities” [113], were widely used in distributed systems, well
before the web.

36

In this chapter, we present a fresh approach to using public-key mechanisms for strong

authentication on the web. Faced with an immense global infrastructure of existing software,

practices and network equipment, as well as users’ expectations of how to interact with

the web, we acknowledge that we cannot simply “reboot” the web with better (or simply

different) authentication mechanisms. Instead, after engaging with various stakeholders in

standards bodies, browser vendors, operators of large website, and the security, privacy

and usability communities, we have developed a layered solution to the problem, each layer

consisting of minor adjustments to existing mechanisms across the network stack.

The key contributions of this work are:

• We present a modification to TLS client authentication, which we call TLS-OBC. This

new primitive is simple and powerful, allowing us to create strong TLS channels.

• We demonstrate how higher-layer protocols like HTTP, federation protocols, or even

application-level user login can be hardened by “binding” tokens at those layers to

the authenticated TLS channel.

• We describe the efforts in gaining community support for an IETF draft [10], as well

as support from major browser vendors; both Google’s Chrome and Mozilla’s Firefox

have begun to incorporate and test support for TLS-OBC.

• We present a detailed report on our client-side implementation in the open-source

Chromium browser, and our server-side implementation inside the serving infrastruc-

ture of a large website.

• We give some insight into the process that led to the proposal as presented here,

contrasting it with existing work and explaining real-world constraints, ranging from

privacy expectations that need to be weighed against security requirements, to de-

ployment issues in large datacenters.

Summary The main idea of this work is easily explained: in the proposed scheme,

browsers use self-signed client certificates within TLS client authentication. These cer-

37

tificates are generated by the browser on-the-fly, as needed, and contain no user-identifying

information. They merely serve as a foundation upon which to establish an authenticated

channel that can be re-established later.

The browser generates a different certificate for every website to which it connects,

thus defeating any cross-site user tracking. We therefore call these certificates origin-bound

certificates (OBCs). This design choice also allows us to completely decouple certificate gen-

eration and use from the user interface; TLS-OBC client authentication allows the existing

web user experience to remain the same, despite the changes under the hood.

Since the browser will consistently use the same client certificate when establishing a

TLS connection with an origin, the website can “bind” authentication tokens (e.g., HTTP

cookies) to the OBC, thereby creating an authenticated channel. This is done by simply

recording which client certificate should be used at the TLS layer when submitting the token

(i.e., cookie) back to the server. It is at this layer (in the cookie, not in the TLS certificate)

that we establish user identity, just as it is usually done on the web today.

TLS-OBC’s channel-binding mechanism prevents stolen tokens (e.g., cookies) from being

used over other TLS channels, thereby making them useless to token thieves, solving a large

problem in today’s web. In subsequent chapters, we will also show how TLS-OBC’s enable

other types of systems.

3.2 Design

We propose a slightly modified version of traditional TLS client certificates, called Origin-

Bound Certificates (OBCs), that will enable a number of useful applications (as discussed

in Section 3.2.4). We begin by carefully examining our threat model.

3.2.1 Threat Model

We consider a fairly broadly-scoped (and what we believe to be a real-world) threat model.

Specifically, we assume that attackers are occasionally able to “pry open” TLS sessions and

extract the enclosed sensitive data by exploiting a bug in the TLS system [99], mounting

a man in the middle (MITM) attack through stolen server TLS certificates [3], or utilizing

man-in-the-browser malware [86]. These attacks not only reveal potentially private data, but

38

in today’s web will actually allow attackers to impersonate and completely compromise user

accounts by capturing and replaying users’ authentication credentials (which, as we noted

earlier, are usually in the form of bearer tokens). These attacks are neither theoretical nor

purely academic; they are being employed by adversaries in the wild [107].

In this chapter we focus on the TLS and HTTP layers of the protocol stack, and on pro-

tecting the authentication tokens at those layers—mostly HTTP cookies (but also identity

assertions in federation protocols)—by binding them to the underlying authenticated TLS-

OBC channel. Protecting the application-layer user logins, is handled in the next chapter

and is mostly outside the scope of this chapter. To model this distinction, we consider two

classes of attacker. The first class is an attacker that has managed to insert themselves as a

MITM during the initial authentication step (when the user trades his username/password

credentials for a cookie), or an attacker that steals user passwords through a database com-

promise or phishing attack. The second class of attacker is one that has inserted himself

as a MITM after the initial user authentication step where credentials are traded for an

authentication token. The first class of attacker is strictly stronger than the second class of

attacker as a MITM that can directly access a user’s credentials can trade them in for an

authentication token at his leisure. While the second class of attacker, a MITM that can

only steal the authentication token, has a smaller window of opportunity (the duration for

which the cookie is valid) for access to the user’s private information.

For the purposes of this chapter, we choose to focus on the second class of attacker.

In short, we assume that the user has already traded their username/password credentials

to acquire an authentication token that will persist across subsequent connections. Our

threat model allows for attackers to exploit MITM or eavesdropping attacks during any

TLS handshake or session subsequent to the initial TLS connection to a given endpoint—

including attacks that cause a user to re-authenticate as discussed in Section 3.2.4. Attacks

that target user credentials during the initial TLS connection, rather than authentication

tokens during subsequent TLS connections, are dealt with in the following chapter.

39

3.2.2 Overview

Fundamentally, an Origin-Bound Certificate is a self-signed certificate that browsers use to

perform TLS Client Authentication. Unlike normal certificates, and their use in TLS Client

Authentication (see Section 2.2.8), OBCs do not require any interaction with the user. This

property stems from the observation that since the browser generates and stores only one

certificate per origin, it’s always clear to the browser which certificate it must use; no user

input is necessary to make the decision.

On-Demand Certificate Creation If the browser does not have an existing OBC for the

origin it’s connecting to, a new OBC will be created on-the-fly. This newly generated origin-

bound certificate contains no user identifying information (e.g., name or email). Instead,

the OBC is used only to prove, cryptographically, that subsequent TLS sessions to a given

server originate from the same client, thus building a continuous TLS channel3, even across

different TLS sessions.

User Experience As noted earlier, there is no user interface for creating or using Origin-

Bound Certificates. This is similar to the UI for HTTP cookies; there is typically no UI

when a cookie is set nor when it is sent back to the server. Origin-Bound Certificates are

similar to cookies in other ways as well:

• Clients uses a different certificate for each origin. Unless the origins collaborate, one

origin cannot discover which certificate is used for another.

• Different browser profiles use different Origin-Bound Certificates for the same origin.

• In incognito or private browsing mode, the Origin-Bound Certificates used during the

browsing session get destroyed when the user closes the incognito or private browsing

session.

3We use the same notion as TAOS [117] does, of a cryptographically strong link between two nodes.

40

Figure 3.1: TLS-OBC extension handshake flow.

• In the same way that browsers provide a UI to inspect and clean out cookies, there

should be a UI that allows users to reset their Origin-Bound Certificates.

3.2.3 The Origin-Bound Certificates TLS Extension

OBCs do not alter the semantics of the TLS handshake and are sent in exactly the same

manner as traditional client certificates. However, because they are generated on-the-fly

and have no associated UI component, we must differentiate TLS-OBC from TLS client-

auth and treat it as a distinct TLS extension. Figure 3.1 shows, at a high level, how this

extension fits in with the normal TLS handshake protocol; the specifics of the extension are

explained below.

The first step in the client-server decision to use OBCs occurs when the client adver-

tises acceptance of the TLS-OBC extension in its initial ClientHello message. If the

server chooses to accept the use of OBCs, it echoes the TLS-OBC extension identifier in its

ServerHello message. At this point, the client and server are considered to have negotiated

to use origin-bound client certificates for the remainder of the TLS session.

41

After OBCs have been negotiated, the server sends a CertificateRequest message to

the client that specifies the origin-bound certificate types that it will accept (ECDSA, RSA,

or both). Upon a client’s receipt of the CertificateRequest, if the client has already

generated an OBC associated with the server endpoint, the existing OBC is returned to the

server in the client’s ClientCertificate message. If this is the first connection to the server

endpoint or if no acceptable existing OBC can be found, an origin-bound certificate must

be generated by the client then delivered to the server in the client’s ClientCertificate

message.

During the OBC generation process, the client creates a self-signed client certificate with

common and distinguished names set to “anonymous.invalid” and an X509 extension that

specifies the origin for which the OBC was generated.

3.2.4 Securing Web Authentication Mechanisms with TLS-OBC

We now show how origin-bound certificates can be used to strengthen other parts of the

network stack: In Section 3.2.4 we explain how HTTP cookies can be bound to TLS channels

using TLS-OBC. In Section 3.2.4 we show how federation protocols (such as OpenID or

OpenID Connect) can be hardened against attackers, and in Section 3.2.4 we turn briefly

to application-level user authentication protocols.

Channel-binding cookies

OBCs can be used to strengthen cookie-based authentication by “binding” cookies to OBCs.

When issuing cookies for an HTTP session, servers can associate the client’s origin-bound

certificate with the session (either by unforgeably encoding information about the certificate

in the cookie value, or by associating the certificate with the cookie’s session through some

other means). That way, if and when a cookie gets stolen from a client, it cannot be used

to authenticate a user when communicated over a TLS connection initiated by a different

client — the cookie thief would also have to steal the private key associated with the client’s

origin-bound certificate — a task considerably harder to achieve (especially in the presence of

Trusted Platform Modules or other Secure Elements that can protect private key material).

42

Note that this different from prior work on hardening cookies such as the method pre-

sented by Murdoch cookies are toughened by encoding values not only based on on a secret

server key, but also on a hash of the user’s password [85]. This approach has the benefit

of making it harder for attackers to fabricate fake cookies (even if the secret server key has

been compromised), but does not protect the user if the cookie is ever stolen.

Service Cookie Hardening One way of unforgeably encoding an OBC into a cookie is

as follows. If a traditional cookie is set with value v, a channel bound cookie may take the

form of:

〈v, HMACk(v + f)〉

where v is the value, f is a fingerprint of the client OBC, k is a secret key (known only

to the server), and HMACk(v + f) is a keyed message authentication code computed over

v concatenated to f with key k. This information is all that is required to create and

verify a channel bound cookie. The general procedure for setting a hardened cookie is

illustrated in Figure 3.2. Care must be taken not to allow downgrade attacks: if both v and

〈v, HMACk(v + f)〉 are considered valid cookies, a man-in-the-middle might be able to strip

the signature and simply present v to the server. Therefore, the protected cookie always

has to take the form of 〈v, HMACk(v + f)〉, even if the client doesn’t support TLS-OBC.

Cookie Hardening for TLS Terminators The technique for hardening cookies, as

discussed above, assumes that the cookie-issuing service knows the OBC of the connecting

client. While this is a fair assumption to make for most standalone services, it is not true

for many large-scale services running in datacenters. In fact, for optimization and security

reasons, some web services have TLS “terminators”. That is, all TLS requests to and from

an application are first passed through the TLS terminator node to be “unwrapped” on

their way in and are “wrapped” on their way out.

There are two potential approaches to cookie hardening with TLS terminators. First,

TLS terminators could extract a client’s OBC and pass it, along with other information

about the HTTP request (such as cookies sent by the client) to the backend service. The

43

Figure 3.2: Process of setting an OBC bound cookie

backend service can then create and verify channel-bound cookies using the general proce-

dure in the previous section.

The second approach involves using the TLS terminator to channel-bind the cookies of

legacy services that cannot or will not be modified to deal with OBC information sent to

them by the TLS terminator. Using this approach, TLS terminators must receive a list of

cookie names to harden for each service to which they cater. When receiving an outbound

HTTP response with a Set-Cookie header for a protected cookie, the TLS terminator

must compute the hardened value using the OBC fingerprint, rewrite the cookie value in

the Set-Cookie header, and only then wrap the request in a TLS stream. Similarly, the

TLS terminator must inspect incoming requests for Cookie headers bearing a protected

cookie, validate them, and rewrite them to only have the raw value. Any inbound request

with a channel-bound cookie that fails verification must be dropped by the TLS verifier.

44

Figure 3.3: A MITM attack during a TLS handshake

Channel-Bound Cookies Protect Against MITM

As mentioned earlier, TLS MITM attacks happen and some can go undetected (see Fig-

ure 3.3 for a depiction of a conventional MITM attack). Channel-bound cookies can be used

to bring protection against MITM attacks to web users.

Recall that our threat model assumes that at some time in the past, the user’s client

was able to successfully authenticate with the server. At that point, the server would have

set a cookie on the client and would have bound that cookie to the client’s legitimate origin-

bound certificate. This process is shown in Figure 3.2. Observe that on a subsequent visit,

the client will send its cookie (bound to the client’s OBC). However, the MITM lacks the

ability to forge the client’s OBC and must substitute a new OBC in its handshake with the

server. Therefore, when the MITM forwards the user’s cookie on to the server, the server

will recognize that the cookie was bound to a different OBC and will drop the request.

This process is shown in Figure 3.4. The careful reader will observe that a MITM attacker

may strip the request of any bearer tokens completely and force the user to provide his

username/password once more or fabricate a new cookie and log the user in as another

identity. We cover this more in Section 3.2.4 and in an upcoming report.

Hardening Federation Protocols

Channel-binding cookies with OBCs allows a single entity to protect the authentication

information of its users, but modern web users have a plethora of other login credentials and

session tokens that make up their digital identity. Federation protocols like OpenID [96],

45

Figure 3.4: Using OBCs and bound cookies to protect against a MiTM attack. The server

recognizes a mismatch between the OBC to which the cookie is bound and the cert of the

client (attacker) with who it is communicating.

OpenID Connect [103], and BrowserID [2] have been proposed as a way to manage this

explosion of user identity state. At a high level, these federation protocols allow the user to

maintain a single account with an identity provider (IdP). This IdP can then generate an

identity assertion that demonstrates to relying parties that the user controls the identity

established with the identity provider. While these federation techniques reduce the number

of credentials a user is responsible for remembering, they make the remaining credentials

much more valuable. It is therefore critical to protect the authentication credentials for the

identity provider as well as the mechanism used to establish the identity assertion between

identity provider and relying party. Towards that end, we explore using TLS-OBC and

channel-binding to harden a generic federation system against attack.

PostKey API The first step towards hardening a federation protocol is to provide a

way for an identity provider and relying party to communicate in a secure, MITM resistant

manner. We introduce a new browser API called the PostKey API to facilitate this secure

46

communication. This new API is conceptually very similar to the PostMessage [59] com-

munication mechanism that allows distinct windows within the browser to send messages to

each other using inter-process communication rather than the network. The goal of PostKey

extends beyond a simple communication mechanism to encompass the secure establishment

of a “proof key” that communicates the public key of an OBC to a different origin within

the browser by exposing a new browser window function:

otherWindow.postKey(message, targetOrigin)

This postKey call works like the existing postMessage call but additional cert and crossCert

parameters are added to the event received by the recipient window’s message handler. The

cert parameter contains a certificate that is signed by the receiver’s origin-bound key and

includes: the sender’s origin, the sender’s OBC public key, the receiver’s origin, and an X509

extension that includes a random nonce. The crossCert has the sender and receiver’s roles

reversed (i.e., it contains the receiver’s key, signed by the sender’s key) and includes the

same random nonce as in cert.

These certificates form what is called a cross certification, where the recipient of the

certification can establish that the sender’s public key is KS because KS has been signed, by

the browser, with the receiver’s private key KR. Additionally, the caller’s public key cross-

certifies the receiver’s public key to establish that both keys belong to the same browser.

It’s important to note that the sender does not get to choose the keys used in this cross

certification process. Instead, the browser selects the OBCs associated with the origins of

the sender and receiver and automatically performs the cross certification using the keys

associated with the found OBCs.

Putting it all together The combination of the PostKey API and origin-bound certifi-

cates can be used to improve upon several federation protocols.

Figure 3.5 shows the steps required to federate a user’s identity in a generic federation

protocol that had been modified to work with the PostKey API and OBCs. In step 1

the relying party issues a PostKey javascript request to the IdP’s iFrame and the IdP

receives a cross certification from the web browser. In step 2, an Authorization Request

47

iFrame:
https://idp.com

Browser

window:
https://rp.com

Cert idp
C user

Cert idp

Cert

rp.postKey(https://idp.com)

rp

[K] , [K]idp K rp Krp idp

https://rp.com

Cert rp

K rp

Kidp

AuthRequest{U, [K] , [K] }idp rp K idpK rp

IdentityAssertion {U, K , nonce}Krp idp

IdentityAssertion {U, K , nonce}Krp idp

https://idp.com

Cuser@rp.com

1
2

3

4

5

Figure 3.5: Simplified federation protocol authorization flow using PostKey and OBCs.

is issued to the IdP. Since the request is sent over the TLS channel authenticated with

KIdP the server associates the incoming request with the user U associated with KIdP .

The authorization request contains the cross certification that asserts that KRP and KIdP

belong to the same user’s browser so upon user consent, the IdP can respond (in step 3)

with a single use Identity Assertion that asserts that KRP is also associated with user U .

The IdP’s iFrame then passes the Identity Assertion to the RP’s frame where, in step 4,

the Identity Assertion is forwarded to the relying party’s server. The relying party verifies

that the Identity Assertion was delivered over a channel authenticated with KRP , has been

properly signed by the IdP, and has not been used yet. If this verification succeeds the RP

can now associate user U with key KRP by setting a cookie in the user’s browser as shown

in step 5.

Protecting user authentication

We’ve largely considered the initial user-authentication phase, when the user submits his

credentials (e.g., username/password) in return for an authenticated session, to be out of

scope for this chapter. However, we now briefly outline how TLS-OBC can be leveraged in

order to secure this tricky phase of the authentication flow.

48

As a promising direction where TLS-OBC can make a significant impact, we explore

the ideas put forth by our previous workshop paper [30], where we frame authentication in

terms of protected and unprotected login. We define unprotected login as an authentication

during which all of the submitted credentials are user-supplied and are therefore vulnerable

to phishing attacks. For example, these types of logins occur when users first sign in from a

new device or after having cleared all browser state (i.e., cleared cookies). We observe that

to combat the threats to unprotected login, many websites are moving towards protected

login, whereby user-supplied credentials are accompanied by supplementary, “unphishable”

credentials such as cookies or other similar tokens. For example, websites may set long-

lived cookies for users the first time they log in from a new device (an unprotected login),

which will not be cleared when a user logs out or his session expires. On subsequent logins,

the user’s credentials (i.e., username/password) will be accompanied by the previously set

cookie, allowing websites to have some confidence that the login is coming from a user that

has already had some interaction with the website rather than a phisher. We argue that

websites should move all possible authentications to protected login, minimize unprotected

login, and then alert users when unprotected logins occur. The chapter argues that this

approach is meaningful because phishers are not able to produce protected logins and will

be forced to initiate unprotected logins instead. Given that unprotected logins should

occur rarely for legitimate users, alerting users during an unprotected login will make it

significantly harder for password thieves to phish for user credentials.

