
Regaining Control over Cloud and Mobile Data

Roxana Geambasu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2011

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Roxana Geambasu

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Co-Chairs of the Supervisory Committee:

Steven D. Gribble

Tadayoshi Kohno

Henry M. Levy

Reading Committee:

Steven D. Gribble

Tadayoshi Kohno

Henry M. Levy

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at
the University of Washington, I agree that the Library shall make its copies freely available for
inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Proquest Information and Learning, 300
North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies
of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Regaining Control over Cloud and Mobile Data

Roxana Geambasu

Co-Chairs of the Supervisory Committee:
Associate Professor Steven D. Gribble

Computer Science and Engineering Department

Associate Professor Tadayoshi Kohno
Computer Science and Engineering Department

Professor Henry M. Levy
Computer Science and Engineering Department

While emerging computing technologies – such as cloud computing and small, powerful, mobile

devices – offer previously unimaginable global access to data and applications, they also threaten

users’ sense of control over data ownership, distribution, and properties. For example, uploading

some data to a Web service – such as a document to Google Docs, a photo to Facebook, or an email

to Hotmail – causes the user to lose control over that data. The user cannot ensure that the service

deletes all copies of her data when she asks it to do so, that her data is not shared with advertisers,

or that her data is replicated sufficiently to ensure its long-term availability. Similarly, storing data

on a mobile device causes the user to lose control over that data when the device is stolen or lost;

the user cannot ensure that the data can never be compromised and she cannot tell whether it has

been compromised.

This dissertation examines the broad data security, privacy, and management challenges raised

by modern technology and proposes a set of techniques that address these issues. We present four

systems, each aiming to re-empower users with a specific aspect of their lost data control. Keypad

offers remote access control and auditability for data stored on a stolen device. Vanish provides

control over the lifetime of data stored in untrusted clouds. Comet lets clients customize the func-

tionality of trusted cloud storage, while Menagerie provides a uniform view of a user’s scattered

Web data. We present the design, implementation, and detailed evaluation for each of the four

systems, demonstrating the feasibility of our approaches.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . v

Chapter 1: Introduction . 1

1.1 Modern Technologies . 2

1.2 The Problem: Losing Data Control . 4

1.3 Contributions . 11

Chapter 2: Keypad: Remote Access Control and Auditing for Theft-prone Devices . . 14

2.1 Motivation and Overview . 14

2.2 Goals and Assumptions . 17

2.3 Keypad Architecture . 20

2.4 Prototype Implementation . 28

2.5 Evaluation . 31

2.6 Security Analysis . 41

2.7 Related Work . 43

2.8 Summary . 45

Chapter 3: Vanish: Data Lifetime Control with Self-Destructing Data 46

3.1 Motivation and Overview . 46

3.2 Candidate Approaches, Goals, and Threat Models 50

3.3 Vanish Architecture . 56

3.4 Prototype, Applications, and Performance Evaluation 60

3.5 Security Analysis . 64

3.6 Designing a Security-Sensitive DHT . 68

3.7 Architectural Extensions for Security . 81

3.8 Related Work . 91

3.9 Summary . 93

i

Chapter 4: Comet: Data Management Control with Extensible Storage 94
4.1 Motivation and Overview . 94
4.2 Goals and Assumptions . 96
4.3 Comet Architecture and Implementation . 99
4.4 Applications . 104
4.5 Evaluation . 113
4.6 Security Analysis . 119
4.7 Related Work . 122
4.8 Summary . 123

Chapter 5: Menagerie: A Framework for Organizing and Sharing Distributed Web Data 125
5.1 Motivation and Overview . 125
5.2 Goals and Requirements . 130
5.3 The Menagerie Prototype . 131
5.4 Applications . 138
5.5 Evaluation . 144
5.6 Related Work . 148
5.7 Summary . 150

Chapter 6: Future Directions . 151

Chapter 7: Conclusions . 154

Bibliography . 155

ii

LIST OF FIGURES

Figure Number Page

1.1 Technological trends. 3

1.2 Example scenario. 5

2.1 Timeline of theft/loss. 18

2.2 The Keypad system architecture. 21

2.3 Timelines for metadata operations. 24

2.4 Paired-device architecture. 26

2.5 Keypad file formats. 29

2.6 File operation latency. 32

2.7 Effect of key expiration time. 34

2.8 Effect of IBE and device pairing on performance. 35

2.9 Impact of optimizations of various applications. 36

2.10 Comparison of Keypad to EncFS and NFS. 38

2.11 Effect of optimizations on auditability. 39

3.1 Example scenario and Vanish application screenshot. 47

3.2 Timeline for VDO usage and attack. 52

3.3 The Vanish system architecture. 58

3.4 Vanish applications. 61

3.5 VDO availability under conditional replication. 71

3.6 The data-crawling attack under conditional replication. 73

3.7 Probability of VDO compromise vs. attack size. 74

3.8 Evaluation of anti-Sybil defense. 77

3.9 Evaluation of Tide’s performance and availability. 86

3.10 Evaluation of Tide security and overhead. 87

3.11 Multi-key-store self-destructing-data architecture. 89

4.1 Comet architecture and APIs. 98

4.2 Microbenchmark results. 115

4.3 Node lifetimes in Vuze. 117

iii

4.4 Proximity of BitTorrent peers. 118

5.1 PCs vs. Web services. 126
5.2 Menagerie motivating scenario. 128
5.3 The Menagerie prototype. 131
5.4 The MSI interface. 132
5.5 Hybrid capability protection. 134
5.6 Menagerie prototype implementation. 137
5.7 Menagerie applications. 139
5.8 Menagerie latency breakdown. 146
5.9 Menagerie performance comparisons. 147

iv

LIST OF TABLES

Table Number Page

1.1 Forms of data control loss. 7

2.1 Typical application performance over Keypad. 37

3.1 VDO encapsulation and decapsulation performance. 63
3.2 Vuze data-crawling defenses and effects. 78

4.1 ASO handler calls. 100
4.2 Expected application resource consumption. 114

5.1 Menagerie’s latency. 145

v

ACKNOWLEDGMENTS

I extend special thanks to my advisors, Prof. Steven D. Gribble, Prof. Tadayoshi Kohno, and

Prof. Henry M. Levy, who have supported and guided all aspects of my doctoral career. I also thank

Prof. Magdalena Balazinska, Dr. Andrew Birrell, and Prof. Arvind Krishnamurthy for fruitful

collaboration and valuable advice throughout my Ph.D. program. Parts of this dissertation were done

in collaboration with Cherie Chung, John P. John, Paul Gardner, Amit Levy, Vinnie Moscaritolo, and

Alexander Moshchuk, whom I thank for their collaboration. I also extend thanks to Peter Hornyack,

Tomas Isdal, Ben Lerner, Michael Piatek, Charles Reis, David Richardson, and Mark Zbikowski for

frequent feedback, advice, and collaboration. Finally, I want to help Dr. Lindsay Michimoto for her

guidance throughout the program. This work was supported by the First Google Fellowship in Cloud