It’s important to note that websites can’t fully trust protected logins because they are

vulnerable to MITM attacks. However, with TLS-OBC, websites can protect themselves

by channel-binding the long-lived cookie that enables the protected login. Combining TLS-

OBC with the protected login paradigm allows us to build systems which are resilient to

more types of attacks. For example, when describing the attack in Figure 3.4, we mentioned

that attackers could deliver the user cookie, but that would alert the server to the presence of

a MITM. We also mentioned that attackers could drop the channel-bound cookie altogether

and force the user to re-authenticate, but that this attack was out of scope. However, using

TLS-OBC along with the protected/unprotected paradigm, if the attacker forced the user

to re-authenticate, the server could force an unprotected login to be initiated and an alert

49

would be sent to the user, notifying him of a possible attack in progress. Hence, channel-

bound cookies along with TLS-OBC would protect the user against this type of attack as

well.

The careful reader will observe that protecting first logins from new devices (an initial

unprotected login) is difficult since the device and server have no pre-established trust. The

system presented in Chapter 4 addresses this issue.

3.3 Implementation

In order to demonstrate the feasibility of TLS origin-bound certificates for channel-binding

HTTP cookies, we implemented the extensions discussed in Section 3.2. The changes made

while implementing origin-bound certificates span many disparate systems, but the major

modifications were made to OpenSSL, Mozilla’s Network Security Services (used in Firefox

and Chrome), the Google TLS terminator, and the open-source Chromium browser.

3.3.1 TLS Extension Support

We added support for TLS origin-bound certificates to OpenSSL and Mozilla’s Network

Security Stack by implementing the new TLS-OBC extensions, following the appropriate

guidelines [18]. We summarize each of these changes below.

NSS Client Modifications Mozilla’s Network Security Stack (NSS) was modified to

publish its acceptance of the TLS-OBC extension when issuing a ClientHello message

to a TLS endpoint. Upon receipt of a ServerHello message that demonstrated that the

communicating TLS endpoint also understands and accepts the TLS-OBC extension, a new

X509 certificate is generated on-the-fly by the browser for use over the negotiated TLS

channel. These NSS modifications required 108 modified or added lines across 6 files in the

NSS source code.

OpenSSL Server Modifications The OpenSSL TLS server code was modified to publish

its acceptance of the TLS-OBC extension in its ServerHello message. Furthermore, if

during the TLS handshake the client and server agree to use origin bound certificates, the

50

normal client certificate verification is disabled and the OBC verification process is used

instead.

The new verification process attempts to establish that the certificate delivered by the

client is an OBC rather than a traditional client authentication certificate. The check is

performed by confirming that the certificate is self-signed and checking for the presence of

the X509 OBC extension. With these two constraints satisfied, the certificate is attached

to the TLS session for later use by higher levels of the software stack.

An upstream patch of these changes is pending and has preliminary support from mem-

bers of the OpenSSL community. The proposed patch requires 316 lines of modification to

the OpenSSL source code where most of the changes focus on the TLS handshake and client

certificate verification submodules.

3.3.2 Browser Modifications

In addition to the NSS client modifications discussed above, Chromium’s cookie storage

infrastructure was adapted to handle the creation and storage of TLS origin-bound certifi-

cates. The modifications required to generate the OBCs resulted in a 712 line patch (across

8 files) to the Chromium source code. Storage of OBCs in the existing Chromium cookie

infrastructure required an additional 1,164 lines added across 15 files. These changes have

been upstreamed as an experimental feature of Chromium since version 16.

3.4 Evaluation

We have conducted extensive testing of our modifications to TLS and have found them to

perform well, even at a significant scale. We report on these results below.

3.4.1 Chromium TLS-OBC Performance

Experimental methodology In order to demonstrate that the performance impact of

adding origin-bound certificates to TLS connections is minimal, we evaluated the perfor-

mance of TLS-OBCs in the open-source Chromium browser using industry standard bench-

marks. All experiments were performed with Chromium version 19.0.1040.0 running on an

51

Ubuntu (version 10.04) Linux system with a 2.0GHz Core 2 Duo CPU and 4GB of RAM.

All tests were performed against the TLS secured version of a Google’s home page.

During the tests JavaScript was disabled in the browser to minimize the impact of the

JavaScript engine on any observed results. Additionally, SPDY connection pooling was

disabled, the browser cache was cleared, and all HTTP connections were reset between each

measured test run in order to eliminate any saved state that would skew the experimental

results. The Chromium benchmark results discussed in section 3.4.1 were gathered with the

Chromium benchmarking extension [62] and the HTML5 Navigation Timing [90] JavaScript

interface.

Effects on Chromium TLS Connection Setup

We first analyzed the slowdown resulting the TLS-OBC extension for all connections bound

for our website’s HTTPS endpoints. The two use-cases considered by these tests were the

first visit, which requires the client-side generation of a fresh origin-bound certificate, and

subsequent visits where a cached origin-bound certificate is used instead.

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

ti
m

e
 (

m
s)

105

251

440

1011

Figure 3.6: Observed Chromium network latency (ms) with TLS-OBC certificate generation

The first test shown in Figure 3.6 shows the total network latency in establishing a

connection to our web site and retrieving the homepage on the user’s first visit. We measured

52

the total network latency from the Navigation Timing fetchStart event to the responseEnd

event, encapsulating TLS handshake time as well as network communication latency.

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400
ti

m
e
 (

m
s)

105 104 108 117

Figure 3.7: Observed Chromium network latency (ms), TLS-OBC certificate pre-generated

The results shown in Figure 3.7 represent subsequent requests to our web site where

there is a cache hit for a pre-generated origin-bound certificate. We observed no meaningful

impact of the additional CertificateRequest and Certificate messages required in the TLS

handshake on the overall network latency.

ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ti
m

e
 (

m
s)

12

129

1016

Figure 3.8: NSS certificate generate times (ms)

53

The differences between the latencies observed in Figures 3.6 and 3.7 imply that origin-

bound certificate generation is the contributing factor in the slowdown observed when first

visiting an origin that requires a new origin bound certificate. We measured the performance

of the origin-bound certificate generation routine, as shown in Figure 3.8, and found that

the certificate generation does seem to be the contributing factor in the higher latencies

seen when first connecting to an origin with an origin-bound certificate.

Client Performance Analysis These observations demonstrate that certificate genera-

tion is the main source of slowdown that a client using origin-bound certificates will experi-

ence. The selection of public key algorithm has a significant impact on the fresh connection

case, and an insignificant impact on subsequent connections. This suggests that production

TLS-OBC browsers should speculatively use spare CPU cycles to precompute public/private

key pairs, although fresh connections will still need to sign origin-bound certificates, which

cannot be done speculatively.

3.4.2 TLS Terminator Performance

We also measured the impact of TLS-OBC on Google’s high-performance TLS terminator

used inside the datacenter of our large-scale web service. To test our system, we use a

corpus of HTTP requests that model real-world traffic and send that traffic through a TLS

terminator to a backend that simulates real-world responses, i.e., it varies both response

delays (forcing the TLS terminator to keep state about the HTTP connection in memory

for the duration of the backend’s “processing” of the request) as well as response sizes

according to a real-world distribution. Mirroring real-world traffic patterns, about 80% of

the HTTP requests are sent over resumed TLS sessions, while 20% of requests are sent

through freshly-negotiated TLS sessions.

We subjected the TLS terminator to 5 minutes of 3000 requests-per-second TLS-only

traffic and periodically measured memory and CPU utilization of the TLS terminator during

that period.

We ran four different tests: One without origin-bound certificates, one with a 1024-bit

RSA client key pair, one with a 2048-bit RSA client key pair, and one with a 163-bit client

54

key pair on the sect163k1 elliptic curve (used for ECDSA).

We also measure the latency introduced by the TLS terminator for each request (total

server-side latency minus backend “processing” time).

Figure 3.9 shows the impact on memory. Compared to the baseline (without client

certificates) of about 1.85GB, the 2048-bit RSA client certs require about 12% more memory,

whereas the 1024-bit RSA and ECDSA keys increase the memory consumption by less than

1%.

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
e
m

o
ry

 (
G

B
)

1.855 1.873 1.865

2.082

Figure 3.9: Server-side memory footprint of various client-side key sizes.

Figure 3.10 shows the impact on CPU utilization. Compared to the baseline (without

client certificates) of saturating about 4.3 CPU cores, we observed the biggest increase in

CPU utilization (of about 7%) in the case of the ECDSA client certificates.

Finally, Figure 3.11 through Figure 3.14 show latency histograms. While we see an

increase in higher-latency responses when using client-side certificates, the majority of re-

quests are serviced in under one millisecond in all four cases.

Server Performance Analysis If we cared purely about minimizing the memory and

CPU load on our TLS terminator systems, our measurements clearly indicate that we should

use 1024-bit RSA. As 1024-bit RSA and 163-bit ECDSA are offer equivalent security [17],

however the ECDSA server costs might be worth the client-side benefits.

55

No TLS-OBC ECDSA 1024 RSA 2048 RSA
TLS-OBC type

0

1

2

3

4

5

6

C
P
U

 (
co

re
s)

4.31
4.61

4.43 4.40

Figure 3.10: Server-side CPU utilization for various client-side key sizes.

Figure 3.11: Latency without client certificates

3.5 Discussion

We now discuss a variety of interesting details, challenges, and tensions that we encountered

while dealing with the actual nature of how applications are developed and maintained on

the web.

3.5.1 Domain Cookies and TLS-OBC

In Section 3.2.4 we explained how cookies can be channel-bound using TLS-OBC, hard-

ening them against theft. However, this works only as long as the cookie is not set

56

Figure 3.12: Latency with 1024-bit RSA certificate

Figure 3.13: Latency with 2048-bit RSA certificate

across multiple origins. For example: when a cookie is set by origin foo.example.com

for domain example.com, then clients will send the cookie with requests to (among oth-

ers) bar.example.com. Presumably, however, the client will use a different client certificate

when talking to bar.example.com than it used when talking to foo.example.com. Thus, the

channel-binding will break.

Bortz et al. [23] make a convincing argument that domain cookies are a poor choice

from a security point-of-view, and we agree that in the long run, domain cookies should be

replaced with a mix of origin cookies and high-performance federation protocols.

In the meantime, however, we would like to address the issue of domain cookies. In

particular, we would like to be able to channel-bind domain cookies just as we’re able to

57

Figure 3.14: Latency with 163-bit ECDSA certificate

channel-bind origin cookies.

To that end, we are currently considering a “legacy mode” of TLS-OBC, in which the

client uses whole domains (based on eTLDs), rather than web origins, as the granularity for

which it uses client-side certificates. Note that this coarser granularity of client certificate

scopes does not increase the client’s exposure to credential theft. All the protocols pre-

sented in this chapter maintain their security properties against men-in-the-middle, etc. The

only difference between origin-scoped client certificates and (more broadly-scoped) domain-

scoped client certificates is that in the latter case, related domains (e.g., foo.example.com

and bar.example.com) will be able to see the same OBC for a given browser.

It is also worth noting that even coarse-grained domain-bound client certificates alleviate

many of the problems of domain cookies, if those cookies are channel-bound — including

additional attacks from the Bortz et al. paper.

In balance, we feel that the added protection afforded to widely-used domain cookies

outweighs the slight risk of “leaking” client identity across related domains, and are therefore

planning to support the above-mentioned “legacy mode” of TLS-OBC.

3.5.2 Privacy

The TLS specification [39] indicates that both client and server certificates should be sent

in the clear during the handshake process. While OBCs do not bear any information that

58

could be used to identify the user, a single OBC is meant to be reused when setting up

subsequent connections to an origin. This certificate reuse enables an eavesdropper to track

users by correlating the OBCs used to setup TLS sessions to a particular user and track a

users browsing habits across multiple sessions.

Client ClientHello

ServerHello

Certificate: Cs

CertificateRequest

ServerHello Done

Certificate: Cc

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

ChangeCipherSpec

Server Client ClientHello

ServerHello

Certificate: Cs

CertificateRequest

ServerHello Done

ChangeCipherSpec

ChangeCipherSpec

Server

Certificate: Cc

ClientKeyExchange

CertificateVerify

Figure 3.15: TLS encrypted client certificates

Towards rectifying this issue, we propose to combine TLS-OBC with an encrypted client

certificate TLS extension. This extension modifies the ordering of TLS handshake messages

so that the client certificate is sent over an encrypted channel rather than in the clear.

Figure 3.15 shows the effect this extension has on TLS message ordering.

3.5.3 SPDY and TLS-OBC

The SPDY [115] protocol multiplexes several HTTP requests over the same TLS connection,

thus achieving higher throughput and lower latency. SPDY is enabled in the Chrome,

Firefox, and Opera browsers. SPDY always runs over TLS.

59

One feature of SPDY is IP pooling, which allows HTTP sessions from the same client

to different web origins to be carried over the same TLS connection if: the web origins

in question resolve to the same IP address, and the server in the original TLS handshake

presented a certificate for all the web origins in question.

For example, if a.com and b.com resolved to the same IP address, and the server at that

IP address presented a valid certificate for a.com and b.com (presumably through wildcard

subject alternative names), then a SPDY client would send requests to a.com and b.com

through the same SPDY (and, hence, TLS) connection.

Remember that with TLS-OBC, the client uses a different client TLS certificate with

a.com than with b.com. This presents a problem. The client needs to be able to present

different client certificates for different origins.

In fact, this is not a problem unique to TLS-OBC, but applies to TLS client authentica-

tion in general: theoretically speaking, a client might want to use different non-OBC TLS

certificates for different origins, even if those origins qualify for SPDY IP pooling.

One solution to would be to disallow SPDY IP pooling whenever the client uses a

TLS client certificate. Instead, the client would have to open a new SPDY connection to

the host to which it wishes to present a client certificate. This solution works well when

client certificates are rare: most of the time (when no client certificates are involved), users

will benefit from the performance improvements of SPDY IP pooling. When TLS client

certificates become ubiquitous, however (as we expect it to be the case through TLS-OBC),

most of the time the client would not be able to take advantage of SPDY IP pooling if this

remained the solution to the problem.

Therefore, SPDY needs to address the problem of client certificates and IP pooling. From

version 3 onward, it does this by adding a new CREDENTIAL control frame type. The

client sends a CREDENTIAL frame whenever it needs to present a new client certificate

to the server (for example, when talking to a new web origin over an IP-pooled SPDY

connection). A CREDENTIAL frame allows the client to prove ownership of a public-key

certificate without a new TLS handshake by signing a TLS extractor value [97] with the

private key corresponding to the public-key certificate.

60

3.5.4 Other Designs We Considered

Before settling on TLS-OBC, we considered, and rejected, a number of alternative designs.

We share these rejected ideas below to further motivate the choice for TLS-OBC.

Application-Level Crypto API In this design, web client applications would be able to

use a crypto API (similar to a PKCS#11 API, but accessible by JavaScript in the browser).

JavaScript would be able to generate key pairs, have them certified (or leave the certificates

self-signed), use the private key to sign arbitrary data, etc., all without ever touching the

private key material itself (again, similar to PKCS#11 or similar crypto APIs).

Every web origin would have separate crypto key containers, meaning that keys gener-

ated in one web origin would not be accessible by Javascript running in other web origins.

It would be up to individual applications to sign relevant (and application-specific) authen-

tication tokens used in HTTP requests (e.g., special URL query parameters) with keys from

that web origin. The application could further design its authentication tokens in such a

way that they don’t grant ambient authority to a user’s account, but rather authorize spe-

cific actions on a user’s account (e.g., to send an email whose contents hashes to a certain

value, etc.).

Such a system would give some protection against a TLS MITM: being unable to mint

authentication tokens itself, the attacker could only eavesdrop on a connection. Also, this

approach doesn’t require changes in the TLS or HTTP layers, and is therefore “standards

committee neutral”, except for the need for a standardized JavaScript crypto API, which

presumably would be useful in other contexts (than authentication) as well.

Note, however, that TLS-OBC with channel-bound cookies provides strictly more pro-

tection, preventing men-in-the-middle from eavesdropping. This approach is also vulnerable

to XSS attacks and requires applications to be re-written to use these application-level au-

thentication tokens (instead of existing cookies).

We didn’t consider the advantages mentioned above strong enough to outweigh the

disadvantages of this approach.

61

Signed HTTP Requests We also explored designs where the client would sign HTTP

requests at the HTTP layer. For example, imagine an HTTP request header “X-Request-

Signature” that contained a signature of the HTTP request. The key used to sign requests

would be client-generated, per-origin, etc., just like for TLS-OBC. Unlike TLS-OBC, this

would not require a change in TLS, or HTTP for that matter. This design, however, quickly

morphed into a re-implementation of TLS at the HTTP layer. For example, protection

against replay attacks leads to timestamps, counters, synchronization issues, and extra

round trips. Another example is session renegotiation, questions of renegotiation protocols,

and the resulting induced latency.

Consider, for example, the problem of replay attacks: A man-in-the-middle might have

observed an HTTP request that deletes a user’s email inbox. We would like it to be the case

that the man-in-the-middle can’t re-use the same request to later delete the user’s inbox

at will. Introducing a timestamp to solve this problem is risky: what if the client (who

issues the request to delete a user’s inbox) and the server (who is supposed to execute the

request) don’t share sufficiently synchronized clocks? To solve this issue, we need to include

a server-issued challenge in the request signature, requiring extra round-trips.

Another example is session renegotiation. Presumably, in order to save processing cost,

the client wouldn’t actually perform a public-key signature operation every time it issued an

HTTP request. Instead, it would somehow negotiate a symmetric signing key with the server

and then use that symmetric signing key to create (cheaper) symmetric-key signatures on

the HTTP request. What if the server wants the client to prove that it is still in possession

of the original private key (we would have to do this periodically to detect attacks in which

the negotiated symmetric key has been stolen by the attacker)? Would we have to pause all

pending HTTP requests to the server, run a session-renegotiation protocol, and then restart

the HTTP requests? Would this be possible without impacting user-visible latency?