Computing and NSF grants CNS-0132817, CNS-0614975, CNS-0430477, and CNS-0627367.

vi

DEDICATION

To my husband, Bogdan, for his continued support of my education and career.

vii

1

Chapter 1

INTRODUCTION

Two significant computer advances – cloud technology and powerful mobile devices – are revo-

lutionizing how users work and the degree of control they experience over their data. Cloud comput-

ing is catalyzing a migration from in-house infrastructure and applications to remote public infras-

tructure and Web services; as a result, personal desktop applications are yielding to Web services

– such as Google Docs and Photoshop Express – and IT-managed enterprise applications and dat-

acenters to cloud-based solutions – such as Amazon AWS. Further, robust and usable small-form

portable devices are encouraging users to adopt increasingly mobile computing habits. For example,

travelers can carry gigabytes of data on their laptops and USB sticks, access calendars and emails

on phones, and read documents with e-readers.

While cloud and mobile computing enable pervasive data access and large-scale sharing, they

also threaten users’ sense of control over their data’s security, privacy, and management. For exam-

ple, when sending an email over Hotmail, posting a photo to Facebook, or uploading a document

on Google Docs, users cede all data control to the Web service. The service can decide to retain the

data for months after the user requests its deletion, to share it with others for monetary or legal rea-

sons, or to replicate it on servers outside the user’s jurisdiction. However detrimental, such practices

are commonplace today [38, 140, 184, 219]. Similarly, losing a mobile device means users cannot

securely erase their data, prevent access to it by thieves, or identify potentially compromised data.

This dissertation examines the data security, privacy, and management challenges created by

clouds and new mobile technologies, and proposes novel techniques to re-empower users with con-

trol over their data stored on them. By analyzing new cloud and mobile technologies, we identify

three root causes for the lost data control: (1) the untrustworthy and possibly hostile computing en-

vironments in public clouds and on stolen mobile devices, (2) the lack of customizability that char-

acterizes these environments, and (3) data dissemination across many clouds and devices. These

properties challenge users’ ability to perform many tasks, such as obtaining an audit log of all

2

accesses to data, securely erasing sensitive data, customizing various data-management properties

(such as where a service should replicate data), and organizing personal data meaningfully when it

is scattered across many services and devices.

To address these challenges, the thesis presents the design, implementation, and evaluation of

four systems, each focused on restoring one aspect of control lost to the cloud or mobile devices.

Keypad [79], an encrypted file system for theft-prone devices, allows post-theft remote data access

control and fine-grained access auditing. Vanish [81], a distributed-trust self-destructing data sys-

tem, lets users control the lifespan of their Web data, such as Hotmail emails, Facebook messages,

or Google documents. Comet [82], an extensible key/value store, helps clients customize how their

data is managed in a cloud storage service, such as Amazon S3 or peer-to-peer, Internet-wide dis-

tributed hashtables. Finally, Menagerie [77] integrates a user’s scattered Web data into a uniform

naming, protection, and access system.

The systems when considered as a group demonstrate that various aspects of control can be

recovered without sacrificing the advantages of new technologies. Doing so involves a combination

of techniques from multiple computing fields – including operating systems, distributed systems,

and cryptography – to address the complex challenges raised by modern technology. For example,

our use of cryptography is unconventional: while encryption has traditionally been used to protect

data confidentiality, we use it to force remote access auditing in Keypad and assured data deletion

in Vanish.

The thesis contains six additional chapters. Chapters 2–5 review each system’s motivation, re-

lated work, design, and evaluation. Chapter 6 presents future directions, while Chapter 7 concludes.

The remainder of this chapter describes the broad problem space created by new technologies, as an

overarching motivation for our work.

1.1 Modern Technologies

In the past, users relied on in-house systems, such as desktop PCs and private datacenters, for most

of their application and storage needs. Today, the traditional in-house computing world is radically

evolving in two directions: much of the computing and storage is moving onto giant-scale public

3

Mobile ComputingIn-House ComputingCloud Computing

Application
Clouds

(e.g., GDocs)

Storage
Clouds

(e.g., S3)

Infrastructure
Clouds

(e.g., EC2)

Figure 1.1: Technological Trends. Computing technology is transitioning from in-house environ-

ments, such as desktop PCs, to public clouds and portable mobile devices.

clouds and the rest is directed to tiny, yet powerful, mobile devices, as shown in Figure 1.1. We

describe each transition next.

Cloud Computing. The transition to cloud computing is being fostered by application clouds, stor-

age clouds, and infrastructure clouds. Application clouds provide software-as-a-service solutions,

which are quickly replacing in-house applications. Examples include Google Docs, Photoshop Ex-

press, and Quicken Online for individual users, and Salesforce.com, Google Apps, and Gmail for

enterprises. Storage clouds – such as Amazon S3, Mozy, and Dropbox – are replacing in-house

storage and backup solutions for both individuals and enterprises [63, 192]. Finally, infrastructure

clouds – such as Amazon’s EC2, Google’s AppEngine, and Microsoft’s Azure – are attracting many

enterprises [105, 190] and promise to become the Web’s preferred deployment model [78].

Public clouds offer many advantages over in-house computing environments. Users can access

their data and applications through multiple devices from anywhere in the world and can avoid the

pains of installing and managing software. Similarly, enterprises can significantly diminish their

hardware and software maintenance costs, avoid over-provisioning, and scale their services based

on load. Finally, public clouds greatly facilitate sharing and collaboration across users all around

the world.

Powerful Mobile Devices. Desktop computers in homes and offices are giving way to small-form

mobile devices that can be carried everywhere: at home, to work, on the street, and on trips around

the world. This transition is enabled by recent advances in mobile technology that have endowed

pocket-sized devices with computing and communication capabilities similar to the desktops of only

4

a few years ago. For example, laptops have tremendous computing power and run unmodified desk-

top applications, while tablets and phones are sufficiently powerful to run trimmed-down versions

of desktop operating systems and popular applications, such as Web browsers, calendars, email, and

even document editors for the iPad.

Mobile devices offer important advantages. Users can increase their on-the-go productivity

using laptops, netbooks, tablets, and phones, and they can easily transport and share large amounts

of information using USB sticks. Unfortunately, mobile devices also pose significant challenges,

e.g., their small form and mobile nature make them highly susceptible to theft or loss: one in ten

laptops is lost or stolen within a year of purchase [142] and dry cleaners in the U.K. found over

4,000 USB sticks in pockets in 2009 [193]. The loss of devices compromises the privacy of the data

stored on them, a topic that we address below.

1.2 The Problem: Losing Data Control

Despite their advantages then, clouds and mobile devices challenge users’ ability to control data

security, privacy, and management. We now provide a broad view of this problem space to establish

the context for the rest of the thesis. To do so, we use a simple scenario to expose the various forms

of lost data control and the root causes for such losses. Section 1.3 then restricts the scope to the

specific challenges addressed in this thesis and summarizes our contributions.