TLS solves all these issues for us: it protects against replay attacks, allow session rene-

gotiation to be multiplexed with data packages, and many other issues that would have to

be addressed at the HTTP layer. We felt that the TLS extension we’re proposing was far

less complex than the additions to the HTTP layer that would have been necessary to get

to comparable security, hence our focus on TLS.

62

3.6 Summary

In this chapter we presented TLS origin-bound certificates — a new approach to public

key-based client authentication. TLS-OBCs act as a foundational layer on which the notion

of an authenticated channel for the web can be established.

We showed how TLS-OBCs can be used to harden existing HTTP layer authentication

mechanisms like cookies, federated login protocols, and user authentication.

We implemented TLS-OBCs as an extension to the OpenSSL and NSS TLS implemen-

tations and deployed TLS-OBC to the Chromium open source browser as well as the TLS

terminator of a major website.

Finally, we demonstrated that the performance overhead imparted by using TLS-OBC

is small in terms of CPU and memory load on the TLS server and observed latency on the

TLS client.

We see origin-bound certificates as a first step towards enabling more secure web proto-

cols and applications. In the following chapter, we build on top of origin-bound certificates

and show how it is possible to design a better system for authenticating initial user logins.

63

Chapter 4

PHONEAUTH: STRENGTHENING USER AUTHENTICATION

In today’s on-line systems user authentication is at an impasse: by and large, despite our

best efforts, we have not been able to move past username and password authentication.

In this Chapter, we present PhoneAuth, a system for strengthening user authentication

through opportunistic cryptographic identity assertions which leverage the TLS Origin-

Bound Certificates we presented in Chapter 3. PhoneAuth was initially published in a 2012

publication [31]. We begin with the motivation and overview of the PhoneAuth system.

4.1 Motivation and Overview

The most common mechanism for users to log into web sites is with usernames and pass-

words. They are simple to implement on a server and they allow web sites to easily interact

with users in a variety of ways.

There are a variety of problems with these simple approaches, not least of which is

that many users will reuse passwords across different web sites [51, 21], at which point the

compromise of one web site leads to compromise of others [105, 24]. For users who might

want to remember distinct passwords, the cognitive burden makes it impossible at scale.

Furthermore, users faced with impostor web sites or forms of phishing attacks often give up

their credentials. It should then come as no surprise that large numbers of users see their

online accounts accessed by illegitimate parties every day [104, 29], causing anywhere from

minor annoyances, to financial harm, to very real threats to life and well-being [55, 94].

As practitioners of computer science we know that passwords offer poor security, yet

here we are, four decades after the invention of public-key cryptography and two decades

into the history of the web, and we still use passwords. A recent study by Bonneau et

al. [22] sheds some light onto why that is the case: none of the 35 studied password-

replacement mechanisms are sufficiently usable or deployable in practice to be considered

64

a serious alternative or augmentation to passwords, which is unfortunate since many of

the proposals are arguably more “secure” than passwords. This includes mechanisms that

employ public-key cryptography (such as CardSpace [77] or TLS client certificates [36])1.

Public-key cryptography would otherwise be an elegant solution to the security problems

with passwords outlined above: it would allow us to keep the authentication secret (a private

key) secret, and to not send it to, and store it at, the parties to which users authenticate

(or their impostors).

We have set out to take a fresh look at the use of public-key cryptography for user

authentication on the web. We are cognizant of the shortcomings of previous attempts, and

of the presence of public-key-based mechanisms in the list of failed authentication proposals

in the Bonneau et al. study. Yet we argue that public-key-based authentication mechanisms

can be usable if they are carefully designed. Our main contribution in this chapter is one

such design we call PhoneAuth, which has the following properties:

• It keeps the user experience of authentication invariant: users enter a username and

password directly into a web page, and do not do anything else.

• It provides a cryptographic second factor in addition to the password, thus securing

the login against strong attackers.

• This second factor is provided opportunistically, i.e., only if and when circumstances

allow (compatible browser, presence of second factor device, and so on). We provide

fallback mechanisms for when the second factor is unavailable.

Though PhoneAuth does have several operational requirements, we believe that they

are reasonable based on current technical trends and do not hinder the deployability of

PhoneAuth. See Section 4.5 for more details.

In Section 4.2 we establish the threat model and goals for our system. Section 4.2.3

outlines the system at a high level while Section 4.3 delves into practical implementation

details.

1See Chapter 2 for an in-depth review of these and other authentication technologies.

65

The Bonneau et al. study [22] presents a framework of 25 different usability, deploy-

ability, and security “benefits” that authentication mechanisms should provide. We rate

our system against this framework and provide other evaluations in Section 4.4, discuss

potential future directions in Section 4.5, and summarize in Section 4.6.

4.2 Design

4.2.1 Goals

Given the lessons from previous chapters, we take a fresh look at strong user authentication

on the web. The goals we have set for our work are outlined below:

• The authentication process should not solely rely on token-like credentials (e.g., cook-

ies) as these can be stolen. Instead secret information should be used to prove the

user’s identity wihtout revealing the secret information. For exapmle, some form of

public-key cryptography needs to be involved in the authentication process. Not only

does this allow for the authentication secret (the private key) to remain protected on

the client device, it also means that this secret is unknown to the user and therefore

cannot be stolen through phishing.

• The identity of the user must be established and proven above the transport layer.

Otherwise, the inability of users to see the context in which they are authenticating

leads to poor user experience and privacy problems as we observed in TLS client

authentication.

• The action of logging into a website should remain invariant: users type a username

and password into a web page (not the browser chrome or other trusted device),

and then are logged in. Apart from helping with learnability for the user, this also

helps with deployability: websites do not have to re-design their login flows and can

gradually “onboard” those users that possess the necessary client software into the

new authentication mechanism.

66

• The design should work well both in a world with very few identity providers, or in a

world where every website runs its own authentication services.

• Users need a fallback mechanism that allows them to log in just with something “that

they know” in case the public-key mechanism does not work (e.g., they are on a

device that does not support the new mechanism, or the device responsible for doing

the public-key operation is not available), or in case they do have a legitimate need to

hand over their credential to a third party (for example, someone asking their more

tech-savvy friend/child/parent to debug a problem with their account).

4.2.2 Threat Model

Another goal of our work is to protect users in the face of a strong adversary. In particular,

we assume the following threat model: We allow adversaries to obtain the user’s password

— either through phishing or by compromising weaker sites (for which the user has reused

a password).

We assume that the attacker can perform a man-in-the-middle attack on the connection

between the user and the server to which user is authenticating. For TLS based connections,

this attack assumes that the attacker has a valid TLS certificate for the site to which the

user is authenticating, thus allowing him to perform TLS man-in-the-middle attacks. We

even allow an attacker to obtain the correct certificate for the victim site (presumably by

stealing the site’s private key). This capability is extremely powerful and would even cause

browser certificate pinning [89] to fall prey to a TLS man-in-the-middle attack. Though

we have not seen reports of such attacks in the wild, security practitioners do believe such

attacks are possible [71].

Finally, we allow the attacker to deploy certain types of malware on the user’s machine

— for example those that perform keylogging. However, we assume the attacker is not able

to simultaneously perform an attack on both the network connection and the physical radio

environment near the user. For example, these constraints make malware that is able to

control (and potentially man-in-the-middle or denial of service) both the LAN NIC and the

Bluetooth chip out-of-scope, but leave in-scope malware that rides in the browser session.

67

Finally, we assume the attacker is not able to simultaneously compromise the same user’s

PC and user’s personal device.

4.2.3 Architecture

Server

username + password
login ticket

id assertion
login ticket id assertion

channel-bound login cookie

2

4
3

username +
password

1

Figure 4.1: PhoneAuth overview

Architectural Overview

Our PhoneAuth authentication framework meets the goals above by opportunistically pro-

viding cryptographic identity assertions from a user’s mobile phone while the user authen-

tications on another device. Figure 4.1 explains this process:

• In step 1, the user enters their username and password into a regular login page, which

is then sent (in step 2) to the server as part of an HTML form.

• Instead of logging in the user, the server responds with a login ticket, which is a request

for an additional identity assertion (more details below).

• In step 3, the browser forwards the login ticket to the user’s phone, together with

some additional information about key material the browser uses to talk to the server.

• The phone performs a number of checks, and if they succeed, signs the login ticket with

a private key that is known to the server as belonging to the user. The signed login

68

ticket constitutes the identity assertion. It’s cryptographic because we use public-key

signatures to sign the browser’s public key with the user’s private key.

• In step 4, the browser forwards the identity assertion to the server. The server checks

that the login ticket is signed with a key belonging to the user identified in step 2, and

if so, logs in the user by setting a cookie that is channel-bound to the browser’s key

pair (see below). As a result, the phone certified the browser’s key pair as speaking

for the user, and the server records this fact by setting the respective cookie.

We now provide additional notes about the overall architecture:

Opportunistic Identity Assertions We do not assume that every user will have a suit-

able mobile phone with them, or attempt logins from a browser that supports this protocol.

That is why in step 4 the browser can also return an error to the server. If this is the case,

the user has performed a traditional login (using username + password), and in the usual

manner (by typing it into a login form), which means that the protocol essentially reduces

to a traditional password-based login. The cryptographic identity assertion is opportunistic,

i.e., provided when circumstances allow, and omitted if they do not.

The server may decide to treat login sessions that carried a cryptographic identity as-

sertion differently from login sessions that did not (and were only authenticated with a

password). For example, the server could decide to notify the user through back channels

(SMS, email, etc.), similar to Facebook’s Login Notifications mechanism. The server could

also restrict access to critical account functions (e.g., changing security settings) to sessions

that did carry the identity assertion. We call this mode of PhoneAuth opportunistic mode.

An alternative mode of PhoneAuth is strict mode, in which the server rejects login

attempts that did not carry a cryptographic identity assertion. This is more secure, but

comes at the cost of disabling legacy devices that can’t produce identity assertions. The

decision whether to run in strict or opportunistic mode can either be made by the server,

or it can be made on a per-user basis: Security-conscious users could opt into strict mode,

while all other users run in opportunistic mode. A user who has opted into strict mode

would not be able to log in when his phone was unavailable, while a user has not opted in

69

(i.e., runs in opportunistic mode) would simply see a login notification or a restricted-access

session when logging in without his phone.

User Experience The user does not need to approve the login from the phone. The

server will only issue a login ticket if the user has indicated his intent to log in by typing a

username and password. When the phone sees a login ticket, it therefore knows that user

consent was given, and can sign the login ticket without further user approval.

This means that there is no user interaction necessary during a PhoneAuth login, other

than typing the username and password. If the phone and browser can communicate over

a sufficiently long-range wireless channel, the user can leave the phone in their pocket or

purse, and will not even need to touch it.

Protected Logins In an earlier workshop publication [30] we introduced the concept of

Protected Login whereby we grouped logins into two categories — protected and unpro-

tected. Protected logins are those that are a result of strong, unphishable credentials (e.g.,

a cookie or an identity assertion in our case). Unprotected logins are logins that result from

weaker authentication schemes (e.g., just a password or a password and secret questions).

Following this nomenclature, opportunistic PhoneAuth attempts to perform a protected

login, but reverts to an unprotected login if the identity assertion is not available.

Our work showed that only first logins from a new device need special protection via a

second factor device — subsequent logins can be protected by channel-bound cookies (see

below) that were set during the first login. This observation further shows the usability of

our scheme: we obtain strong protection with a login mechanism that quite literally asks

the user to do nothing but type their username and password, and (assuming a wireless

connection between browser and phone) bring their phone into the proximity of the browser

only during the first login from that browser.

TLS Channel IDs The security of PhoneAuth relies on the concept of TLS origin-bound

certificates (OBC) introduced in Chapter 3. TLS-OBC is currently an experimental feature

in Google’s Chrome browser and is under consideration by the IETF as a TLS extension.

70

OBCs are TLS client certificates that are created by the browser on-the-fly without

any user interaction and used during the TLS handshake to authenticate the client. OBCs

don’t carry any user-identifying information and are not used directly for authentication.

Instead, they simply create a TLS “channel” that survives TLS session resets (the client

re-authenticates itself with the same OBC to the server, recreating the same channel). We

can bind an HTTP cookie to this TLS channel by including a TLS channel ID (a hash of

the client’s OBC) as part of the data associated with the cookie. If the cookie is ever sent

over a TLS channel with a different channel ID (i.e., from a client using a different OBC),

then the cookie is considered invalid.

At the heart of PhoneAuth is the idea that the server and browser will each communicate

their view of the TLS channel between them to the user’s phone. The server uses the login

ticket as the vehicle to communicate its view of the TLS channel ID to the phone. The

browser communicates the TLS channel ID directly to the phone. If there is a man-in-the-

middle between browser and server (which doesn’t have access to the browser’s private OBC

key), these two TLS channel IDs will differ (the server will report the ID of the channel

it has established between the man-in-the-middle and itself, while the browser will report

its channel ID to the phone). Similarly, if the user accidentally types his credentials into

a phishing site (which then turns around and tries to submit them to the server), the two

TLS channel IDs will differ.

The user’s phone compares the two TLS channel IDs and will not issue an identity

assertion if they differ, causing a login failure in strict mode, and an unprotected login in

opportunistic mode. The phone can then potentially alert the user that an attack may be

in progress or send a message to the server if a cellular connection is available.

Protocol Details

In describing this protocol, we also describe inline how our design addresses risks such as

credential reuse, protocol rollback attacks, TLS man-in-the-middle attacks, and phishing.

Recall that in step 2, the user’s entered username and password are sent to the server.

The server then verifies the credentials and generates a login ticket. The login ticket structure

71

Figure 4.2: Login ticket structure

is shown in Figure 4.2. The ticket contains a TLS channel ID (for binding the ticket to the

TLS channel), the web origin of the webapp, the expiration time (to prevent reuse), whether

the login request used TLS-OBC (to prevent rollback attacks), an account (to bind the ticket

to a user), and an origin protection key (to allow the phone to decrypt assertion requests

sent over insecure mediums). The login ticket is encrypted and signed using keys derived

from a per-account master secret known only to the server and the user’s phone; we describe

later how the server and phone derive this master secret key. Observe that the login ticket

is opaque to the browser — it can neither “peek” inside nor modify the login ticket.

The server sends the login ticket along with a certauth id that tells the browser how to

contact the user’s phone. The certauth id is in the form of:

<origin protection key>@<device address>.<device type>.certauth

After receiving the login ticket, the browser generates an assertion request (shown in

Figure 4.3) which includes the login ticket along with some metadata about the TLS session.

The metadata also includes the TLS channel ID as seen by the browser and helps to prevent

72

Figure 4.3: Assertion request structure

a TLS man-in-the-middle attack. This data is encrypted and authenticated under the origin

protection key obtained from the certauth id (obtained in step 2).

The browser sends the assertion request to the user’s phone in step 3. The phone then

unpacks and validates the assertion request, making sure that the TLS channel IDs match,

that the device can vouch for the requested user, and that the assertion request was indeed

for this device. Next, the device generates an identity assertion. The identity assertion

simply contains the login ticket signed by the private key of the user’s personal device. The

phone sends the identity assertion to the browser, which forwards it to the webapp (shown

in Figure 4.4). The webapp unpacks and validates the assertion (again checking for TLS

Channel ID mismatches) and incorrect signatures.

Finally, the webapp gives the browser a channel-bound cookie, thus completing the

protected login.

Additional Security Discussion Though we discuss several attacks and their mitiga-

tions above, we now highlight several additional aspects of our security design. Observe

73

Figure 4.4: Identity assertion structure

that by including the TLS channel ID in the login ticket, the server binds that ticket to the

server-browser TLS channel. Because the login ticket is end-to-end encrypted to the user’s

personal device, a rogue middle party is unable to undetectably modify it. By using the

TLS channel ID that the browser has placed in the assertion request in conjunction with

the TLS channel ID from the login ticket, the user’s phone is able to determine if a man-

in-the-middle is present. Observe that the metadata provided by the browser is encrypted

and authenticated by the origin-protection-key which the user’s device extracts after de-

crypting the login ticket. When the identity assertion returns to the server, it can be sure

that: 1) the identity assertion came over the same TLS channel as the user password (no

phishing occurred), 2) there was no TLS man-in-the-middle between the browser on which

the password was entered and the server, and 3) the user’s phone was near the PC during

authentication2.

Enrollment

As we mentioned briefly earlier, the user’s phone must be enrolled with the server prior to

use during authentication. Specifically, the user’s phone registers itself with the server by

2We discuss the reasoning for this after providing some implementation details.

74

telling the server its public key and identifying which user(s) it will vouch for. The user’s

personal device and the server also agree on a master encryption key during the enrollment

process. The architecture of the enrollment protocol is fairly simple (occurring as a single

HTTP POST request) and is discussed in detail in Section 4.3.

Enrollment need only be done once per website and phone. Once a user has enrolled his

phone device with a server, he will not have to do this again.

Clearly, prior to enrolling into this system, users do not have the benefits of the system

and are vulnerable to some the attacks against which this system protects. Namely, we

assume there to be no TLS man-in-the-middle between the user’s PC and the server during

enrollment.

Practical Maintenance Operations

During the normal use of PhoneAuth, several maintenance operations will occur. We address

each in turn.

Adding More Phones Users may want to have more than one phone. However, to

make it easier for users to maintain consistency (the lack of which which may introduce user

confusion) we suggest only allowing users to have one enrolled phone as their authentication

device. We enforce this by overriding enrollment information every time the user registers

a (new) phone.

Recovery / Replacing a Phone Users will want to replace their phone for a variety

of reasons — upgrades, loss (or breakage), or just because. In our system this is easily

accomplished if the user has at least one PC which has an active login session. The user

will simply elect to “replace their authentication device” in the web UI. This will present

a QR code which the user can scan with their new phone. The QR code includes session

information from the PC’s active login session which the phone can use to prove to the

server that the user did have a valid session. As an alternative, users can elect to have a

special SMS sent to their new phone (presumably the phone number has stayed constant),

which will help them get through the replacement process.

75

In the case where the user does not have an active protected login session and has a new

phone number, users will need to go through a thorough account recovery procedure. For

example, a service provider may send an e-mail to a backup email address or ask questions

about the content of the account (such as recent e-mails). There best recovery technique

for a service provider largely depend on the type of service being offered. We therefore do

not give concrete guidance on what the account recovery procedure should be.

Revocation Users may want to revoke their phone (in case it is stolen or they decide

to withdraw from the protected login system). Similar to replacing a phone, this can be

accomplished through the web interface at the server if the user has an active session.

Otherwise, device revocation can potentially be a very dangerous action. In case of no

active session, we recommend that service providers verify the user identity via a thorough

account recovery procedure (see above).

4.3 Implementation

Having presented the overall architecture, a key question arises: why did we choose to

implement identity assertion generation on a smart phone? A standard option might have

been a Near Field Communication (NFC) smartcard or dedicated token, as used by other

constructions. While offering good security properties, the use of dedicated tokens has

usability problems — e.g., requiring changes in user behavior (either to keep the token with

the user or to place the token near the computer when authenticating); these user behavior

changes violate our goal to keep the action of logging in invariant. An additional advantage

of using a phone is that users already possess such a device, whereas otherwise they would

have to obtain a special-purpose authentication device from somewhere.

Phones and Bluetooth Our system requires that the PC and phone communicate wire-

lessly, since a wired connection would have undesirable usability consequences. While they

could clearly communicate through a trusted third party known to both (i.e., a server in

the cloud [1]), this approach introduces unacceptable latency and the need for cellular con-

nectivity. Instead, we have elected to have the PC and phone communicate directly through

76

Bluetooth. Though other alternative ad-hoc wireless protocols exist (e.g., wifi direct, NFC),

they are not sufficiently ubiquitous or have other inherent limitations. Unlike NFC (which

is for extremely close range communication, i.e., “touching”), Bluetooth allows the user

to keep the phone in their pocket during the authentication process — a huge usability

benefit. Though the range of Bluetooth has been shown to be artificially extendible by

attackers [123], this is not a security issue for our design unless the attackers are also able

to mount a TLS man-in-the-middle attack on the PC-Server connection — in which case,

such attackers are outside the scope of our threat model (see Section 4.2).

4.3.1 Key Challenges and Methods

While implementing this system, we encountered a number of interesting technical and

design challenges.

Phone and PC Communication The central challenge with using Bluetooth in our en-

vironment is that we want to simultaneously support (1) Bluetooth communication between

the user’s phone and the user’s browser without any user interaction with the phone and

(2) have this work even when the user has never had contact with the computer / browser

before. This is a challenge because, without prior interaction, the phone and the computer

/ browser will not be paired. To overcome these challenges, we modify both the browser

and leverage a seldom used feature of the Bluetooth protocol.

In order for the PC and phone to contact one another over Bluetooth they need to

learn one-another’s Bluetooth MAC address. In most scenarios, this is usually done by

putting one or both devices in discoverable mode, scanning for devices, then using a UI to

pick the corresponding device from the menu. Since this process is highly interactive and

time consuming (especially the scanning portion), we investigated ways of short circuiting

the process. We leverage the fact that if one of the devices knows the MAC address of the

other device, then the discovery phase can be bypassed and communication can immediately

commence. Note that the phone and the PC are assumed to not have any prior association

and therefore do not know each other’s address.

We considered two bootstrapping mechanisms: 1) the phone would “be told” the PC’s

77

address and would initiate a connection with the PC or 2) the PC would “be told” the

phone’s address and would initiate a connection with the phone. For the first mechanism,

the server could send a message to the phone through the cloud. However requires a cellular

connection (which may not be available) and introduces high latency thereby changing the

user experience and violating our goals from Section 4.2. For the second mechanism, the

PC can obtain the phone’s Bluetooth MAC address from the already existing (and lower

latency) server connection3.

Though the PC and Phone can make radio contact, there are still a number of challenges

to overcome. Traditionally, before any Bluetooth communication takes place, the user

must first “pair” the two devices. This usually involves showing the user some interface

where he is asked to compare several numbers and usually press a button on one or both

devices. This is both labor and time intensive from the user’s point of view. Instead, we

utilize the ability of Bluetooth devices to communicate over unauthenticated RFCOMM

connections. This technique allows us to create a “zero-touch” user experience by not

forcing the user to interact with the mobile phone at all while authenticating on the PC.

Recall from Section 4.2.3 that although the Bluetooth connection is unauthenticated at the

RFCOMM level, the data is end-to-end authenticated and encrypted on the application

level using the origin-protection-key.

Browser Support for Phone Communication Our architecture proposes that web-

pages should be able to request identity assertions from the user’s mobile phone. One way

of achieving this goal is to create an API that would allow webpages to send arbitrary data

to the user’s phone. At the extreme, this would amount to a Bluetooth API in JavaScript.

This approach is unattractive for a variety of both security and usability reasons. For ex-

ample, it might allow malicious sites to freely scan for and send arbitrary data to nearby

Bluetooth devices. This may expose those devices to DOS attacks, make them even more

vulnerable to known Bluetooth exploits, and allow attackers to potentially track users via

their Bluetooth address. Instead, we chose an approach that exposes a much higher level

3This must be done carefully, lest the designer creates a Bluetooth address oracle. See Section 4.5 for
more discussion of this pitfall.

78

API — thereby severely constraining the attackers’ abilities. We describe this in detail

below.

4.3.2 Implementation Details

Browser We extended the Chromium web browser to provide websites a new JavaScript

API for fetching identity assertions. We modeled our approach after the BrowserID [2]

proposal by using the navigator.id namespace. The full API consists of the function:

navigator.id.GetIdentityAssertion()

This API accepts three parameters: 1) a certauth id, 2) a login ticket, and 3) a JavaScript

callback function that will be called when the identity assertion is ready.

If an identity assertion is not able to be fetched (either because the phone is not in range

or the ticket is incorrect), the callback function may not be called — this is to help prevent

malicious actions such as brute-forcing correct login tickets and tracking users by Bluetooth

address.

Since regular Chromium extensions don’t have the ability to interact with peripheral

devices (i.e., Bluetooth), we also wrote an additional NPAPI plugin that is embedded by

the extension. The extension currently supports the Chromium browser on both Linux and

Windows platforms. In total, the modification consisted of 3300 lines of C and 700 lines of

JavaScript.

Pending work is ongoing to implement this functionality into the core Chromium browser

code. Additionallyu, we are currently investigating together with the Firefox team whether

our GetIdentityAssertion API and the BrowserID API can be combined into a single

API.

Mobile Phone We modified the Android version of the open source Google Authenticator

application [110] to provide identity assertions over unsecured RFCOMM. The application

is able to provide identity assertion while the screen is off, and the application is in the

background. The total changes required were 4000 lines of Java code.

79

Server We chose a service-oriented design for the server-side implementation. The cen-

tral service exposes three RPCs: RegisterDevice, GenerateTickets, and VerifyTicket. The

RegisterDevice RPC is exposed as a REST endpoint directly to users’ phones. The other

two RPCs are intended for login services. The idea is that a (separate) login service will call

the GenerateTickets RPC after it performed a preliminary authentication of the user (using

username and password), and will forward the login tickets returned by this RPC to the

user’s browser. Once the user’s browser has obtained an identity assertion from the user’s

phone and has forwarded it to the login service, the login service will use the VerifyTicket

RPC to check that the identity assertion matches the previously issued login ticket.

The basic signatures of the three RPCs is:

RegisterDevice Input parameters include an OAuth token identifying the user account for

which the device is registered, a public key generated by the device, and the Bluetooth

address of the device. This RPC returns the ticket master key.

GenerateTickets The following input parameters are included in the login tickets:

• The user id of the user for which the login service needs Login Tickets.

• The URL of the login service.

• The TLS channel ID (see Section 4.2.3) of the client that has contacted the login

service. This is an optional parameter and only included if the client (browser)

supports TLS-OBC.

• A boolean designating whether the user has explicitly indicated an intent to log

in (such as typing a username and password), or not (such as during a “password-

less” login that is triggered purely by the proximity of the phone to the browser).

This boolean is embedded in the login ticket and allows the phone to present a

consent screen on the phone if no previous user consent has been obtained by the

login service for this login.

• A boolean indicating whether the login service supports TLS-OBC. This allows

us to detect an attack in which a man-in-the-middle pretends to a TLS-OBC-

capable browser (respectively login service) that the login service (respectively

80

browser) doesn’t support TLS-OBC. This boolean will be compared by the phone

to a similar boolean that the browser reports directly to the phone.

This RPC returns a login ticket for the indicated user’s registered device. As noted

earlier, a login ticket includes many of the input parameters, together with an ex-

piration time and an origin protection key, and is encrypted and signed with keys

derived from the ticket master key established at device enrollment time. Every login

ticket is accompanied by an identifier that includes the Bluetooth address of the device

possessing the ticket master key.

VerifyTicket This RPC’s input parameter is an “identity assertion”, which is simply a

counter-signed login ticket. The service simply checks that the ticket is signed by

a key that corresponds to the user for which the ticket was issued, and returns an

appropriate status message to the caller (the login service).

The complete implementation of this service (not including a backend database for storing

device registration information, unit tests, and the actual login service) consisted of 5500

lines of Java.

4.4 Evaluation

4.4.1 Comparative

We now evaluate our system using Bonneau et al.’s framework of 25 different “benefits” that

authentication mechanisms should provide. We evaluate the two modes of using PhoneAuth

— strict and opportunistic. Recall from Section 4.2.3 that in strict mode, the user can only

successfully authenticate if an identity assertion is fetched from his phone. In opportunistic

mode, however, identity assertions are fetched opportunistically and users achieve either

“protected” or “unprotected” login, with the latter possibly resulting in user notifications

or restricted account access. We also include the incumbent passwords and a popular 2-

factor scheme as a baseline; we reproduce scores for passwords exactly as in Bonneau et

al.’s original publication, but disagree slightly with the scores reported for Google 2-Step

Verification (2SV). The results of our evaluation are shown in Table 4.1.

81

Usability Deployability Security

Scheme M
em

or
y
w

is
e-

E
ff

o
rt

le
ss

S
ca

la
b

le
-f

or
-U

se
rs

N
ot

h
in

g-
to

-C
ar

ry

Q
u

as
i-

N
ot

h
in

g-
to

-C
ar

ry

P
h
y
si

ca
ll

y
-E

ff
o
rt

le
ss

E
as

y
-t

o-
L

ea
rn

E
a
sy

-t
o-

U
se

In
fr

eq
u

en
t-

E
rr

or
s

E
as

y
-R

ec
ov

er
y
-f

ro
m

-L
os

s

A
cc

es
si

b
le

N
eg

li
gi

b
le

-C
os

t-
P

er
-U

se
r

S
er

ve
r-

C
om

p
at

ib
le

B
ro

w
se

r-
C

om
p

at
ib

le

M
at

u
re

N
on

-P
ro

p
ri

et
ar

y

R
es

il
ie

n
t-

to
-P

h
y
si

ca
l-

O
b

se
rv

a
ti

on

R
es

il
ie

n
t-

to
-T

ar
ge

te
d

-I
m

p
er

so
n

at
io

n

R
es

il
ie

n
t-

to
-T

h
ro

tt
le

d
-G

u
es

si
n

g

R
es

il
ie

n
t-

to
-U

n
th

ro
tt

le
d

-G
u

es
si

n
g

R
es

il
ie

n
t-

to
-I

n
te

rn
al

-O
b
se

rv
a
ti

on

R
es

il
ie

n
t-

to
-L

ea
k
s-

fr
om

-O
th

er
-V

er
ifi

er
s

R
es

il
ie

n
t-

to
-P

h
is

h
in

g

R
es

il
ie

n
t-

to
-T

h
ef

t

N
o
-T

ru
st

ed
-T

h
ir

d
-P

a
rt

y

R
eq

u
ir

in
g-

E
x
p

li
ci

t-
C

on
se

n
t

U
n

li
n

ka
b

le

Passwords y y y y s y y y y y y y s y y y y

Google 2-Step Verification (2SV) y y s s s s y y s y y y y y y y

PhoneAuth – strict s y y y s y y s s s s y y y y y s y y y y y s

PhoneAuth – opportunistic s s y y y s y y y s y y y s s s s s s s y y y s

Table 4.1: Comparison of PhoneAuth against passwords and Google 2-Step Verification

using Bonneau et al.’s evaluation framework. A ‘y’ indicates that the benefit is provided,

while ‘s’ means the benefit is somewhat provided. For some scores, we disagree with the

Bonneau scoring.

Usability In the usability arena, the strict and opportunistic modes are similar to pass-

words and 2SV in that they provide the easy-to-learn and easy-to-use benefits since neither

mode requires the user to do anything beyond entering a password. We rated both strict

and opportunistic modes as somewhat providing the infrequent-errors benefit since they

will cause errors if the user forgets his password or if the PC-phone wireless connection does

not work. The strict mode does not provide the nothing-to-carry benefit since users won’t

be able to authenticate without their personal device. On the other hand, opportunistic

mode somewhat provides that benefit since users may get a lower privileged session without

their personal device. Both PhoneAuth modes provide the Quasi-Nothing-to-Carry benefit,

since the device that the user is required to carry is a device they carry with them already

anyway. We indicated that both strict and opportunistic modes at least somewhat provided

the scalable-for-users benefit since they reduce the risk of password reuse across sites.

82

Deployability Assessing the deployability benefits comes down to evaluating how much

change would be required in current systems in order to get our proposed system adopted.

We note that the opportunistic mode is fairly deployable since it can always fall back to

simple password authentication. Strict mode provides less deployability benefits, but is not

far behind. Since the system is not proprietary, the changes that would need to be done

both on the browser and server are minimal. Similarly, the cost-per-user of these systems

is minimal as well.

Security The security benefit arena is where our approach really shines over passwords

and 2SV. While the Bonneau et al. study indicated that 2SV was resistant to phishing,

unthrottled guessing, and somewhat resistant to physical observation, we do not believe

this to be the case. Attackers can phish users for their 2SV codes and, in conjunction

with a phished password, can compromise user accounts. The same is true under physical

observation and unthrottled guessing.

In comparison, PhoneAuth in strict mode is able to provide all of the security benefits

except for unlinkable, which we say it provides somewhat because even though the user

will be exposing his or her Bluetooth MAC address to multiple verifiers, privacy conscious

users can change their Bluetooth MAC address to not be globally unique. The opportunistic

mode provides all of the security benefits of passwords, but is also able to somewhat provide

the other security benefits by restricting users (or attackers) who don’t provide an identity

assertion to less privileged operations and notifying users of the less secure login.

Discussion Given this evaluation, we believe that PhoneAuth fares very well against the

Bonneau et al.’s metric and compares favorably with the 35 authentication mechanisms

investigated in the Bonneau et al. study.

4.4.2 Performance

Measuring the performance impact of our login scheme is a complex task. Issues range from

the impact of the Bluetooth service on the phone battery life, to overhead introduced by

the additional cryptographic functions (both for TLS-OBC and for the login ticket issuance,

83

signature and verification), and finally the additional overhead introduced during login by

communicating to the phone, additional round trips between browser and server, and so on.

Below we discuss a number of these issues.

Overhead of Cryptography A key concern is the use of TLS-OBC — since every con-

nection to the login service will incur the respective penalty. If the latency and overhead

introduced by TLS-OBC is too great, then this will manifest itself in slow load times of

the login page, for example. We refer the reader to a detailed discussion of the TLS-OBC

performance in Chapter 3. In that chapter, we show that the overhead is negligible once the

browser has generated a client certificate (and very small for certain key types even when a

new client certificate needs to be generated).

The overhead of cryptography during the login process (generating the login ticket,

checking and signing it, and checking the ticket signature) is dwarfed by the “human-scale”

operations performed during login (typing a username and password), and by the additional

round trips between browser and server. For example, a typical login ticket generation and

verification took about 1 millisecond in our setup of 1000 test runs. We examined the

timing of other cryptographic operations, but do not report on them as they incur a delay

of approximately the same order, but have no end-user-impact (which is dominated by other

latency; see below).

Overhead of Additional Round Trips During login, the browser makes an additional

request to the server — to obtain the login ticket from the login service. The latency

introduced by such a request is highly variable — from a few milliseconds for clients on a

good network connection close to a datacenter where the login service is running, to a few

seconds for mobile clients in rural areas far away from any datacenter. The relative overhead

of a single additional round trip, however, is relatively low. Bringing up the login pages

for Gmail, Facebook, and Hotmail, for example, involves 14, 11, and 14 HTTP requests

as of the time of this writing (and this does not include submitting the password, getting

redirected to the logged-in state, and so on — simply loading and displaying the login page).

84

Overhead of Involving the Phone During Login This is perhaps the most interesting

type of overhead incurred: The browser has to establish a Bluetooth connection to the phone

and obtain an identity assertion. As a baseline comparison, we measured how long it took

a member of our team to log into a simple password-based login service (type username,

password, and submit) — an average of 8.8 seconds. Repeating the same login while also

obtaining an identity assertion increased the average time to 10.3 seconds. The additional

1.5 seconds are mostly spent establishing the Bluetooth connection, with processing time

on the phone and penalty for the additional round trip being much less of an issue in

comparison.

We noticed that the “long tail” of Bluetooth connection setup time, however, was con-

siderably slower — sometimes taking up to 7 seconds. As a result, our test login service

tries for as long as 7 seconds to connect to the phone before giving up and proceeding with a

password-only “unprotected” login. Not surprisingly, when we tested login with the phone

turned off (simulating a situation in which the phone wasn’t available to protect the login),

the average login time increased to 16.7 seconds — almost all of the additional time was

spent waiting (in vain) for the Bluetooth connection to the phone to be established.

We envision techniques that may shorten the login time even more. For example, “lazy

verification” of the second factor credentials (for opportunistic rather than strict logins)

may work as follows. The user is allowed to login like normal if a second factor device is not

found within 1 second, but behind the scenes the server continues to search for the second

factor device for another 20 seconds. If the second factor device is found, the user session

is upgraded and no notifications will be sent out.

This is still faster than a typical two-factor login, however. We measured an average

login time of 24.5 seconds for a 2-factor login service that included typing a username and

password, and copying a one-time code from a smart phone app to the login page.

Note that for a user that uses 2-factor authentication, and whose login service may

perhaps accept both traditional one-time codes and the (considerably more secure) crypto-

graphic assertions from the phone as a second factor, login actually speeds up dramatically

with our system (from 24.5 seconds to 10.3 seconds), while at the same time reverting the

login experience to a simple “username+password” form submission and improving security.