1.2.1 An Example Scenario

Ann, a relatively tech-savvy person, owns a growing business commercializing office supplies. In

the past, Ann handled all of her company-related computing using her desktop PC.1 She edited

customer contracts and other documents using Microsoft Office, kept her books with Quickbooks,

backed her data onto external Seagate disk drives, and ran Apache to publish her company’s Web

site. Over time, these self-managed solutions became cumbersome and unsupportive of Ann’s ex-

panding travel schedule and data-sharing needs. Therefore, she switched to the new cloud-and-

mobile world, where she uses Google Docs to collaborate with her employees, Netsuite to keep her

books, Mozy to back up new data, and Amazon EC2 to host her Web site. Moreover, Ann uses

1We use a single-computer scenario for simplicity, but similar conclusions can be reached for private datacenters.

5

Office

Desktop OS

Google
Docs

Prior In-House World New Cloud-and-Mobile World

Netsuite Mozy

Laptop Phone USB Stick

 trusted, customizable, centralized untrusted, non-customizable, dispersed

data data data data

data data data

data data data

Policy enforcement

Amazon
EC2

data

iPad

data

Quick-
books

Seagate
software

Apache

Figure 1.2: Example Scenario. Compares the in-house computing environment to the cloud and

mobile environments. Cloud and mobile technologies fragment and replicate data on scores of

untrusted or non-customizable locations.

mobile devices to interact with her data when traveling and replicates some customer data on those

devices for disconnected use (e.g., on planes). See Figure 1.2.

Ann is vigilant about protecting her data’s security and privacy. For example, she wants to

ensure that her customer and financial data are kept private at all times, yet she wants to collaborate

on a subset of documents with her employee, Bob. She also wants her data to remain persistent and

unaltered for years or decades, but she seeks its immediate deletion upon request to avoid future

liabilities or exposure.

In the past, Ann could achieve all her goals, albeit with some effort. She protected her data

against unauthorized accesses by locking her server in a monitored room and installing a variety of

security tools, such as firewalls, antivirus programs, and network intrusion detection systems. She

shared her documents only with Bob, using the file system’s access control mechanisms. She en-

abled fine-grained auditing to monitor all data accesses, installed a file system extension to securely

erase data upon request, and customized her backup application to use high levels of replication to

ensure long-term data persistence.

Ann would like similar controls over data security, privacy, and management in the new cloud-

and-mobile world. However, getting them is challenging for reasons we now describe.

6

1.2.2 Shortcomings of the Cloud and Mobile World

The preceding scenario highlights important properties of the in-house computing environment that

allowed Ann to achieve her data security goals. First, it is trusted. For example, when all of her data,

applications, and infrastructure were on-premise, Ann could gain trust in her system by deploying

physical and software security mechanisms (e.g., firewalls). Second, Ann could flexibly customize

her environment for her specific needs by adding new components (e.g., the secure-deletion and

auditing file system modules) or tailoring existing ones (e.g., her backup system). Third, all of Ann’s

data was stored in a single location – the desktop PC – which allowed the uniform installation of

specific policies (e.g., secure deletion, auditing, replication) across all her data.

Unfortunately, the cloud-and-mobile world exhibits opposite properties, which challenge Ann’s

security goals:

• Untrusted computing environments: Cloud computing and mobile devices physically migrate

storage, applications, and infrastructure from private premises to public, insecure grounds.

Users either outsource their data to untrusted clouds or take their mobile devices into places

where they can be easily stolen or lost. This off-premise data migration raises significant trust

concerns. For example, Ann’s cloud services could release her data for monetary or legal

reasons or preserve it beyond its intended lifespan. Similarly, a stolen mobile device could

leak confidential information after being physically compromised by a thief.

• Inflexible to customization: Trusted or not, today’s cloud services and mobile devices provide

narrow interfaces and one-size-fits-all semantics. For example, Ann may require access au-

diting, assured deletion, and high persistence guarantees for her company documents, which

services such as Google Docs does not support. Similarly, mobile phones require jailbreaking

to impose low-level policies (e.g., secure deletion).

• Fragmented data dispersion: Cloud computing and mobile devices fragment and replicate

data across many Web services, intermediaries, and mobile devices. For example, Ann’s fi-

nancial documents are stored on Netsuite, Mozy, and a laptop; her customer contracts are on

Google Docs, Mozy, and an iPad; and her product photos are being replicated by Facebook

and Akamai. Each of these data-storage locations has its own security, privacy, and manage-

ment policies. How can Ann enforce uniform access control policies on a photo with copies

7

Form of Data Control Loss Approaches for Recovering Control

1. Cloud data confidentiality [95, 83, 191, 18, 181, 43, 175, 177, 111]

2. Mobile data confidentiality [130, 153, 159, 3, 47, 199]

3. Controlled data sharing [156, 206]

4. Data access auditing Keypad, [178]

5. Access privacy [40, 41]

6. Data availability [87]

7. Data long-term persistence [104, 30, 31]

8. Assured data deletion Vanish, [138, 148, 149, 203, 27]

9. Data property customization Comet

10. Data organization and search Menagerie, [147]

Table 1.1: Data Control Challenges. Specific kinds of data control that users have ceded to the

cloud and mobile technologies and references to known approaches for recovery. Neither the prob-

lem set nor solution lists are meant to be complete. Bolded challenges are addressed in this thesis.

on Facebook, Picasa, and Mozy? How can she delete a document when copies of it are stored

in many, possibly unknown, email services?

1.2.3 Data Control Challenges, Potential Solutions, and Their Limitations

Table 1.1 shows specific data control challenges created by the lack of trust, customizability, and

uniformity in today’s cloud and mobile environments. The space of all possible challenges is enor-

mous, and this dissertation contributes techniques that address only a subset of them, as indicated in

the figure. For reference, the figure also includes citations for example techniques known to address

each challenge. A comprehensive solution list for challenges not addressed in this thesis is beyond

our scope; for the specific challenges addressed here, detailed related work discussions are deferred

to the respective chapters.