85

4.5 Discussion

Operational Requirements and Deployability As the careful reader has noticed,

PhoneAuth has several operational requirements which must be met in order for the system

to be deployed. First, our browser extension’s functionality should be ported to be part of

the actual browser. We have approached the Chromium browser team and have interacted

with the Firefox team to make that happen. Second, it must be simple for developers to

deploy this authentication scheme to their websites. Our service-oriented implementation

of the server-side PhoneAuth functionality makes this easy, but a roll out of PhoneAuth to

a non-trivial deployment is still in its planning phase. Third, the system must be tested and

approved by users. We believe the main reason similar systems have failed is that none have

been able to support opportunistic strong user authentication without modifications to the

user experience — a feature which our system provides. We are planning on running field

tests of the system in the near future. Finally, Bluetooth should be a ubiquitous technology

on most phones and PCs. We found that the majority of new devices do indeed ship with

Bluetooth [116]. Examining several major device manufacturers, we found that all Apple

computers, almost all laptops (HP and Dell), and about half of Desktop PCs (HP and Dell)

have integrated Bluetooth. Given these statistics, we believe the ubiquity of Bluetooth goal

to be realistic.

Other Methods for Testing Phone/PC Colocation Instead of relying on a wireless

channel between the phone and PC, an alternative approach for testing for proximity be-

tween phone and PC may be to query both for their location. Most phones can provide their

location coordinates (for example through GPS or cell triangulation). Recently, browsers

have begun to expose geolocation APIs as well [82]. However, without a GPS fix, phones

may provide location data with too coarse of a granularity. More troublesome, however,

is that the browser geolocation API (which is based on IP addresses) does not work from

behind a VPN or on large managed networks (such as our university). These two issues

make the location based approach impractical.

As yet another approach, it may be feasible to transfer identity assertions via NFC (by

86

having users tap their phones on NFC readers) or by having users scan QR codes. Both

of these approaches carry a non-negligible user experience impact. Users must take their

phone out of their pocket, purse, or backpack, potentially unlock the screen, and potentially

launch an app. We believe this usability impact is too severe and therefore do not consider

these modes of operations.

Finally, some designs may be possible that leverage the cellular network. We have chosen

not to use them because of occasional lack of cellular coverage and potentially high latency.

Avoiding a Bluetooth Address Oracle We briefly considered a very attractive design,

but discarded it for privacy reasons because it inadvertently created a Bluetooth address

oracle. Specifically, in the design, users could just type their username into the webpage

login page and an identity assertion would be fetched from their phone without requiring

users to enter a password. This, however, required that web sites expose an API that would

return a Bluetooth address based on username. Even though this design presented nice

usability benefits, we stayed clear of this approach.

4.6 Summary

In this chapter we introduced PhoneAuth, a new method for user authentication on the

web. PhoneAuth enjoys the usability benefits of conventional passwords — users can, for

example, approach an Internet kiosk, navigate to a web page of interest, and simply type

their user name and password to log in. At the same time, PhoneAuth receives the benefits

of conventional second-factor authentication systems and more. Specifically, PhoneAuth

stores cryptographic credentials on the user’s phone. If present when the user logs into a

site, then the phone will attest to the user’s identity via Bluetooth communications with the

computer’s browser; this happens even if the user has never interacted with that particular

computer before. Since users may occasionally forget their phones, we further considered

a layered approach to security whereby a web server can enact different policies depending

on whether or not the user’s phone is actually present.

We called the general layered approach “opportunistic identity assertions”. Opportunis-

tic identity assertions allow the server to treat logins differently based on how the user was

87

authenticated — allowing the server to provide tiered access or restrict dangerous function-

ality (e.g., mass e-mail deletion). Thus, while opportunistic identity assertions may not

always be available to all users (e.g., lack of Bluetooth support), there are still advantages

in providing them. Similarly, an adversary who is able to make it appear that Alice’s phone

is “not there” simply degrades Alice’s login and prevents access to dangerous functionality.

We implemented and evaluated PhoneAuth, and our assessment is that PhoneAuth is a

viable solution for improving the security of authentication on the web today. We believe

that PhoneAuth has the potential to significantly improve the security of user authentication

without impacting the usability of the login experience.

88

Chapter 5

ALLOWED REFERRER LISTS: STRENGTHENING USER
AUTHORIZATION

In the previous chapters, we presented two systems for making user authentication more

resilient against strong attackers while striving to provide a good user experience. We now

turn towards examining user authorization and present Allowed Referrer Lists (ARLs) as

a lightweight mechanism for protecting against Cross-Site Request Forgery attacks. ARLs

were originally published in a 2013 paper [32]. We begin by describing the motivation for

and the overview of the work.

5.1 Motivation and Overview

Web application developers have relied on web cookies to not only provide simple state

management across HTTP requests, but also to be bearers of authentication and authoriza-

tion state. This programming paradigm, combined with the fact that web browsers send

cookies by default with every HTTP request, has led to the proliferation of ambient au-

thority (see Section 2.3.1 for more details), whereby HTTP requests can be automatically

authenticated and authorized with the transport of a cookie. Other sources of ambient

authority include state in HTTP authentication headers, client-side TLS certificates, and

even IP addresses (which are used for authorization in some intranets or home networks).

Such ambient authority, in turn, has led to the proliferation of Cross-Site Request Forgery

(CSRF) attacks.

CSRF attacks occur when malicious web sites cause a user’s web browser to make unso-

licited (or forged) requests to a legitimate site on the user’s behalf. Browsers act as confused

deputies and attach any existing cookies (or other ambient authority state) to the forged

request to the victim site. If the web application looks at the cookie or other state attached

to an HTTP request as an indication of authorization, the application may be tricked into

performing an unwanted action. For example, when a user visits bad.com, the displayed

89

page may force the browser to make requests to bank.com/transfer-funds (e.g., by including

an image). When making the request to bank.com, the user’s browser will attach any cookies

it has stored for bank.com. If bank.com verifies the request only via the attached cookies,

it may erroneously execute the attacker’s bidding. Section 2.3.1 provides more background

on these attacks.

CSRF attacks are a major concern for the web. In 2008, Zeller et al. [122] demonstrated

how several prominent web sites were vulnerable to CSRF attacks that allowed an attacker

to transfer money from bank accounts, harvest email addresses, violate user privacy, and

compromise accounts. From January 1 to November 16 in 2012, 153 CSRF attacks have

been reported, making 2012 one of the most CSRF-active years [87]. These vulnerabilities

are not merely theoretical; they have a history of being actively exploited in the wild [9, 106].

CSRF defenses exist, and some may believe that defending against CSRF attacks is a

solved problem. For example, tokenization is a well-known approach adopted in various

forms in numerous web development frameworks. In a tokenization-based defense, a web

server associates a secret token with HTTP requests that are allowed to cause side-effects

on the backend. Assuming an attacker site cannot capture this token, the attacker cannot

launch CSRF attacks. However, our in-depth analysis (Section 2.3.2) reveals that tokeniza-

tion has a number of practical drawbacks, such as lack of protection for GET requests,

possible token extraction by adversaries, and challenges dealing with third-party web devel-

opment components. We show that other defenses are also limited: either too rigid (thereby

blocking legitimate content) or too yielding (thereby allowing certain attacks to occur).

By studying drawbacks in existing approaches, we set out to build a new CSRF defense

that is (1) developer-friendly, (2) backward compatible (not blocking legitimate content),

and (3) has complete coverage (defending against all CSRF attack vectors). We propose

a new mechanism called Allowed Referrer Lists (ARLs) that allows browsers to withhold

sending ambient authority credentials to web sites wishing to be resilient against CSRF

attacks. We let participating sites specify their authorization structure through a whitelist

of referrer URLs for which browsers are allowed to attach authorization credentials to HTTP

requests.

This approach takes advantage of the fact that browsers know the browsing context,

90

while web developers understand the application-specific authorization semantics. By let-

ting browsers carry out the enforcement and having web developers only specify the policies,

we ease the enforcement burden on developers. By only having participating sites specify

the policies and receive CSRF protection from browsers, we leave other web sites’ behavior

unchanged, thus providing backward compatibility.

We have implemented ARLs in the Firefox browser. To evaluate ARLs, we studied four

open-source web applications for which source code was available and for which the CSRF

attacks were reported via the public vulnerability e-mail list “full-disclosure”. We analyzed

each application and reproduced the reported CSRF attacks. We then developed ARLs for

each application and showed that the attacks were no longer possible. We also compared

the amount of effort needed to implement CSRF protection using ARLs versus a traditional

tokenization patch, finding ARLs to be the easier solution and one that provides better

coverage.

We also studied how ARLs could be deployed on three large, real-world sites: Gmail,

Facebook, and Woot. We found that most features offered by these sites could be sup-

ported with ARLs with very few modifications. We also considered ARL compatibility for

complicated real-world web constructs such as as nested iframes, multiple redirections, and

federation identity protocols.

In summary, in this chapter we propose, implement, and evaluate a new browser mech-

anism for not sending ambient authorization state for participating sites based on their

policies. We begin by presenting the ARL design in Section 5.2, then describe our browser

implementation in Section 5.3. In Section 5.4, we evaluate ARLs against real CSRF at-

tacks on open-source applications and discuss how ARLs would fare on real-world sites. We

discuss privacy and limitations in Section 5.5 and conclude in Section 5.6.

5.2 Design

Learning from our analysis of pitfalls in existing defenses, our anti-CSRF design should be

(1) easy for developers (e.g., unlike checking of anti-CSRF tokens), (2) transparent to

users (e.g., unlike CsFire or NoScript which ask users to define or approve policies), (3)

backwards compatible to not break legitimate sites that do not opt in to our defense

91

(e.g., unlike CsFire breaking OpenID), and most importantly, we should (4) address the

root cause of CSRFs, namely ambient authority, to provide more comprehensive coverage

against CSRF than existing solutions.

Recall from Section 2.3.1 that fundamentally, CSRFs result when browsers exercise

ambient authority: (1) browsers automatically attach credentials to HTTP requests and (2)

web application developers treat the presence of those credentials in a request as implicit

authorization for some action. Keeping these root causes in mind, we make the following

key observations.

• While splitting authentication and authorization is a classical best practice in com-

puter security [70, 118], it is underutilized on the web. In our experience, most websites

use a single token (such as a session cookie or the HTTP basic authentication header)

for both authentication and authorization. Decoupling this concept on the web could

have significant security benefits.

• The developers of site X are in the best position to determine which other sites are

authorized to cause the user’s browser to issue HTTP requests that perform state-

modifying actions on X. However, server-side code on site X cannot reliably tell which

other site caused the user’s browser to issue an HTTP request.

• On the other hand, browsers know the full context in which requests are issued.

Specifically, browsers know the full DOM layout and can infer whether a request was

triggered by a user action, a nested iframe, or a redirection.

In light of these observations, we introduce a new browser mechanism called Allowed

Referrer Lists (ARLs), which restricts a browser’s ability to send ambient authority cre-

dentials with HTTP requests. Sites wishing to be resilient against CSRF must opt in to

use ARLs. With ARLs, participating sites specify which state (e.g., specific cookies) serves

authorization purposes. Sites also specify a whitelist of allowed referrer URLs; browsers are

allowed to attach authorization state to HTTP requests made from these URLs only. This

policy is transmitted to the user’s browser in an HTTP header upon first visit to a site,

92

before any authorization state is stored. For all subsequent requests, the user’s browser

attaches the authorization state only if the policy is satisfied.

This approach capitalizes on the fact that browsers know the browsing context, namely

determining which web site principal issued an HTTP request, while web developers under-

stand site-specific authorization semantics, namely whether a request-issuing web site should

be authorized. By having developers only specify policies and letting browsers carry out

enforcement, we ease the enforcement burden on developers. By having only participating

sites specify policies to receive CSRF protection, we leave other sites’ behavior unchanged,

thus providing backward compatibility.

5.2.1 Identifying and Decoupling Authentication and Authorization

To use ARL, developers should identify and decouple the credentials they use for authenti-

cating and authorizing users’ requests.

First, developers must determine which credential is being used to identify users. Recall

from Section 2.3.1 that developers use various methods to identify users: HTTP authentica-

tion, source IP, TLS client certificates, and cookies. In many cases we studied, applications

use a single cookie to authenticate users.

Next, developers should create a credential for authorizing user requests. For example,

developers may choose to set a new authorization cookie called authz on the user’s browser.

Any HTTP request not bearing the authorization credential must not be allowed to induce

state-changing behavior (even if the request has the authentication credential). A request

bearing only the authorization credential should be treated as an unauthenticated request.

Finally, developers need to define ARL policies (see below) to regulate how browsers

send the authorization credentials.

Some sites can benefit from ARLs without needing to separate authentication and au-

thorization credentials, whereas others will require this separation to properly work with

ARLs. In Section 5.4, we will further discuss these two cases.

93

5.2.2 Defining ARL Policies

Next developers define an ARL policy, which will then be sent to and interpreted by users’

web browsers. The policy specifies rules which govern when and how HTTP requests can be

sent. To define an ARL policy, developers list authorization credentials, which may include

specific cookie name(s), HTTP Authentication, or even the whole request (for source IP or

TLS client cert authentication). If a credential is mentioned in an ARL policy, we say that

the credential has been arled. By default, arling a credential prevents that credential from

ever being attached to any HTTP request. Developers specify additional rules to relax this

restriction in a least-privilege way. ARLs have two core directives:

• allow-referrers: Developers provide a whitelist of referrers that can issue authorized

requests. A referrer is a URL with optional wildcards. Referrers can be as generic as

https://*.bank.com/* or as specific as https://bank.com/accounts/modify.php. Wild-

cards and paths allow web sites to be flexible in expressing their trust relationships.

For example bank.com may be owned and run by the same entity as broker.com, but

bank.com may only want to receive authorized requests from

https://broker.com/transfer/*.

• referrer-frame-options: Malicious sites could cause a protected credential to be

sent by embedding content (e.g., in an iframe) from a referrer specified in the ARL

policy. We therefore allow developers to restrict framing of referrers. Similarly to

the HTTP Header Frame Options RFC [101], we allow three framing options: deny,

sameorigin, or allow-from. deny states that the referrer must not be framed when

issuing an authorized request. sameorigin allows the referrer to make an authorized

request while being framed by “itself” (i.e., by a URL matching the ARL whitelist

entry for that referrer) or by the target of the request. The allow-from option takes

additional values in the form of domain URLs such as https://broker.com/. We allow

framing depth of at most one embedding to prevent attackers from mounting attacks

on the embedder. If this directive is omitted, the default value is deny.

94

arl {

apply-to-cookie = authz,

allow-referrers = https://*.bank.com/*

https://broker.com/finance/*,

referrer-frame-options = SAMEORIGIN

}

Figure 5.1: ARL policy example. With this policy, bank.com forbids the browser from

sending the authz cookie, except when the request was generated by https://*.bank.com/*

or https://broker.com/finance/*, and only if the requesting page was framed by a page of

the same origin.

Using these two directives, developers can generate simple yet powerful policies. Fig-

ure 5.1 shows a policy that may be used by bank.com. Here, the cookie authz is arled

and https://*.bank.com/* and https://broker.com/finance/* are listed as the only refer-

rers. This means that the browser will only attach the authz cookie to HTTP requests

generated by an element from https://*.bank.com/* or https://broker.com/finance/*. Note

that the allow-referrers directive specifies not only the domain, but also the scheme (HTTPS

in this case) from which the requesting element must have been loaded. This differs from the

Secure attribute of a cookie, which only specifies how to send the cookie itself. By including

the HTTPS scheme, a web application developer specifies that protected credentials are

never sent by an element not loaded over TLS. This control is not possible with any of the

techniques we studied. This policy also states that the authz cookie may be attached only

if the referrer was either not framed or framed only by a page from sameorigin (either

target bank.com or referrer broker.com/finance). Note that unlike origin-based framing rules

in the X-Frame-Options HTTP header, our rules will check for the full broker.com/finance

path, e.g., to avoid potentially malicious framing from broker.com/forum that bank.com did

not intend.

95

arl {

apply-to-http-auth = true,

allow-referrers = https://*.bank.com/*

https://broker.com/finance/*,

referrer-frame-options = SAMEORIGIN

}

Figure 5.2: Restricting HTTP Authentication. With this policy, bank.com forbids the

browser from sending the HTTP Authentication header, except when the request was gen-

erated by https://*.bank.com/* or https://broker.com/finance/*, and only if the requesting

page was framed by a page of the same origin.

As another example, Figure 5.2 shows how an ARL policy can be applied to HTTP

basic authentication credentials instead of cookies (though we suggest that developers use

cookies for authorization). Finally, Figure 5.3 shows how ARLs can be used to disallow any

requests to a particular destination unless the request is being made by a particular referrer

(specified via the apply-to-requests-to directive). This directive can protect sites which

rely on source IP or TLS client certificates for authorization.

It is important to reiterate that ARLs should be applied to authorization, not authen-

tication credentials. That is, from a security point of view (dismissing privacy concerns in

this discussion), it is always acceptable for a web site to know from which user’s browser an

HTTP request came. However, it is not always acceptable for sites to take actions based

on those requests. Web sites that do not have separate authentication and authorization

credentials may not be able to fully utilize ARLs.

Application: Defeating Login and Logout CSRFs Barth, Jackson, and Mitchell

described a Login CSRF attack whereby an attacker “forges a login request to an honest

site using the attacker’s user name and password at that site” [13]. A successful attack causes

the user to be logged into the site with the attacker’s credentials, allowing the attacker to

96

arl {

apply-to-requests-to = https://accounts.bank.com/modify,

allow-referrers = https://accounts.bank.com/*,

referrer-frame-options = DENY

}

Figure 5.3: Disallowing requests. Here, bank.com forbids any requests (with or without

credentials) to https://accounts.bank.com/modify, except when the request was generated

by https://accounts.bank.com/*, and only if the requesting page was not framed.

“snoop” on the user.

A Logout CSRF attack is similar in that it allows attackers to disrupt the user’s ses-

sion on legitimate sites. Many sites implement logout by having users visit a URL (e.g.,

site.com/Logout). For many sites, this URL is vulnerable to a CSRF attack: malicious sites

can embed an iframe pointing to a site’s logout URL and cause any visitor of the malicious

site to be logged out of the legitimate site. Google, for example, is vulnerable to this attack.

ARLs can be used to protect web applications against both login and logout CSRF

attacks. To protect against login CSRF, a web site may set an arled dummy authorization

credential when displaying the login form. Then, the site should verify that the dummy

authorization credential is returned along with the user’s other login credentials before

setting the real authorization and authentication credentials. Similarly, logout CSRF can

be stopped by simply checking that the (real) arled authorization credential is present before

signing the user out.