While the majority of identified problems have been addressed, we find that known techniques

are not complete solutions to any of the problems, as described below:

1. Cloud data confidentiality. As noted, protecting cloud data from unauthorized parties is

challenging. A malicious or buggy service may reveal information to unintended parties,

8

such as advertisers, legal authorities, and other co-residents. For example, a recent glitch in

DropBox’s authentication logic allowed any user to log in and access the data of any other

user [127], and Amazon EC2 instances have been found vulnerable to timing attacks by co-

residents [167]. Techniques to improve confidentiality include: different forms of encryption

with varied applicability (e.g., traditional encryption [95], searchable encryption [191], and

fully-homomorphic encryption [83]), distributing data and computation across multiple ser-

vices using threshold cryptography (e.g., secure multi-party computation [18] and threshold

secret sharing [181] for securely distributing computation and data, respectively), and using

trusted hardware to bootstrap greater assurance in the cloud [43, 111, 175, 177]. Unfortu-

nately, such techniques are not complete solutions. For example, even the most generally

applicable encryption scheme – fully-homomorphic encryption, a generic primitive that al-

lows the construction of services that operate on encrypted data – has been proven to have

limited applicability [211]. Similarly, trusted-hardware-based solutions require deployment

of special hardware and an identifiable trusted computing base in all clouds operating on the

user’s data. In today’s data-dispersed world, where data is forwarded and replicated across

many services and intermediaries (such as content delivery networks and Facebook applica-

tions), meeting this requirement is difficult.

2. Mobile data confidentiality. Maintaining confidentiality on mobile devices proves challeng-

ing, because the devices can be easily stolen or lost. Techniques to increase mobile data

confidentiality include encryption [130, 153, 159], using advanced authentication mecha-

nisms [3, 37, 47, 91, 102, 132, 199], and disabling data accesses after device loss is de-

tected [11, 97]. As will be shown, all of these data-protection techniques can and do fail in

the real world for a variety of reasons, including poor user policy configuration [224] and

physical attacks [90, 169]. We address these limitations by complementing data confidential-

ity protection with data access auditing in Keypad.

3. Controlled data sharing. Related to confidentiality, fine-grained, controlled sharing also chal-

lenges today’s inflexible Web services. For example, Ann may wish to restrict access to her

Facebook photos to only a subset of her friends, but Facebook’s access control scheme is too

9

coarse for her needs.2 For example, what if Ann wants to share her data only with users lo-

cated in the U.S.? Cryptographic techniques, such as attribute-based encryption [156], have

been developed to provide users with flexible access control despite inflexible cloud services.

4. Data access auditing. Ann may want to obtain a log of all accesses to her data. For example,

she could be legally required to maintain an audit log of all accesses to customer information

stored on various services and devices. Unfortunately, implementing this policy is challeng-

ing when her customer data is scattered across many untrusted online services and employee

laptops. One partial solution is secure logging [178], which lets users recognize a tampered

log provided they have access to that log. In many cases, however, simply recognizing tam-

pering may be insufficient (e.g., Ann may need to know exactly what was accessed even if

the thief has tampered with the log), and obtaining the log may be impossible (e.g., Ann may

never recover her stolen device). We therefore developed Keypad, a file system for mobile

devices that guarantees remotely accessible, accurate logs of data accesses on a stolen device

without assuming device recovery or connectivity post-theft.

5. Access privacy. Keeping various user actions private from “Big Brother” services can be

daunting. For example, Google can track when Ann works on her online documents, her lo-

cation, and with whom she collaborates. Private information retrieval (PIR) [40, 41] alleviates

this problem by letting users request data from a database without revealing what data they

requested. However, despite years of research, PIR remains extremely heavyweight [187].

6. Data availability. While availability is often cited as a cloud advantage, a cloud’s failure can

be catastrophic because it affects many users of potentially critical applications and individual

users cannot influence its recovery. Examples of cloud blackouts and their vast impacts on

businesses litter the news [13, 117, 121, 223]. Some have argued that cross-cloud redundancy

is needed to cope with massive cloud failures [87], though no such technical solutions exist

today.

7. Data persistence and integrity. Long-term persistence and integrity pose complex challenges

in the cloud. The cloud provider can change its policies over time, decide to drop long-

unaccessed data to save on storage costs, or go out of business altogether. Techniques to

2In response, Google+ recently introduced circle-based access control [206], which allows more fine-grained, config-
urable access control, though it is still unclear that this new scheme supports all possible user needs.

10

address such problems include proofs of recoverability [30, 104], which let an auditor effi-

ciently monitor the availability and integrity of cloud data without having to download it, and

black-box monitoring mechanisms for checking that a data object is sufficiently replicated in

the cloud [31].

8. Data deletion. Data destruction is as crucial as persistence [122, 144]. Unfortunately, deletion

is challenging in a world where data is replicated across many devices and services that fail to

guarantee deletion upon request. For example, Facebook does not erase data promptly after a

user request [38], nor in some cases does it do so after users close their accounts [189]. Tech-

niques for ensuring data deletion rely on encrypting data and destroying the key at deletion

time [27, 138, 148, 149, 203]. The common limitation among known techniques is their re-

liance on trusted centralized key services to delete data, which might raise significant concerns

for users: if users do not trust Facebook or Google to delete their data, why would they trust

a key service to do so? To alleviate trust assumptions, we built Vanish, a distributed-trust,

self-destructing system that combines threshold secret sharing with large-scale distributed

systems.

9. Data property customization control. As argued in our simple scenario, some users may need

more specific control over their data’s management. For example, Ann wants her financial

data to be stored only on US servers, her irreplaceable documents to always be replicated

on at least seven servers, and accesses to her health records to be tracked in a forensic log.

Support for such customization is rare given today’s inflexible Web services. We therefore

developed Comet, a system that provides extensibility to a specific type of cloud service – a

key/value storage cloud.

10. Data organization and search. Organizing data meaningfully is difficult when it is scattered

across many services and devices. For example, how can Ann find all client data when it is in

emails on Gmail, contracts on Google Docs, and financial records on Netsuite? We present

Menagerie, a system that provides uniform naming, protection and access interfaces to all

user data, thereby letting users to organize their scattered data into heterogeneous collections

that can be shared with friends and family.

11

1.3 Contributions

Through our work building systems to address some key difficulties encountered when using cloud

and mobile device environments, we have contributed many new techniques and insights. We now

briefly overview the context and motivation for our work on each system and present our specific

contributions to the goal of empowering users with control over their cloud and mobile data.

Keypad: Remote Access Control and Auditing for Stolen Devices. Traditional data protection

tools, such as encrypted file systems [70, 130], are insufficient to guarantee data confidentiality on a

stolen mobile device. For example, many users configure poor passwords; they write them down on

sticky notes; and they co-locate their smartcards with their mobile devices. Keypad enhances cur-

rent encrypted file systems through auditing and remote access control. First, Keypad’s fine-grained

file access auditing lets users obtain explicit evidence of whether any files have been accessed after

a device is lost. Second, users can disable future file accesses after realizing that a device is miss-

ing, even in the absence of device network connectivity. Keypad’s main contribution is to combine

encryption and remote key management to weave these two properties into the file object itself. By

encrypting files locally but storing decryption keys remotely, Keypad requires the involvement of

an audit server with every file access. By alerting the audit server to refuse to return a particular

file’s key, the user can prevent post-theft accesses. This problem space raises difficult performance,

privacy, and disconnection challenges. Keypad overcomes these challenges through novel combi-

nations of techniques from distributed systems (key caching, prefetching, and paired architectures)

and cryptography (identity-based encryption). Overall, Keypad demonstrates that, perhaps unintu-

itively, it is possible for a user to retain control over her data on a mobile device even after she loses

control over the physical device. Chapter 2 details Keypad’s design.

Vanish: Lifetime Control with Self-destructing Data. To address users’ inability to delete their

Web data, we built Vanish, a system that lets users control the lifetime of their data stored on un-

trusted Web services by providing a new abstraction, called self-destructing data [81, 80]. With

self-destructing data, users can time-limit Web data by specifying a timeout for it before uploading

it to the cloud. After the timeout, all copies of the self-destructing data object will become forever

unreadable without any explicit user action and regardless of whether the Web services cooperate.

To create the self-destruction mechanism without having to trust any centralized services, Vanish

12

encrypts the data with a symmetric key, breaks the key into pieces, and scatters the pieces across

nodes in a large-scale, distributed-trust, peer-to-peer system. The nodes are designed to indepen-

dently erase key pieces after a specified time. Until the timeout, data can be decrypted by retrieving

the key pieces and reconstructing the key. After the timeout, however, key pieces will have dis-

appeared, rendering the data forever undecryptable. Chapter 3 describes Vanish, our experience

with building it on top of an existing commercial, million-node, peer-to-peer system – the Vuze

distributed hash table (DHT) – and subsequent redesigns of the DHT to better accommodate the

Vanish goals.

Comet: Cloud Storage Customization with Active Storage Objects. Whether trusted or not,

today’s provide users with very little control over their data. We built Comet, an extensible storage

service, to support user-specific customization of trusted cloud storage services by providing a new

abstraction, called an active storage object (ASO) [82]. Using Comet, clients store ASOs into the

service instead of passive data. An ASO contains a piece of code that controls the object’s behavior

inside the storage system, in addition to the data. For example, the active code in a Comet ASO

can control the data’s lifetime, its replication scheme, or its access control policies. An ASO can

also perform its own application-specified filtering or forensic logging. In Comet, we built upon

extensible systems concepts and language sandboxing mechanisms to create a secure, customizable

storage service. Chapter 4 describes Comet’s design, which can be viewed as a case study for how

to build extensibility into today’s inflexible Web services.

Menagerie: Unified Web-data Control. To address the data management challenges created by the

data’s dispersion across the Web, we describe Menagerie, a system that provides users with uniform

control over their Web data [77]. Today, it is extremely difficult to gather all of the data related to

a recent trip (e.g., photos, videos, documents, and so on), archive it into a uniform collection, and

share that collection with friends and family: each Web service presents its own data access interface

and protection scheme, which thwarts integration. With Menagerie, users can build heterogeneous

collections of their Web objects, share these collections with other users, and process them uniformly

with various applications. Menagerie’s key contribution is to impose a uniform naming, protection,

and access interface, which helps create generic applications for personal data organization on the

Web. Menagerie’s design is detailed in Chapter 5.

13

Overall Contribution. At the highest level, our work demonstrates that carefully designed ab-

stractions and mechanisms can help recover some of the lost data control without sacrificing the

advantages of new technologies. Each contributed system should be considered as a case study for

how to recover one specific aspect of data control.

A useful mechanism for recovering control is the introduction of self-managing data abstrac-

tions – such as Vanish’s self-destructing data abstraction, Comet’s active storage objects, and Key-

pad’s audited files – in which the data object itself is extended to provide desired data control

properties. Traditionally, data management policies, such as data retention, replication, and foren-

sics policies, are implemented as properties of the system storing that data, such as the file system

on a mobile device or a Web service’s persistent data store. With self-managing data, such policies

are organically built into the data object itself and do not depend on the storage system’s explicit

support. For example, self-destructing data objects disappear on their own after a pre-specified time

regardless of service-side cooperation; active storage objects encapsulate arbitrary policies of how

the data is handled in a storage service; and with audited files, remote access control and auditing

are properties guaranteed by the data object itself and not by the software running on the device. Our

experience shows that self-managing data abstractions are an effective approach for regaining con-

trol over various aspects of the users’ data when it is stored on untrusted, inflexible, or non-uniform

locations, such as cloud services and mobile devices.

14

Chapter 2

KEYPAD: REMOTE ACCESS CONTROL AND AUDITING
FOR THEFT-PRONE DEVICES

This chapter presents Keypad, an auditing file system for theft-prone devices, such as laptops,

tablets, and USB sticks. Keypad was originally described in a 2011 paper [79]. We begin by

providing a high-level overview of Keypad’s motivation and architecture.

2.1 Motivation and Overview

As described in Chapter 1, mobile devices, such as laptops, tablets, and USB memory sticks, cre-

ate not only great advantages but also significant risks due to their susceptibility to theft and loss.

The loss of such devices is most concerning for organizations and individuals storing confidential

information, such as medical records, social security numbers (SSNs), and banking information.

Conventional wisdom suggests that standard encryption systems, such as BitLocker [130], PGP

Whole Disk Encryption [153], and TrueCrypt [70], can protect confidential information. However,

encryption alone is sometimes insufficient to meet users’ needs. Two reasons are relevant for this

discussion. First, traditional encryption systems can and do fail in the world of real users. As

described in the seminal paper “Why Johnny Can’t Encrypt” [224], security and usability are often at

odds. Users find it difficult to create, remember, and manage passphrases or keys. As an example, a

password-protected USB stick containing private medical information about prison inmates was lost

along with a sticky note revealing its password [176]. Encrypted file systems often rely on a locally

stored key that is protected by a user’s passphrase. User passphrases are known to be insecure; a

recent study of consumer Web passwords found the most common one to be “123456” [96]. Finally,

in the hands of a motivated data thief, devices are open to physical attacks on memory or cold-boot

attacks [90] to retrieve passphrases or keys. Even physical attacks on TPMs and “tamper-resistant”

hardware are possible [7, 169].

Second, when encryption fails, it fails silently; an attacker might circumvent the encryption

15

without the data owner ever learning of the access. The use of conventional encryption can therefore

lead mobile device owners into a false sense of protection. For example, a hospital losing a laptop

with encrypted patient information might not notify patients of its loss, even if the party finding the

device has circumvented the encryption and accessed that information.

This chapter presents the design, implementation, and evaluation of Keypad, a file system for

loss- and theft-prone mobile devices that addresses these concerns. The principal goal of Keypad is

to provide explicit evidence that protected data in a lost device either has or has not been exposed

after loss. Specifically, someone who obtains a lost or stolen Keypad device cannot read or write

files on the device without triggering the creation of access log entries on a remote server. This

property holds even if the person finding the device also finds a note with the device’s encryption

password.

Keypad’s forensic logs are detailed and fine grained. For example, a curious individual who

finds a laptop at the coffee shop and seeks to learn its owner might register audit records for files in

the home directory, but not for unaccessed confidential medical records also stored on the device.