5.2.3 Enforcing ARL Policies

Once the browser obtains an ARL policy for a site, the browser must examine each outgoing

HTTP request’s context to check whether any of a site’s current ARL policies apply, and if

so, whether or not to attach arled credentials to the request.

97

Referrers To enforce the “allow-referrers” directive, we leverage the fact that browsers

already determine each request’s referrer. Broadly speaking, a referrer is the URL of the

item which led to the generation of a request. For example, if a user clicks on a link, the

referrer of the generated request is the URL of the page on which the link was shown. The

referrer of an image request is the URL of the page in which that image was embedded.

Browsers also handle complex cases of referrer determination. For the redirect chain

a.com ⇒ b.com ⇒ c.com, modern browsers (IE, Chrome, Firefox, and Safari) will choose

a.com as the referrer if the redirection from b.com ⇒ c.com was made via the HTTP

Location header and will choose b.com as the referrer if the redirection from b.com⇒ c.com

was made by assigning window.location in JavaScript. This is not arbitrary. If the redirect

is caused by the HTTP header, then none of the subsequent page content is interpreted by

the browser. However, a JavaScript page redirect can occur at any point in time after an

arbitrary amount of interaction with the user. Further discussion of this issue is beyond the

scope of this chapter, but this issue shows that browsers already take great care to identify

the source of every request so that they can enforce the same-origin policy — the foundation

of many web security properties. We therefore use the default definition of referrer. If a

credential is arled, then the request’s referrer must match one of the “allowed-referrers”.

Otherwise, the credential will not be sent with the request.

Frame-options To enforce the “referrer-frame-options” directive, we are helped by the

fact that browsers maintain the page embedding hierarchy (e.g., to enforce the x-frame-

options header). Browsers record complicated cases with nested and dynamically created

iframes. We simply consult this internal hierarchy when enforcing “referrer-frame-options”.

If a credential (e.g., cookie) is arled, then the embedding hierarchy of the referrer must

match the “referrer-frame-options” policy as defined above. Our mechanism extends frame-

checking to also consider popup windows to prevent attackers from causing CSRFs by

opening victim pages in popups.

Mixed Content Sites Some web sites mix HTTP and HTTPS content when presenting

web pages to users. For example, a site may choose to serve images over HTTP to in-

98

crease performance, while all JavaScript and HTML are served over HTTPS. This practice

may introduce certain security vulnerabilities. For example, since network attackers can

manipulate content sent over HTTP, they can modify “secure” cookies. That is, although

cookies bearing the “secure” attribute will only ever be sent over HTTPS, they can be set

or overwritten via a Set-cookie header over HTTP [23].

To avoid these vulnerabilities, we introduce two rules for browsers implementing ARLs:

• If an ARL policy is received over HTTP, it may only overwrite an old policy if the old

policy was also received over HTTP.

• If an ARL policy is received over HTTPS, it may overwrite any old policy.

These rules prevent ARL hijacking by network attackers who are able to insert an ARL

header into an HTTP response.

Requests With no Referrer In several situations, a request may completely lack a

referrer. Examples of such events are when users type URLs into the browser location bar,

click on a bookmark, or follow a link from an e-mail. In these cases, any arled credential

should not be sent, while all the other state should be sent. Note that this means that web

sites will not initiate any state changing behavior as a result of this request, but can still

show personalized content to the user (since the authentication credentials were sent).

5.3 Implementation

The implementation and deployment of ARLs involves several steps. First, web applications

need to be modified to implement ARL policies. This includes designing a policy, potentially

separating authentication and authorization credentials, and then inserting the policy into

all relevant HTTP responses. Second, the user’s browser needs to be modified to understand,

store, and enforce ARL policies for arled credentials.

Modifications to web applications are specific to each application’s own logic and frame-

work. We explore how this is done with real-world applications in Section 5.4.1. In this

section, we focus on options for delivering policies and modifications that browsers need to

support ARLs.

99

5.3.1 Policy Delivery

The simplest delivery option, and one used in our implementation, is to piggyback ARL

policies onto existing cookie definitions. Today, the Set-Cookie header allows cookies to

specify constraints through attributes such as HttpOnly, Secure, Domain, and Path. We

added a new “arl” attribute (bearing an ARL policy) to cookies, allowing each cookie to

specify its own ARL policy. Unfortunately, this delivery method makes it difficult to address

HTTP authentication and IP-based ambient authority.

An alternate ARL policy delivery mechanism is to integrate ARLs as a new directive

for Content Security Policy (CSP) [112], which is specified through its own HTTP header.

CSP already specifies a number of rules regulating content interaction on web applications,

primarily for mitigating XSS and data injection [112]. Although we did not yet implement

this approach, we recommend it over using cookie attributes due to added flexibility, ex-

pressiveness, and usability. For example, if a web application used multiple authorization

tokens (e.g., combining HTTP Authentication headers with cookies or using multiple autho-

rization cookies), a developer would have to specify multiple (potentially duplicate) policies

with the first approach but not with a centralized, HTTP-header-based policy. As well,

HTTP headers can transmit longer ARL policies than cookies, which are typically limited

to 4 kilobytes (though we don’t expect policies to ever grow that large) Finally, having a

single policy location that pertains to a variety of authorization tokens is cleaner and more

readable than having multiple policies, each attached to a different authorization token.

5.3.2 Browser Modification

To validate the ARL design, we implemented it in the Mozilla Firefox 3.6 browser. Although

the 3.6 version of Firefox is slightly dated, it was the most stable version when this project

began in 2011. We believe that our modifications and implications of our implementation

generalize to more recent versions of Firefox and other browsers.

Rather than create a browser extension or plug-in (as done by CsFire or NoScript ABE),

we decided to directly modify Firefox. First, we wanted to have direct access to internal

representations of cookies, referrer information and frame embedding hierarchy. Second, we

100

wanted to validate the feasibility of adding native browser support for ARLs.

For our proof-of-concept, we used attribute-based policy delivery described above. We

modified Firefox in three key aspects:

• Parsing. The first step towards modifying Firefox to support ARLs is to enable the

browser to parse ARL policies out of HTTP replies. Since our policies were being

sent as a separate cookie attribute, we modified the cookie parsing code for HTTP

responses to accept a new cookie attribute “arl” and parse the contents into an ARL

policy.

• Storage. Once the contents of the “arl” attribute are parsed and converted into

policies, they need to be stored and linked to entities to which they apply. To store

and retrieve all of the parsed ARL policies, we modified Firefox’s cookie manager,

cookie database (sqlite), and all of the related structures and methods to allow setting

and retrieving a new “ARLPolicy” data structure for each cookie.

• Enforcement. Finally, we enforce ARL policies by adding code that checks each

cookie’s policy before attaching it to an HTTP request. Firefox already considers many

factors before attaching cookies to requests, such as verifying that requests adhere to

the same-origin policy or that the request is going over TLS (if the cookie’s Secure

attribute is set). We appended our ARL enforcement logic (described in Section 5.2.3)

to this code.

Browsers are complex, multi-layered pieces of software, and unsurprisingly, we encountered

various engineering challenges during our implementation. A key difficulty was discovering

how all the different layers, services, and protocols interacted with each other. In total, our

modifications consisted of approximately 700 lines of C++ code spread across 13 files.

5.4 Evaluation

We conducted experiments to answer several questions about the effectiveness and feasibility

of ARLs, including: (1) how well do ARLs guard against CSRF attacks, (2) how difficult is

101

Figure 5.4: ARL Proxy rewrites HTTP replies to contain ARL policies.

it to write ARL policies for real sites, (3) how much developer effort is required to deploy

ARLs, (4) does deploying ARLs break existing web applications, and (5) do ARLs have a

performance impact?

To answer these questions, we first studied four open-source web applications with known

CSRF vulnerabilities, implemented ARLs in the applications’ code bases, and analyzed how

well ARLs protected them against CSRF attacks. Second, we used the Fiddler SDK [73] to

develop an ARL Setting Proxy that allowed us to experiment with ARL policies on arbitrary

web sites without modifying their code. This proxy, implemented in 120 lines of JavaScript

and illustrated in Figure 5.4, allowed us to study how ARLs interact with large, complex,

on-line web applications such as Google. We also evaluated ARL performance using browser

benchmarks.

We elaborate briefly on our ARL Setting Proxy here. There are many ways in which it

may have been possible to test our browser implementation of ARLs. One method may be

to modify and test real web applications (we write about doing this below), but it may not

always be feasible — for example, if the source code of the website is not available. We,

however, wanted to be able to deploy and test ARLs on any website — even if we did not

have the website source code. Towards this goal, we developed an ARL Setting Proxy. This

proxy intercepted regular HTTP traffic and rewrote HTTP replies from specific origins to

contain ARL policies. This allowed us to quickly field test ARLs on legacy web applications

or ones we were not able to modify. We performed this implemented with approximately

120 lines of JavaScript using the Fiddler Web Debugging Proxy Engine [73]. Figure 5.4

illustrates how the ARL setting proxy works.

102

Application Version # of source files Lines of Code Type of Application

Selectapix 1.4.1 39 6k Image gallery

UseBB 1.011 83 21k Forum

PHPDug 2.0.0 133 25k URL/link sharing app (similar to digg.com)

PoMMo PR16.1 234 32k Mailing list manager

Table 5.1: Summary of web applications we studied. All applications were written in PHP

and used a MySQL backend database.

5.4.1 Studying Applications with Source

We monitored the public security mailing list “full disclosure” during the summer of 2011

for CSRF reports. Using those reports, we chose four projects for which source code was

available and for which the CSRF attacks were reproducible. The web applications we

studied are summarized in Table 5.1.

For each application, we first performed an in-depth analysis to understand the intended

authorization structure and then developed ARL policies to enforce that structure. We con-

firmed that without modifications, the applications were indeed vulnerable to CSRF attacks.

Next, we deployed the applications with ARL policies and tested whether the attacks were

now thwarted. Finally, we tested each application to check that ARL deployment did not

inhibit any functionality. We report on an in-depth case study of one of the applications

below. We found that ARL polices for the other three applications had a similar level of

complexity, and that ARLs were effective at protecting these applications against CSRF

attacks.

Case Study: UseBB

UseBB is an open-source web application for lightweight forum management. The project’s

web site advertises that rather than providing as many features as possible, UseBB strives to

provide an easy and usable forum with only the most necessary features. UseBB is written

in PHP with a MySQL database backend.

103

Initial vulnerability report and analysis In the summer of 2011, a submission to the

security mailing list full-disclosure reported “Multiple CSRF (Cross-Site Request Forgery)

in UseBB”. This report was for version 1.011 of UseBB, which we downloaded and analyzed.

This version of UseBB consisted of 25k lines of code spread over 83 source files. After

studying UseBB, we understood that the application’s state management worked as follows:

when a user logs into the application, UseBB sets a single cookie, called usebb sid, to

authenticate further HTTP requests as coming from that user.

Building a corpus of CSRF attacks The bug report to full-disclosure mentioned mul-

tiple vulnerabilities, but only identified one page as having a vulnerability. After studying

the code, we discovered that UseBB had no CSRF protection on any of its pages. This

resulted in any request bearing the usebb sid cookie to be authenticated and authorized to

perform arbitrary actions. For example, by exploiting this vulnerability, attackers may have

been able to perform a variety of attacks including changing user e-mail addresses, name,

or adding illegitimate administrator accounts. We implemented these attacks and formed a

corpus of CSRF attacks.

Developing an ARL Policy Next, we developed an ARL policy and analyzed its effec-

tiveness. First, so that we could study an ARL policy in action, we deployed an instance

of UseBB on an internal network at the URL: http://usebb.com. Next, we verified that

all CSRF attacks from our corpus worked as expected. Then, we developed an ARL policy

and deployed it via the ARL Setting Proxy. The policy we developed is:

arl {

apply-to-cookie = usebb_sid,

allow-referrers = http://usebb.com/,

referrer-frame-options = SAMEORIGIN

}

Next, we tested UseBB (now protected by ARLs) against our corpus of CSRF attacks and

found the attacks to be no longer functional. Our ARL policy fully protected this deployed

104

application instance against any CSRF attacks that leverage the usebb id cookie.

Deploying an ARL Policy in UseBB The next step was to deploy the ARL policy

within the UseBB application itself (rather than via the proxy). We explored several ways

in which this may be done. For example, one approach we used to deploy ARLs in UseBB

was to add one line to the Apache server configuration file:

Header add X-ARL-Policy "arl{ \

apply-to-cookie = usebb_sid, allow-referrers = self, \

referrer-frame-options = SAMEORIGIN }"

To use this method, the web application developer must have access to the global Apache

configuration file, which may be unavailable on some shared hosting providers. In that case,

the developer could also deploy ARLs by modifying the .htaccess file (i.e., the local web

server configuration file). We verified that this deployment strategy worked as well. The

additions to .htaccess were:

<IfModule mod_headers.c>

Header set X-ARL-POLICY "arl{ \

apply-to-cookie = usebb_sid, allow-referrers = self, \

referrer-frame-options = SAMEORIGIN }"

</IfModule>

A similar modification is possible for local configuration files for IIS web servers. We

verified that these additions were possible, but did not deploy UseBB via IIS. There may,

however, be cases where developers are not allowed to create or modify even local web

server configuration files. In such cases, the developer would have to modify the application

source directly to implement ARLs. Since UseBB is written in PHP, we accomplished this

by adding the following line of code to files which produce HTML code:

header(’X-ARL-Policy: arl{ \

105

apply-to-cookie = usebb_sid, allow-referrers = self, \

referrer-frame-options = SAMEORIGIN }’);

We implemented all of the aforementioned approaches and verified that each of them

secured UseBB against our corpus of CSRF attacks.

Comparing ARLs to Traditional Patch The official repository of UseBB was later

updated to fix the CSRF vulnerabilities in version 1.0.12 of the code. The developers

protected UseBB against CSRFs by writing a custom CSRF token framework. By manually

inspecting changes introduced in version 1.0.12, we counted approximately 190 line changes

that were related to the new CSRF defense. We tested version 1.0.12 against our corpus

of CSRF attacks and found that it did prevent them. We believe our solution to be better

than the traditional patch in several ways. First, as we saw, implementing ARLs requires

many fewer code modifications. Second, while ARLs would protect against any new CSRF

attacks that leverage the usebb id cookie, the patch would not — additional code would

have to be written for any new pages added to UseBB.

Backwards Compatibility Though ARLs clearly protected UseBB against CSRF at-

tacks, we wanted to investigate whether the deployment of ARLs impeded any UseBB

functionality. Since the UseBB source code did not include any unit (or other type of)

tests, we performed all functionality testing manually. Even though UseBB did not have

separate authentication and authorization credentials, we found that all existing legitimate

functionality was maintained.

5.4.2 Studying Large Sites without Source

Beyond studying how ARLs behave in open-source software, we also investigated the fea-

sibility of ARLs in real-world, proprietary web sites. The questions we most wanted to

answer were how complex would ARL policies be for such sites? and what kind of modifica-

tions would real sites make in order to adopt ARLs?

106

Studying real websites is inherently difficult. Modern web applications, such as Google’s

Gmail, are incredibly complex. The server source code is proprietary, and the code that is

shipped to the browser is often obfuscated or has been run through an optimizer that makes

the code difficult to read. Furthermore, to optimize user experience, such sites set dozens

of cookies on the client, some of which represent preferences, while others are responsible

for authenticating the user’s requests.

We chose to study three web applications which we believe to be quite complex and

which, in our opinion, serve as good representatives of state-of-the-art web applications:

Gmail, Facebook, and Woot (a flash deals e-commerce site owned by Amazon.com). For

each application, we first identified the “important” application cookies. Next, we observed

how those cookies were sent during normal operation. Finally, we created ARL policies for

those cookies, deployed them using our ARL Setting Proxy, and examined whether normal

functionality was maintained.

Selecting Important Cookies Modern, large web applications use a large number of

cookies. For example, Gmail and Facebook set around 40 cookies, while Woot sets about

201. Many of these cookies have to do with preferences, screen resolution, locale, and other

application state. Some of these cookies, however, deal with authentication and (potentially)

authorization — these are the cookies that need to be protected by ARLs.

The majority of cookies have cryptic names, making it difficult to infer their intended

function. We identified authentication cookies by experimentally removing cookies set in

the browser until the web site refused to respond to requests or performed a signout. This

cookie elimination process was done through manual analysis by individually removing each

cookie and testing the result.

Using this strategy, we were able to narrow the set of all cookies down to just a few

important cookies for each application. For Gmail, we found the important cookies to be

LSID, SID, and GX; for Facebook the important cookies were xs and c user; for Woot, the

important cookies were authentication and verification.

1The number of cookies varied based on user actions.

107

Developing ARL Policies Having selected the important cookies for each website, we

next needed to determine what the legitimate referrers were for sending these authentication

cookies. We accomplished this by performing normal actions (such as sending and checking

e-mail on Gmail, viewing photos and friends on Facebook, and browsing items on Woot)

and observing the network traffic through the Fiddler web proxy.

Using these traces, we then developed an ARL policy for each site. The policies were

less complex than we had assumed they would be. For example, the policy for Gmail was:

arl {

apply-to-cookie = SID LSID GX,

allow-referrers = https://accounts.google.com

https://mail.google.com,

referrer-frame-options = DENY

}

Policies for Facebook and Woot were of similar complexity; that is, they mentioned the

important cookies and only a handful of referrers. Furthermore, we found that these policies

did not inhibit regular in-app functionality.

Splitting Authentication and Authorization

While the simple ARL policies above can support many interactions with Google, Facebook,

and Woot, we discovered some desirable actions that these policies cannot support with the

sites’ existing cookie structure. For example, these policies are not compatible with the use

of Google as a federated login provider or the use of Facebook’s Like buttons on other sites2.

Recall from Section 5.2.1 that web sites should clearly separate authentication credentials

from authorization credentials. After doing so, it is only necessary to arl the authorization

credential. The authentication credential can be sent about as before. We found that the

limitations above are all due to the fact that none of our applications separate authentication

2This was an artifact of Facebook’s implementation; ARLs supported Google’s +1 button.

108

and authorization in their cookies, and making this modification re-enables the unsupported

functionality.