However, the professional data thief will register accesses to all of the specific confidential medical

files that they view. Furthermore, Keypad lets device owners disable access to files on the mobile

devices once they realize their devices have been lost or stolen, even if the devices have no network

connectivity, such as USB memory sticks (in contrast to systems like Apple’s MobileMe).

Keypad’s basic technique is simple yet powerful: it tightly entangles the process of file access

with logging on a remote auditing server. To do this, Keypad encrypts protected files with file-

specific keys whose corresponding decryption keys are located on the server. Users never learn

Keypad’s decryption keys and thus they cannot choose weak passwords or accidentally reveal them;

it is therefore computationally infeasible for an attacker to decrypt a file without leaving evidence

in the log. When a file operation is invoked, Keypad logs the file operation remotely, temporarily

downloads the key to access the file, and securely erases it shortly thereafter. Keypad is implemented

on top of a traditional encrypted file system; obviously users should choose strong passwords (or

use secure tokens, etc.) for that underlying file system, but Keypad provides a robust forensic trail

of files accessed even if users choose weak passwords or the traditional system’s keys are otherwise

compromised.

While conceptually simple, making this vision practical presents significant technical challenges

16

and difficult tradeoffs. For example, neither the user nor Keypad can predict when a device will be

lost or stolen. As a result, the system must provide both an accurate fine-grained forensic record,

which is critical after loss, and acceptable performance, which is critical prior to loss.

The tension between performance and forensics is pervasive. As an example, consider the cre-

ation of a file. For forensic purposes, a naı̈ve Keypad architecture might first pre-register newly

created files and their corresponding keys with the remote server prior to writing any new data to

those files. However, pre-registration would incur at least one full network round-trip, which could

be problematic for some workloads over slow mobile networks, such as 3G or 4G. Delaying the

registration is an obvious optimization, yet doing so would leave a loophole that a device thief could

exploit to access files without triggering a log entry in the remote server. Overall, our experience

demonstrates that we can achieve both forensic fidelity and acceptable performance by combin-

ing conventional systems techniques with techniques from cryptography, including identity-based

encryption [26, 182].

The remainder of this chapter is organized as follows. We begin with a list of motivating exam-

ples and goals in the remainder of this section. Keypad’s architecture is presented in Section 2.3 and

its implementation in Section 2.4. Section 2.5 provides a detailed evaluation of our prototype and

Section 2.6 discusses its security. Section 2.7 reviews related work and we conclude in Section 2.8.

2.1.1 Example Scenarios

Keypad is designed to increase assurances offered to owners of lost or stolen mobile devices. The

mobile devices might have computational capabilities (e.g., laptops and phones) or might be simple

storage devices (e.g., USB sticks). We view Keypad as particularly valuable to users storing personal

or corporate documents, banking information, SSNs, medical records, and other highly sensitive

data.

To illustrate the need for Keypad, we extend the simple example scenario defined in Sec-

tion 1.2.1. Bob, an employee in Ann’s company, carries a company laptop that stores documents

containing trade secrets and sensitive customer information (such as credit card numbers). The com-

pany’s IT department installs Keypad on the laptop, configuring it to track all accesses to files in

her “company documents” folder. After returning to his hotel from a two-hour dinner, Bob notices

17

that her laptop is missing. He immediately reports the loss to the IT department, which disables any

future access to files in the “company documents” folder. The IT department also produces an audit

log of all files accessed within the two-hour window since he last controlled his laptop, confirming

that no sensitive files were accessed. If needed, Ann, the business owner, can instruct the legal

department to use that confirmation in court to prove that the company laptop’s loss has led to no

customer data disclosures.

As a second example, at tax preparation time, Charlie scans all of her personal tax documents,

places them on a USB stick, encrypts it with a password, and physically hands the stick and pass-

word to his accountant. A few weeks later, Charlie can no longer find his thumb drive and can’t

remember whether his accountant kept it or whether he lost it in the intervening weeks. Fortu-

nately, Charlie’s stick was monitored with Keypad and Charlie uses a Web service provided by his

drive manufacturer to view an audit log of all accesses to the drive. He sees that there were many

accesses to his tax files over the previous week and he learns the IP addresses from which those

accesses were made. Charlie therefore places fraud alerts on his financial accounts and notifies the

appropriate authorities.

In these scenarios, users benefit from additional advantages that Keypad has over traditional

encrypted file systems. First, Keypad provides highly accurate, remotely readable forensic records

of which files were accessed post-loss. If a file does not appear in those records, that suggests that

no one accessed the file after device loss; if a file does appear in those records, this suggests that data

was accessed and the owner should take appropriate mitigating actions. Second, by preventing key

access, Keypad can prevent adversaries from accessing protected files post-loss, even in the absence

of network connectivity, e.g., for a disconnected USB stick or an extracted laptop hard drive.

2.2 Goals and Assumptions

Figure 2.1 shows a high-level timeline of three periods in the life of a lost or stolen device, along

with the properties the user requires during each. First is the normal use period during which the

user has control of her device. The user loses control of the device at Tloss; however, the user may

not know exactly when this occurs, so she must consider Tloss to be the last point at which she

remembers having control. Tnotice is the time at which the user realizes that she has lost her device,

18

time

use period exposure period destructed FS

Performance
Transparency

Fine-grained,
robust auditing

Remote control

T
loss

T
notice

Figure 2.1: Timeline of Theft/Loss. This timeline shows the two critical events during the lifetime

of a device: the device loss and the user noticing that the device has been lost. For each period, we

enumerate the Keypad properties that matter in that period.

at which point she should take action. In our Alice scenario, the exposure period (Tloss to Tnotice)

is the full two-hour dinner window.

Our primary Keypad goal is to provide strong audit security. If an adversary gains control of

a device and accesses a Keypad-protected file, at least one audit log entry should be produced on

a remote audit server. Further, the adversary cannot tamper with the contents of the audit log or

otherwise make it unavailable to the victim. Specifically, our goals are:

• Robust auditing semantics: Keypad must provide robust semantics by preventing unrecorded file

accesses. To achieve this, the remote auditing server must observe data and metadata operations

performed on the client.

• Performance: File access latency and throughput should be acceptable for Keypad-protected

data. We mainly target office productivity and mobile workloads, rather than server- or engineering-

oriented workloads. We also assume multiple network environments: at the office (LANs), at

home (broadband), and on the road (3G or 4G). We seek minimal overhead at work or home,

but will tolerate some increased latency in challenging mobile environments in exchange for

Keypad’s properties.

• Fine granularity: Keypad should produce detailed access logs of read and write accesses to

individual Keypad-protected files. Administrators can control the granularity and coverage of

these logs; e.g., configuring Keypad to produce audit logs for an entire file system or only for

specific files identified as sensitive.

• User transparency: We assume that users are not technically sophisticated; therefore, Keypad’s

19

operation should be largely transparent to them and its auditing security should be independent

of users’ technical competence.