Embedded Widgets Facebook’s Like Button and Google’s +1 Button are just two ex-

amples of a large class of “embedded widgets” that allow users to like, pin, tweet, and

otherwise share a web page with their social graph. A web page that wants to enable a

specific widget on its page includes HTML or JavaScript, usually provided by the social net-

work, which renders an iframe sourcing the specific social network and displays the social

button. The iframe’s content is loaded from the social network; this has two key features.

First, it prevents the host page from programmatically clicking on the widget. Second, it

gives the widget access to the user’s cookies from that social network, so that when the user

clicks on the widget, the user’s state in the social network can be properly affected.

When a user clicks on such a widget, the browser infers the referrer of the consequent

request to be the social network and not the host page. This is because the content inside

the iframe has already been loaded from the social network. Consequently, one would

expect ARLs to work out of the box with embedded widgets. Indeed, this is the case

with Google’s +1 button. However, ARLs do not currently work with Facebook’s Like

button because when sending the HTTP request for the iframe’s initial contents, the browser

determines that the referrer is the host page, preventing any arled cookies from being sent.

If Facebook used the authentication/authorization splitting paradigm as above, then only

the authorization cookie would not be sent on the initial request, and the iframe could still

be loaded with authenticated content (e.g., the number of friends that have liked the host

page), allowing the like button to work.

Exploring Federated Login Federated identity management is the mechanism whereby

web applications can rely on other web sites, such as Facebook Connect or OpenID, to

authenticate users. One of our selected test apps, Woot, supports federated login from

Google. That is, a user can click on a button on the Woot login page, which will redirect

the user to Google, which will verify the user’s authentication credentials and log them

into Woot via another redirect. Unfortunately, since Woot did not separate authentication

109

and authorization credentials, the only cookie we can arl is the single authentication cookie,

which would then be stripped from redirection requests between the two parties. By splitting

authentication and authorization credentials into two cookies (as above) and only arling the

authorization credentials, federated login on Woot could be supported.

Limitations of Experiments Sites like the ones we studied interact with many other

sites. These relationships are complicated and, sometimes, ephemeral. For example, a

user who has logged into Gmail will also be automatically logged into YouTube. We did

not explore these types of multi-domain, automatic single-sign-on environments due to the

guesswork needed to identify all partnering relationships and correct functionality and, given

an absence of access to the code, an inability to know whether the analysis is complete.

However, we believe that web site owners should be able to generate appropriate ARL

policies given known business relationships.

5.4.3 Browser Performance

To make sure ARLs are feasible for browsers to implement, we checked performance overhead

of ARLs. More specifically, we set up a 4K benchmarking page that sets a cookie and, upon

loading, sends the cookie back to the server using AJAX. We measured the latency of this

HTTP response-request roundtrip with unmodified Firefox browser and with ARL-enabled

Firefox and an ARL policy for the cookie. We evaluated two ARL policies: a 1-referrer

policy, and a 30-referrer policy where only the last referrer was valid. We averaged our

results over 100 runs. Our client ran on a Windows 7 laptop with 2.20GHz CPU and 2GB

RAM, and our server ran on a Macbook Pro laptop with a 2.66GHz CPU with 8GB RAM,

connected with a 100MBps network.

We found that the latency difference between unmodified and ARL-enabled browsers

was negligible for requests with the small (single referrer) ARL policy. For the longer 30-

referrer ARL policy, the median latency difference increased to 3ms (2%), which is still

very acceptable. We expect most sites to have shorter ARL policies, and we note that our

implementation of ARL parsing and matching was not optimized for performance.

110

5.5 Discussion

Privacy Adversaries may try to learn the referrer of a request by creating many cookies

with different ARL policies and then seeing which ones are sent back. However, ARLs

introduce no additional privacy leaks compared to the Referer header, which is already

freely sent by browsers. Some organizations may need to conceal the referrer to prevent

revealing secret internal URLs. To do this, they install proxies that remove the Referer

header [67]. To prevent any additional referrer leaks from ARLs, these proxies (or ARL-

enabled browsers) can strip all cookies and HTTP authentication headers from requests

generated by following a link from an intranet site to an internet site. This should not

negatively impact any functionality, since links from the intranet to outside sites should not

be state-modifying.

Limitations ARLs help protect against many types of CSRF attacks, but they are not a

panacea. For example, ARLs are unable to protect against “same origin and path” attacks.

If a page accepts legitimate requests from itself and somehow an attacker is able to forge

attacks from that page, then ARLs may be ineffective.

Another limitation involves deployment. Until ARLs are supported in most browsers,

web sites must use older CSRF defenses alongside ARLs. This is also true for any browser-

based security feature. For example, many sites still have to use JavaScript-based frame-

busting because some older browsers still do not support the x-frame-options HTTP

header.

5.6 Summary

CSRF attacks are still a large threat on the web; 2012 was one of the most CSRF-active

years on record [87]. In this chapter, we give a background of CSRF attacks, highlighting

their fundamental cause — ambient authority. Next, we study existing CSRF defenses and

show how they stop short of a complete solution. We then present ARLs, a browser/server

solution that removes ambient authority for participating web sites that want to be resilient

to CSRF attacks. We implement our design in Firefox and evaluate it against a variety of

111

real-world CSRF attacks on real web sites. We believe that ARLs are a robust, efficient,

and fundamentally correct way to mitigate CSRF attacks.

112

Chapter 6

CONCLUSION

The modern computing ecosystem presents a number of challenges for secure, private,

and deployable user authentication and authorization on the web. While many techniques

have been proposed to strengthen user authentication and authorization, in practice the

deployed technologies have not kept up with existing attacks. In fact, user authentication

and authorization have, in our opinion, become some of the weakest links in the security

chain.

This dissertation attempted to provide insight and tools for catalyzing progress in secure

user authentication and authorization. The dissertation first considered the challenges that

new authentication and authorization technologies face. Next, the dissertation examined

previously proposed approaches and offered analysis on why those technologies may have

failed to see mass adoption and deployment. Finally, this dissertation presented the design,

implementation, and evaluation of three systems each of which addresses an aspect of se-

cure user authentication and authorization on the web. First, we presented Origin Bound

Certificates, which provided a strong cryptographic foundation for binding credentials and

tokens to TLS channels. Second, we described PhoneAuth, a system for providing usable

and strong second-factor authentication through a user’s mobile phone. Finally, we offered

Allowed Referrer Lists as a lightweight server-side mechanism for strengthening authoriza-

tion by preventing CSRF attacks.

Throughout the presented work, a major goal was to design systems that are practi-

cal — systems that not only increase the security and privacy of user authentication and

authorization, but are also deployable. In support of this goal, this dissertation centered

around two common themes: First, we focused on the usability implications of a technology

— both for the developer and the user. Second, we worked closely with major technology

firms to understand their constraints and operating conditions. As a result, our systems

113

appear to be in the initial stages of being adopted by industry. For example, Origin Bound

Certificates have been deployed in the Chromium browser and are being implemented in the

Mozilla Firefox browser. As of this writing, PhoneAuth is also in the initial stages of being

considered for deployment by industry. We are in the process of contacting the standards

organization regarding the adoption of Allowed Referrer Lists. Our work and experience

demonstrates that through careful consideration of stakeholder values, it is possible to build

usable, secure, and deployable systems for stronger user authentication and authorization

on the web.

114

BIBLIOGRAPHY

[1] Android cloud to device messaging framework, 2012. https://developers.google.
com/android/c2dm/.

[2] BrowserID – quick setup, 2012. https://developer.mozilla.org/en/BrowserID/

Quick_Setup.

[3] H. Adkins. An update on attempted man-in-the-middle attacks. http:

//googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-

in-middle.html, Aug 2011.

[4] Adobe. Cross-domain policy file specification, 2013. http://www.adobe.com/devnet/
articles/crossdomain_policy_file_spec.html.

[5] Aircrack. Aircrack-ng homepage, 2013. http://www.aircrack-ng.org/doku.php.

[6] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky Thirteen: Breaking the TLS
and DTLS record protocols. http://www.isg.rhul.ac.uk/tls/TLStiming.pdf,
2013.

[7] Robert Auger. The cross-site request forgery (CSRF/XSRF) FAQ, 2010. http:

//www.cgisecurity.com/csrf-faq.html.

[8] Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith.
Smudge attacks on smartphone touch screens. In Proceedings of the 4th USENIX
conference on Offensive technologies, WOOT’10, pages 1–7, Berkeley, CA, USA, 2010.
USENIX Association.

[9] Mark Baldwin. OpenX CSRF vulnerability being actively exploited, 2012.
http://www.infosecstuff.com/openx-csrf-vulnerability-being-actively-

exploited/.

[10] D. Balfanz. TLS origin-bound certificates. http://tools.ietf.org/html/draft-

balfanz-tls-obc-01, Nov 2011.

[11] J. Barr. AWS Elastic Load Balancing: Support for SSL termina-
tion. http://aws.typepad.com/aws/2010/10/elastic-load-balancer-support-

for-ssl-termination.html, Oct 2010.

https://developers.google.com/android/c2dm/
https://developers.google.com/android/c2dm/
https://developer.mozilla.org/en/BrowserID/Quick_Setup
https://developer.mozilla.org/en/BrowserID/Quick_Setup
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.aircrack-ng.org/doku.php
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
http://www.cgisecurity.com/csrf-faq.html
http://www.cgisecurity.com/csrf-faq.html
http://www.infosecstuff.com/openx-csrf-vulnerability-being-actively-exploited/
http://www.infosecstuff.com/openx-csrf-vulnerability-being-actively-exploited/
http://tools.ietf.org/html/draft-balfanz-tls-obc-01
http://tools.ietf.org/html/draft-balfanz-tls-obc-01
http://aws.typepad.com/aws/2010/10/elastic-load-balancer-support-for-ssl-termination.html
http://aws.typepad.com/aws/2010/10/elastic-load-balancer-support-for-ssl-termination.html

115

[12] Adam Barth. The web origin concept, 2011. http://tools.ietf.org/html/draft-
abarth-origin.

[13] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, 2008.

[14] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen. Hypertext Transfer
Protocol – HTTP/1.0, 1996. http://www.ietf.org/rfc/rfc1945.txt.

[15] K. Bicakci, N.B. Atalay, M. Yuceel, H. Gurbaslar, and B. Erdeniz. Towards usable
solutions to graphical password hotspot problem. In Computer Software and Applica-
tions Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International, volume 2,
pages 318–323, 2009.

[16] Robert Biddle, Sonia Chiasson, and P.C. Van Oorschot. Graphical Passwords: Learn-
ing from the first twelve years. ACM Comput. Surv., 44(4):19:1–19:41, September
2012.

[17] S. Blake-Wilson, T. Dierks, and C. Hawk. ECC cipher suites for TLS. http://tools.
ietf.org/html/draft-ietf-tls-ecc-01, March 2001.

[18] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright. Transport
layer security (TLS) extensions. http://tools.ietf.org/html/rfc4366, Apr 2006.

[19] blowdart. AntiCSRF, 2008. http://anticsrf.codeplex.com/.

[20] Hristo Bojinov, Daniel Sanchez, Paul Reber, Dan Boneh, and Patrick Lincoln. Neuro-
science Meets Cryptography: Designing crypto primitives secure against rubber hose
attacks. In Proceedings of the 21st USENIX Security Symposium, Security’12, pages
33–33, Berkeley, CA, USA, 2012. USENIX Association.

[21] Joseph Bonneau. Measuring password re-use empirically, 2011. http:

//www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-

empirically/.

[22] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The
Quest to Replace Passwords: A framework for comparative evaluation of web authen-
tication schemes. In Proceedings of the 2012 IEEE Symposium on Security and Pri-
vacy, pages 553–567, May 2012. http://www.cl.cam.ac.uk/~jcb82/doc/BHOS12-

IEEESP-quest_to_replace_passwords.pdf.

[23] Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin Cookies: Session integrity
for web applications. In Web 2.0 Security and Privacy (W2SP), 2011.

http://tools.ietf.org/html/draft-abarth-origin
http://tools.ietf.org/html/draft-abarth-origin
http://www.ietf.org/rfc/rfc1945.txt
http://tools.ietf.org/html/draft-ietf-tls-ecc-01
http://tools.ietf.org/html/draft-ietf-tls-ecc-01
http://tools.ietf.org/html/rfc4366
http://anticsrf.codeplex.com/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-use-empirically/
http://www.cl.cam.ac.uk/~jcb82/doc/BHOS12-IEEESP-quest_to_replace_passwords.pdf
http://www.cl.cam.ac.uk/~jcb82/doc/BHOS12-IEEESP-quest_to_replace_passwords.pdf

116

[24] M. Brian. Gawker media is compromised. the responsible parties reach out to tnw
[updated], 2010. http://goo.gl/0SvCj.

[25] E. Butler. Firesheep. http://codebutler.com/firesheep, 2010.

[26] Eric Y. Chen, Sergey Gorbaty, Astha Singhal, and Collin Jackson. Self-Exfiltration:
The dangers of browser-enforced information flow control. In Web 2.0 Security &
Privacy (W2SP), 2012.

[27] Sonia Chiasson, P. C. van Oorschot, and Robert Biddle. A usability study and critique
of two password managers. In Proceedings of the 15th USENIX Security Symposium,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association. http://dl.acm.

org/citation.cfm?id=1267336.1267337.

[28] Sonia Chiasson, P. C. van Oorschot, and Robert Biddle. A usability study and critique
of two password managers. In Proceedings of the 15th USENIX Security Symposium,
USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association. http://dl.acm.

org/citation.cfm?id=1267336.1267337.

[29] Graham Cluley. 600,000+ compromised account logins every day on Facebook,
official figures reveal, 2011. http://nakedsecurity.sophos.com/2011/10/28/

compromised-facebook-account-logins/.

[30] Alexei Czeskis and Dirk Balfanz. Protected login. In Proceedings of the Workshop
on Usable Security (at the Financial Cryptography and Data Security Conference),
March 2012.

[31] Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan S. Wallach, and Dirk Balfanz.
Strengthening user authentication through opportunistic cryptographic identity asser-
tions. In Proceedings of the 19th ACM Conference on Computer and Communications
Security, 2012.

[32] Alexei Czeskis, Alexander Moshchuk, Tadayoshi Kohno, and Helen Wang. Lightweight
server support for browser-based csrf protection. In Proceedings of the 23rd Interna-
tional World-Wide Web Conference, 2013.

[33] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. Automatic
and precise client-side protection against CSRF attacks. In Lecture Notes in Com-
puter Science. Springer, September 2011. https://lirias.kuleuven.be/handle/

123456789/311551.

[34] Tamara Denning, Kevin Bowers, Marten van Dijk, and Ari Juels. Exploring implicit
memory for painless password recovery. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’11, pages 2615–2618, New York, NY,
USA, 2011. ACM.

http://goo.gl/0SvCj
http://codebutler.com/firesheep
http://dl.acm.org/citation.cfm?id=1267336.1267337
http://dl.acm.org/citation.cfm?id=1267336.1267337
http://dl.acm.org/citation.cfm?id=1267336.1267337
http://dl.acm.org/citation.cfm?id=1267336.1267337
http://nakedsecurity.sophos.com/2011/10/28/compromised-facebook-account-logins/
http://nakedsecurity.sophos.com/2011/10/28/compromised-facebook-account-logins/
https://lirias.kuleuven.be/handle/123456789/311551
https://lirias.kuleuven.be/handle/123456789/311551

117

[35] Rachna Dhamija and Adrian Perrig. Deja vu: A user study using images for authenti-
cation. In Proceedings of the 9th USENIX Security Symposium, SSYM’00, pages 4–4,
Berkeley, CA, USA, 2000. USENIX Association.

[36] T. Dierks and C. Allen. The TLS protocol, version 1.0. http://tools.ietf.org/

html/rfc2246, Jan 1999.

[37] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2 –
Client Certificates, 2008. http://tools.ietf.org/html/rfc5246#section-7.4.6.

[38] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol, version 1.2.
http://tools.ietf.org/html/rfc5246, Aug 2008.

[39] Tim Dierks and Christopher Allen. The TLS Protocol, Version 1.0. Internet Engineer-
ing Task Force, January 1999. RFC-2246, ftp://ftp.isi.edu/in-notes/rfc2246.
txt.

[40] Michael Dietz, Alexei Czeskis, Dan Wallach, and Dirk Balfanz. Origin-Bound Certifi-
cates: A fresh approach to strong client authentication for the web. In Proceedings of
the 21st USENIX Security Symposium, 2012.

[41] Django Software Foundation. Cross site request forgery protection, 2012. https:

//docs.djangoproject.com/en/dev/ref/contrib/csrf/.

[42] EMC. RSA SecurID, 2013. http://www.emc.com/security/rsa-securid.htm.

[43] Dino Esposito. Take advantage of ASP.NET built-in features to fend off web attacks.
Microsoft MSDN, 2005. http://msdn.microsoft.com/en-us/library/ms972969.

aspx.

[44] Katherine M. Everitt, Tanya Bragin, James Fogarty, and Tadayoshi Kohno. A compre-
hensive study of frequency, interference, and training of multiple graphical passwords.
In Proceedings of the 27th international conference on Human factors in computing
systems, CHI ’09, pages 889–898, New York, NY, USA, 2009. ACM.

[45] Facebook. Facebook login, 2013. https://developers.facebook.com/docs/

concepts/login/.

[46] Facebook Corporation. The Facebook blog, 2011. https://www.facebook.com/blog/
blog.php?post=486790652130.

[47] James Fallows. Hacked!, 2011. http://www.theatlantic.com/magazine/archive/

2011/11/hacked/308673/.

http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc5246#section-7.4.6
http://tools.ietf.org/html/rfc5246
ftp://ftp.isi.edu/in-notes/rfc2246.txt
ftp://ftp.isi.edu/in-notes/rfc2246.txt
https://docs.djangoproject.com/en/dev/ref/contrib/csrf/
https://docs.djangoproject.com/en/dev/ref/contrib/csrf/
http://www.emc.com/security/rsa-securid.htm
http://msdn.microsoft.com/en-us/library/ms972969.aspx
http://msdn.microsoft.com/en-us/library/ms972969.aspx
https://developers.facebook.com/docs/concepts/login/
https://developers.facebook.com/docs/concepts/login/
https://www.facebook.com/blog/blog.php?post=486790652130
https://www.facebook.com/blog/blog.php?post=486790652130
http://www.theatlantic.com/magazine/archive/2011/11/hacked/308673/
http://www.theatlantic.com/magazine/archive/2011/11/hacked/308673/

118

[48] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1, 1999. http://www.ietf.org/rfc/

rfc2616.txt.