• Remote access control: The victim should be able to disable access to protected files after device

loss, even if the device has no network or computational capabilities. If an adversary has not yet

accessed a protected file, then disabling access prevents any access to the file in the future. If an

adversary has already accessed the file, we provide no guarantees about repeat accesses.

These goals mean that device owners will have accurate information about which files have

been accessed post-loss. While we will consider optimizations that may introduce extra entries in

the audit log, maintaining a zero false-negative rate is critical. If a file does not appear in the audit

log, then one can confidently say that the file was not accessed. In addition, these audit goals must

hold after Tloss even if an attacker uses his own software and hardware (and not Keypad) to access

the files stored on the device.

We also have several non-goals for Keypad. First, we do not attempt to ensure the device’s

physical or software integrity after theft/loss. If a user recovers a lost device, he should assume

that it has been tampered with, and inspect and reinstall the device from scratch to ensure that

no keyloggers or malware have been installed. Second, Keypad deals with device theft/loss that

is detectable by a user, and not with surreptitious attacks where an adversary might undetectedly

access data on a user’s device while he is away. This excludes evil-maid attacks from our threat

model [205].

Third, Keypad ensures auditability and remote control solely at the file system interface level.

Auditability and control of clear-text data cached in applications’ memories is out of Keypad’s

scope. Fourth, we do not seek to improve the confidentiality of protected files over traditional en-

cryption. Instead, Keypad provides a secure audit log of file accesses if that traditional encryption

fails. Finally, we do not guarantee that users can always access Keypad-protected files in the ab-

sence of network connectivity (which we consider increasingly rare, given ubiquitous cellular and

WiFi networks). However, we do introduce a “paired-device” mechanism to mitigate the impact of

disconnection while still maintaining auditability.

20

2.3 Keypad Architecture

Keypad augments encrypted file systems with two properties: auditability and remote data control.

The basic idea is simple yet powerful. Keypad: (1) encrypts each file with its own symmetric key,

(2) stores all keys on a remote audit service, (3) downloads the key for a file each time it is accessed,

and (4) destroys the key immediately after use. This approach supports our auditability and remote

data control goals. By configuring the audit service to log all storage accesses, we obtain fine-

grained auditability; by disabling all keys associated with a stolen device on the service, we prevent

further data access.

Despite its simplicity, designing a practical file system to achieve our goals poses three chal-

lenges. First is performance: each file access requires a blocking network request, which could

harm application performance and responsiveness over high latency cellular networks. Second is

disconnection: involving the network on all file accesses prohibits file use during network unavail-

ability. While we treat this as an exception, we still wish to support disconnected operation. Third

is metadata: an auditor requires user-friendly, up-to-date metadata for each key to interpret access

logs appropriately. As will be shown, efficiently maintaining metadata is complex, but possible.

This section shows how Keypad’s design addresses these three challenges.

2.3.1 Architectural Overview

Figure 2.2 shows Keypad’s architecture. On the client device, each file F has a unique identifier

(called the audit ID – IDF) stored in its header, and the file’s data is encrypted with a unique

symmetric key, KF . A remote key service maintains the mappings between audit IDs and keys.

When an application wants to read or write a file, Keypad looks up the file’s audit ID in its header

and requests the associated key from the service. Before responding to the request, the service

durably logs the requested ID and a timestamp. This process ensures that after Tnotice, the user will

be able to identify all compromised audit IDs for which there is a log entry after Tloss.

In addition to the key service, Keypad contains a metadata service that maintains information

needed by users to interpret the logs. The information (called file metadata) includes a file’s path,

the process that created it, and the file’s extended attributes. The metadata and key services fulfill

conceptually independent functions; they could be run by a single provider or by distinct providers.

21

metadata service

IDF MF

key service

IDF KF

application

access log

file metadata
(e.g., file path)

Keypad FS

FS operations

key requests

metadata updates

network
IDF

encrypted
file F (KF)

client device
(trusted prior to loss)

audit services
(trusted)

Figure 2.2: The Keypad System Architecture. Each file is encrypted with its own random sym-

metric key. Keys are stored remotely on a key service. To enable forensics, a (separate) metadata

service stores file metadata.

Using distinct providers helps to mitigate privacy concerns that could arise if a single party tracked

all file access information. The key service sees only accesses to opaque IDs and keys, while

the metadata service learns the file system’s structure, but not the access patterns. Thus, privacy-

concerned users can avoid exposing full audit information to any audit service by using different

key and metadata providers.

To meet our goal of robust auditing semantics, Keypad must carefully manage file metadata. For

example, when an application creates a new file with name G, Keypad: (1) locally allocates an IDG

for the file, (2) sends a request to the key service to create a new key KG and bind it to IDG, and

(3) sends a request to the metadata service to register the name G with IDG. While steps 2 and 3

can occur concurrently, Keypad must confirm that both requests complete before it allows access

to the new file. This ensures that file metadata is associated with keys prior to Tloss, so that any

compromised keys can be correlated with their metadata after Tnotice.

Similarly, during a file’s lifetime, Keypad must keep the service’s metadata current to ensure that

a user will have fresh information in case of compromise. For example, whenever an application

renames a file, Keypad sends a metadata-update request to the metadata service. Keypad must

22

ensure that a thief cannot overwrite the user’s metadata with bogus information after theft. For this

reason, we implement the metadata store as an append-only log.

2.3.2 Semantics and Challenges

Keypad provides users with strong auditing semantics at audit time (i.e., post Tloss). We formulate

an ideal invariant describing these semantics as follows:

For any file F with identifier IDF that was accessed after

the following properties hold:

 (1) the key service shows an IDF log entry after , and

 (2) the metadata service shows all metadata updates that
 occurred on IDF

before .Tlo s s

Tlo s s

Tlo s s

For (2), the metadata server must contain the latest file metadata (such as file pathname or other

attributes) that the user assigned to the file. For example, suppose a user has downloaded a blank

IRS tax form into /tmp/irs form.pdf, renamed it as /home/prepared taxes 2011.pdf, and

filled it with sensitive information. Then, at forensics time, the user will need to have this latest

path available on the service side to interpret a compromise of the taxes file accurately. Hence,

maintaining up-to-date service-side metadata is vital to enable meaningful forensics.

In theory, we could achieve semantics arbitrarily close to this ideal invariant. If Keypad down-

loaded a file’s key every time a block in the file is accessed and erased the key from memory im-

mediately after using it, then we would obtain the first part of the invariant. Similarly, if Keypad

waited for every metadata update to be acknowledged by the metadata service before completing

that operation on the local disk, then we would obtain the second part.

In practice, however, achieving the ideal invariant is challenging at best. If Keypad must wait a

full network round-trip for every block access and for every metadata operation (e.g., rename), then

the system would be unacceptably slow over high-latency networks. Similarly, disconnected access

would be impossible. The remainder of this section describes a combination of new techniques

and re-purposed traditional mechanisms that help overcome these challenges. While each technique

slightly weakens the invariant, we believe that the semantics remain clear and easy to grasp, and that

we achieve our goals in nearly all realistic cases.