[49] Dinei Florêncio and Cormac Herley. C.: One-time password access to any server
without changing the server. In In: ISC 2008, 2008.

[50] John Fontana. Stolen passwords re-used to attack Best Buy accounts,
2012. http://www.zdnet.com/stolen-passwords-re-used-to-attack-best-buy-
accounts-7000000741/.

[51] Shirley Gaw and Edward W. Felten. Password management strategies for online
accounts. In Proc. SOUPS 2006, ACM Press, pages 44–55. ACM Press, 2006.

[52] Google Chrome. Manager your website passwords, 2013. http://support.google.

com/chrome/bin/answer.py?hl=en&answer=95606.

[53] Google Inc. Federated login for Google account users, 2013. https://developers.

google.com/accounts/docs/OpenID.

[54] Google Inc. Google 2-step verification, 2013. http://support.google.com/

accounts/bin/answer.py?hl=en&answer=180744.

[55] E. Grosse. Gmail account security in Iran, 2011. http://googleonlinesecurity.

blogspot.com/2011/09/gmail-account-security-in-iran.html.

[56] J. Alex Halderman, Brent Waters, and Edward W. Felten. A convenient method for
securely managing passwords. In Proceedings of the 14th International World Wide
Web Conference (WWW), pages 471–479, 2005.

[57] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg Schwenk.
Scriptless attacks - stealing the pie without touching the sill. In CCS, 2012.

[58] Cormac Herley and Paul van Oorschot. A Research Agenda Acknowledging the Per-
sistence of Passwords. IEEE Security & Privacy Magazine, 2011.

[59] I. Hickson. HTML5 web messaging. http://dev.w3.org/html5/postmsg/, Jan 2012.

[60] Matt Honan. How Apple and Amazon security flaws led to my epic hacking,
2012. http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-

hacking/all/.

[61] Human Rights Watch. How Censorship Works in China: A brief overview, 2006.
http://www.hrw.org/reports/2006/china0806/3.htm.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.zdnet.com/stolen-passwords-re-used-to-attack-best-buy-accounts-7000000741/
http://www.zdnet.com/stolen-passwords-re-used-to-attack-best-buy-accounts-7000000741/
http://support.google.com/chrome/bin/answer.py?hl=en&answer=95606
http://support.google.com/chrome/bin/answer.py?hl=en&answer=95606
https://developers.google.com/accounts/docs/OpenID
https://developers.google.com/accounts/docs/OpenID
http://support.google.com/accounts/bin/answer.py?hl=en&answer=180744
http://support.google.com/accounts/bin/answer.py?hl=en&answer=180744
http://googleonlinesecurity.blogspot.com/2011/09/gmail-account-security-in-iran.html
http://googleonlinesecurity.blogspot.com/2011/09/gmail-account-security-in-iran.html
http://dev.w3.org/html5/postmsg/
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/all/
http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-hacking/all/
http://www.hrw.org/reports/2006/china0806/3.htm

119

[62] J. Hurwich. Chrome benchmarking extension. http://www.chromium.org/

developers/design-documents/extensions/how-the-extension-system-

works/chrome-benchmarking-extension, Sept 2010.

[63] Inferno. Hacking CSRF tokens using CSS history hack, 2009. http:

//securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-

hack/.

[64] Anil K. Jain, Patrick Flynn, and Arun A. Ross. Handbook of Biometrics. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[65] Ian Jermyn, Alain Mayer, Fabian Monrose, Michael K. Reiter, and Aviel D. Rubin.
The design and analysis of graphical passwords. In Proceedings of the 8th USENIX
Security Symposium, SSYM’99, pages 1–1, Berkeley, CA, USA, 1999. USENIX Asso-
ciation. http://dl.acm.org/citation.cfm?id=1251421.1251422.

[66] Martin Johns and Justus Winter. RequestRodeo: Client side protection against session
riding. In Proceedings of the OWASP Europe 2006 Conference, May 2006. http:

//databasement.net/docs/2006_owasp_RequestRodeo.pdf.

[67] Aaron Johnson. The referer header, intranets and privacy, 2007. http://cephas.

net/blog/2007/02/06/the-referer-header-intranets-and-privacy/.

[68] Jonathan Kent. Malaysia car thieves steal finger, 2005. http://news.bbc.co.uk/2/
hi/asia-pacific/4396831.stm.

[69] Krzysztof Kotowicz. Cross domain content extraction with fake captcha, 2011. http:
//blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html.

[70] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authen-
tication in distributed systems: theory and practice. ACM Trans. Comput. Syst.,
10(4):265–310, November 1992.

[71] A. Langley. Protecting data for the long term with forward secrecy, 2011. http:

//goo.gl/YMpXy.

[72] Last Pass. LastPass password manager homepage, 2013. https://lastpass.com.

[73] Eric Lawrence. Fiddler web debugging proxy, 2012. http://www.fiddler2.com/

fiddler2/.

[74] Mohammad Mannan and Paul C. van Oorschot. Leveraging personal devices for
stronger password authentication from untrusted computers. Journal of Computer
Security, 19(4):703–750, 2011.

http://www.chromium.org/developers/design-documents/extensions/how-the-extension-system-works/chrome-benchmarking-extension
http://www.chromium.org/developers/design-documents/extensions/how-the-extension-system-works/chrome-benchmarking-extension
http://www.chromium.org/developers/design-documents/extensions/how-the-extension-system-works/chrome-benchmarking-extension
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://dl.acm.org/citation.cfm?id=1251421.1251422
http://databasement.net/docs/2006_owasp_RequestRodeo.pdf
http://databasement.net/docs/2006_owasp_RequestRodeo.pdf
http://cephas.net/blog/2007/02/06/the-referer-header-intranets-and-privacy/
http://cephas.net/blog/2007/02/06/the-referer-header-intranets-and-privacy/
http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm
http://news.bbc.co.uk/2/hi/asia-pacific/4396831.stm
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://blog.kotowicz.net/2011/07/cross-domain-content-extraction-with.html
http://goo.gl/YMpXy
http://goo.gl/YMpXy
https://lastpass.com
http://www.fiddler2.com/fiddler2/
http://www.fiddler2.com/fiddler2/

120

[75] Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating Cross-Site Request Forgery Attacks
with Browser-Enforced Authenticity Protection. Financial Cryptography and Data
Security. Springer-Verlag, Berlin, Heidelberg, 2009. http://dl.acm.org/citation.

cfm?id=1601990.1602012.

[76] Giorgio Maone. NoScript, 2012. http://noscript.net/.

[77] Microsoft. Introducing windows cardspace, 2006. http://msdn.microsoft.com/en-
us/library/aa480189.aspx.

[78] Microsoft. Microsoft NTML, 2012. http://msdn.microsoft.com/en-us/library/

windows/desktop/aa378749(v=vs.85).aspx.

[79] Microsoft Corporation. Provide your users with secure authentication capabilities us-
ing Microsoft .NET passport, 2002. http://msdn.microsoft.com/en-us/magazine/
cc188941.aspx.

[80] Microsoft Corporation. Fill in website forms and passwords automati-
cally, 2013. http://windows.microsoft.com/en-us/windows7/fill-in-website-

forms-and-passwords-automatically.

[81] MIT Kerberos Group. Kerberos: The network authentication protocol, 2013. http:

//web.mit.edu/kerberos/.

[82] Mozilla. Location-aware browsing, 2012. http://www.mozilla.org/en-US/firefox/
geolocation/.

[83] Mozilla Support. Password manager - remember, delete and change saved passwords
in Firefox, 2013. http://support.mozilla.org/en-US/kb/password-manager-

remember-delete-change-passwords.

[84] Mozilla Wiki. Origin header proposal for CSRF and clickjacking mitigation, 2011.
https://wiki.mozilla.org/Security/Origin.

[85] S. Murdoch. Hardened stateless session cookies. Security Protocols XVI, pages 93–101,
2011.

[86] Atif Mushaq. Man in the Browser: Inside the zeus trojan, 2010. http://threatpost.
com/en_us/blogs/man-browser-inside-zeus-trojan-021910.

[87] National Institute of Standards and Technology (NIST). National vulnerability
database, 2012. http://web.nvd.nist.gov/.

http://dl.acm.org/citation.cfm?id=1601990.1602012
http://dl.acm.org/citation.cfm?id=1601990.1602012
http://noscript.net/
http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa378749(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa378749(v=vs.85).aspx
http://msdn.microsoft.com/en-us/magazine/cc188941.aspx
http://msdn.microsoft.com/en-us/magazine/cc188941.aspx
http://windows.microsoft.com/en-us/windows7/fill-in-website-forms-and-passwords-automatically
http://windows.microsoft.com/en-us/windows7/fill-in-website-forms-and-passwords-automatically
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/
http://www.mozilla.org/en-US/firefox/geolocation/
http://www.mozilla.org/en-US/firefox/geolocation/
http://support.mozilla.org/en-US/kb/password-manager-remember-delete-change-passwords
http://support.mozilla.org/en-US/kb/password-manager-remember-delete-change-passwords
https://wiki.mozilla.org/Security/Origin
http://threatpost.com/en_us/blogs/man-browser-inside-zeus-trojan-021910
http://threatpost.com/en_us/blogs/man-browser-inside-zeus-trojan-021910
http://web.nvd.nist.gov/

121

[88] OWASP: The Open Web Application Security Project. OWASP CSRFGuard project,
2012. https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project.

[89] Chris Palmer and Chris Evans. Certificate pinning via HSTS, 2011. http://www.

ietf.org/mail-archive/web/websec/current/msg00505.html.

[90] Seungjoon Park and David L. Dill. Verification of cache coherence protocols by ag-
gregation of distributed transactions. Theory of Computing Systems, 31(4):355–376,
1998.

[91] Bryan Parno, Cynthia Kuo, and Adrian Perrig. Phoolproof phishing prevention.
In Giovanni Di Crescenzo and Aviel D. Rubin, editors, Financial Cryptography and
Data Security, 10th International Conference, FC 2006, Anguilla, British West Indies,
February 27-March 2, 2006, Revised Selected Papers, volume 4107 of Lecture Notes
in Computer Science, pages 1–19. Springer, 2006.

[92] Andreas Pashalidis and Chris J. Mitchell. Impostor: a single sign-on system for use
from untrusted devices. In GLOBECOM, pages 2191–2195, 2004.

[93] Passfaces Corporation. Passfaces, 2013. http://www.passfaces.com/.

[94] J.R. Prins. Interim report diginotar certificate authority breach “operation black
tulip”. Technical report, 2011. http://www.rijksoverheid.nl/bestanden/

documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-

report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf.

[95] HTML Purifier. CSRF magic, 2012. http://csrf.htmlpurifier.org/.

[96] D. Recordon and B. Fitzpatrick. OpenID authentication 1.1. http://openid.net/

specs/openid-authentication-1_1.html, May 2008.

[97] E. Rescorla. Keying material exporters for transport layer security (TLS). http:

//tools.ietf.org/html/rfc5705, March 2010.

[98] Ændrew Rininsland. Internet Censorship listed: How does each country
compare? http://www.theguardian.com/technology/datablog/2012/apr/16/

internet-censorship-country-list.

[99] J. Rizzo and T. Duong. BEAST. http://vnhacker.blogspot.com/2011/09/beast.
html, Sept 2011.

[100] Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh, and John C. Mitchell.
Stronger password authentication using browser extensions. In Proceedings of the
14th Usenix Security Symposium, 2005.

https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
http://www.ietf.org/mail-archive/web/websec/current/msg00505.html
http://www.ietf.org/mail-archive/web/websec/current/msg00505.html
http://www.passfaces.com/
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2011/09/05/diginotar-public-report-version-1/rapport-fox-it-operation-black-tulip-v1-0.pdf
http://csrf.htmlpurifier.org/
http://openid.net/specs/openid-authentication-1_1.html
http://openid.net/specs/openid-authentication-1_1.html
http://tools.ietf.org/html/rfc5705
http://tools.ietf.org/html/rfc5705
http://www.theguardian.com/technology/datablog/2012/apr/16/internet-censorship-country-list
http://www.theguardian.com/technology/datablog/2012/apr/16/internet-censorship-country-list
http://vnhacker.blogspot.com/2011/09/beast.html
http://vnhacker.blogspot.com/2011/09/beast.html

122

[101] David Ross and Tobias Gondrom. HTTP header frame options – draft-
gondrom-frame-options-01, 2012. http://tools.ietf.org/html/draft-ietf-

websec-frame-options-00.

[102] Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens, and Wouter
Joosen. CsFire: Transparent client-side mitigation of malicious cross-domain requests.
In Proceedings of the Second international conference on Engineering Secure Software
and Systems (ESSoS), 2010.

[103] N. Sakimura, D. Bradley, B. de Mederiso, M. Jones, and E. Jay. OpenID connect
standard 1.0 - draft 07. http://openid.net/specs/openid-connect-standard-

1%5F0.html, Feb 2012.

[104] Facebook Security. National cybersecurity awareness month updates,
2011. https://www.facebook.com/notes/facebook-security/national-

cybersecurity-awareness-month-updates/10150335022240766.

[105] P. Seybold. Sony’s response to the u.s. house of representatives, 2011. http://goo.

gl/YkXSv.

[106] Ofer Shezaf. WHID 2008-05: Drive-by pharming in the wild, 2008. http://www.

xiom.com/whid-2008-05.

[107] Christopher M. Shields and Matthew M. Toussain. Subterfuge: The MITM frame-
work. http://subterfuge.googlecode.com/files/Subterfuge-WhitePaper.pdf,
2012.

[108] Anton Sidashin. CSRF: Avoid security holes in your drupal forms, 2011. http:

//pixeljets.com/blog/csrf-avoid-security-holes-your-drupal-forms.

[109] Softflare Limited. Hosting/e-mail account prices, 2011. http://www.softflare.com/
index.php?id=11.

[110] Open Source. Google authenticator, 2012. https://code.google.com/p/google-

authenticator/.

[111] Sid Stamm, Zulfikar Ramzan, and Markus Jakobsson. Drive-by pharming, 2006.
https://www.symantec.com/avcenter/reference/Driveby_Pharming.pdf.

[112] Brandon Sterne. Content Security Policy – unofficial draft 12, 2011.
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-

specification.dev.html.

http://tools.ietf.org/html/draft-ietf-websec-frame-options-00
http://tools.ietf.org/html/draft-ietf-websec-frame-options-00
http://openid.net/specs/openid-connect-standard-1%5F0.html
http://openid.net/specs/openid-connect-standard-1%5F0.html
https://www.facebook.com/notes/facebook-security/national-cybersecurity-awareness-month-updates/10150335022240766
https://www.facebook.com/notes/facebook-security/national-cybersecurity-awareness-month-updates/10150335022240766
http://goo.gl/YkXSv
http://goo.gl/YkXSv
http://www.xiom.com/whid-2008-05
http://www.xiom.com/whid-2008-05
http://subterfuge.googlecode.com/files/Subterfuge - White Paper.pdf
http://pixeljets.com/blog/csrf-avoid-security-holes-your-drupal-forms
http://pixeljets.com/blog/csrf-avoid-security-holes-your-drupal-forms
http://www.softflare.com/index.php?id=11
http://www.softflare.com/index.php?id=11
https://code.google.com/p/google-authenticator/
https://code.google.com/p/google-authenticator/
https://www.symantec.com/avcenter/reference/Driveby_Pharming.pdf
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specifica tion.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specifica tion.dev.html

123

[113] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert van Renesse. Using sparse
capabilities in a distributed operating system. In 6th International Conference on Dis-
tributed Computing Systems, pages 558–563, Cambridge, Massachusetts, May 1986.

[114] Hai Tao and Carlisle Adams. Pass-Go: A proposal to improve the usability of graphical
passwords. International Journal of Network Security, 7:273–292, 2008.

[115] The Chromium Project. SPDY, 2012. http://www.chromium.org/spdy.

[116] R. Vogelei. Bluetooth-enabled device shipments expected to exceed 2 billion in 2013,
2011. http://www.instat.com/press.asp?ID=3238&sku=IN1104968MI.

[117] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in the Taos
operating system. ACM Transactions on Computer Systems (TOCS), 12(1):3–32,
1994.

[118] Thomas Y.C. Woo, Thomas Y. C, Woo Simon, and Simon S. Lam. Designing a
distributed authorization service. In INFOCOM, 1998.

[119] World Wide Web Consortium. Cross-origin resource sharing, 2012. http://www.w3.
org/TR/cors/.

[120] Yubico. YubiKey, 2013. http://www.yubico.com/products/yubikey-hardware/

yubikey/.

[121] Michal Zalewski. Postcards from the post-XSS world, 2012. http://lcamtuf.

coredump.cx/postxss/.

[122] William Zeller and Edward W. Felten. Cross-Site Request Forgeries: Exploita-
tion and prevention, 2008. www.cs.utexas.edu/users/shmat/courses/library/

zeller.pdf.

[123] K. Zetter. Security cavities ail bluetooth, 2004. http://www.wired.com/politics/

security/news/2004/08/64463.

[124] Zeljka Zorz. Facebook spammers trick users into sharing anti-CSRF tokens, 2011.
http://www.net-security.org/secworld.php?id=11857.

http://www.chromium.org/spdy
http://www.instat.com/press.asp?ID=3238&sku=IN1104968MI
http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.yubico.com/products/yubikey-hardware/yubikey/
http://www.yubico.com/products/yubikey-hardware/yubikey/
http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/
www.cs.utexas.edu/users/shmat/courses/library/zeller.pdf
www.cs.utexas.edu/users/shmat/courses/library/zeller.pdf
http://www.wired.com/politics/security/news/2004/08/64463
http://www.wired.com/politics/security/news/2004/08/64463
http://www.net-security.org/secworld.php?id=11857

	List of Figures
	Introduction
	Background: Challenges and Previous Approaches
	Challenges to Secure User Authentication and Authorization
	Techniques for Authenticating Users
	Techniques for Authorizing Requests
	Summary

	TLS Origin-Bound Certificates: Strengthening the Transport Layer
	Motivation and Overview
	Design
	Implementation
	Evaluation
	Discussion
	Summary

	PhoneAuth: Strengthening User Authentication
	Motivation and Overview
	Design
	Implementation
	Evaluation
	Discussion
	Summary

	Allowed Referrer Lists: Strengthening User Authorization
	Motivation and Overview
	Design
	Implementation
	Evaluation
	Discussion
	Summary

	Conclusion
	Bibliography