23

2.3.3 Encryption Key Caching and Prefetching

Many of Keypad’s critical-path operations are remote key-fetching requests, e.g., issued whenever

an application performs a file read or write. The number of such key requests can be minimized

using standard OS mechanisms, such as caching and prefetching. For instance, instead of erasing

a key immediately after use, Keypad can cache it locally. Similarly, on access to a file F , Keypad

can prefetch keys for other related files, such as those in the same directory. Key caching and

prefetching remove key retrieval from the critical path of many file accesses, dramatically improving

performance (Section 2.5).

While caching and prefetching are well understood, they have non-standard implications in our

system. First, these techniques cause keys to accumulate in the device’s memory, affecting what

users can deduce from the audit log of a lost device. Keys that are cached at time Tloss are susceptible

to compromise: if an adversary can extract them from memory he can permanently remember those

keys and bypass audit records for those files. The victim must thus make the worst-case assumption

that all keys cached at Tloss are compromised. Second, key prefetching creates false positives in the

audit log: some prefetched keys may not be used, although records for those keys will appear in the

logs.

Keypad must therefore use caching and prefetching carefully to ensure good auditing semantics.

For caching, we impose short lifetimes (Texp) on keys and securely erase them at expiration. This

bounds key accumulation in memory; the shorter the Texp, the fewer keys will be exposed after Tloss.

Experimentally, we find that key expirations as short as 100 seconds reap most of the performance

benefit of caching, while exposing relatively few keys in memory at a given time. For prefetching,

we designed a simple scheme to prefetch keys only when a file-scanning workload is detected (e.g.,

recursive file search or file hierarchy copying). This benefits file-system-heavy workloads where

prefetching is the most useful, while maintaining high auditing precision for light workloads (e.g.,

interacting with a document). We discuss further prefetching alternatives in Section 2.4.

Key caching and prefetching alter Keypad’s auditing semantics in a clear way: a user must now

consider as compromised all files with audit records after Tloss − Texp. Doing so ensures that the

user will never experience false negatives. Hence, these techniques alter the invariant introduced in

Section 2.3.1 in the following way: key and metadata service information must be present for any

24

Keypad metadata

service

call from app: rename(F, G)

IDF, G

OK

save IDF, G

rename F to G on disk

call from app: read(G)

Keypad metadata

service

IDF, G

save IDF , G

KG
IBEreturn from rename

rename F to G on disk

call from app: read G

return from rename

call from app: rename(F, G)

encrypt KF
D on disk with IBE

generate IBE

private key for
<IDF , G> (KG

IBE)

decrypt KF
D on disk with IBE

(in background thread)
return from read

return from read

timetime time time

(a) Without IBE (b) With IBE

Network RTTs

Network RTTs

Figure 2.3: Timelines for Handling Metadata Operations without IBE (a) and with IBE (b).

The application is assumed to issue a rename(F, G) followed by a read(G). Assuming that a

copy of F ’s decryption key is cached in memory, IBE allows overlap of accesses to F with the

metadata service request until the cached key times out (1 second in our system).

file F that was accessed after Tloss − Texp. In Section 2.5.2 we quantify the effects of caching and

prefetching on auditing.

2.3.4 Identity-Based Encryption for Metadata Updates

Metadata-update file system operations (such as file create and rename) account for a significant

portion of file system operations in many workloads. For example, an OpenOffice file save invokes

11 file system operations, of which 7 are metadata operations that create and then rename tempo-

rary files. This large number of metadata operations would result in poor performance over slow

networks if Keypad were to wait for an acknowledgement from the metadata service upon every

metadata update before committing the update to disk, as required by our ideal auditing semantics.

Figure 2.3a shows this scenario.

Overlapping local metadata updates with remote metadata service updates seems like a tempt-

ing optimization, however, it opens Keypad to possible attacks and frustrates our semantics. For

example, consider a user who creates a new file called /home/taxes 2011, writes sensitive tax

information inside, and closes the file and editing application. Suppose that due to network failures

the create request does not reach the metadata service and therefore the service does not learn the

25

new file’s name. If a thief steals the device and reads the tax file ten minutes later, the access will

produce an audit trail on the key service; however, no file metadata will be available for the user to

interpret the log. Worse, the thief could block Keypad’s metadata retries and send a bogus request

to the service, e.g., declaring the new file’s path as /tmp/download to mislead the user.

To respond to this challenge, Keypad leverages identity-based encryption (IBE) [26, 182] in a

way that both eliminates the network from the critical path of metadata updates and retains its strong

auditing semantics. IBE allows a client to perform public-key encryption using any key string it

chooses as the public key. A server called a private key generator (PKG) is required to generate the

decryption key for the arbitrary public key. Most importantly for our use, the PKG need not know

the public key string in advance, but the public key string must be provided to the PKG to learn the

decryption key.

We modified Keypad to use IBE as follows. First, we add a level of indirection for file encryption

keys. A file F ’s content is encrypted using a locally-generated random data key (denoted KD
F) stored

in the file’s header. The data key is itself encrypted under the remote key, which in turn is stored on

the key server. Section 2.4 provides more detail.

Second, Keypad’s metadata service acts as a PKG, as shown in Figure 2.3b. When an application

invokes a metadata operation (such as rename) for a file F , Keypad “locks” its encrypted data key

KD
F in the on-disk file header by encrypting it with IBE, using the new file’s pathname as the public

key string. While the metadata request is in flight, reads and writes can proceed as long as a copy

of the file’s cleartext data key KD
F is cached in memory. Because files with metadata updates in

flight are vulnerable to attacks, we reduce the key expiration time for such files to the bare minimum

necessary to hide network latencies on cellular networks. For example, our prototype expires cached

keys with in-flight metadata updates in one second, minimizing attack opportunity. After the cached

key times out, the file is essentially “locked” on disk by the IBE encryption, preventing subsequent

file accesses until the metadata service confirms its success. On confirmation, the metadata service

returns the IBE private key, allowing Keypad to “unlock” the file.

Suppose an attack or network failure prevents the service from registering the new metadata and

subsequently the device is stolen. In the (extremely likely) case that the theft occurred more than

one second after the user’s rename request, the file’s cached data key will have expired and the thief

will need to obtain the IBE private key in order to unlock the file for access. As a result, the thief is

26

metadata service

IDF MF

key service

IDF KF

application

access log

file metadata

(e.g., file path)

Keypad FS

FS operations

IDF

encrypted
file F (KF)

client device

(trusted prior to loss)

audit services

(trusted)

file metadata access log

bluetooth

keys,

metadata

Figure 2.4: Paired-device Architecture. By pairing a laptop with a mobile phone, Keypad supports

disconnected operation and may even improve performance.

forced to supply the correct file pathname to the metadata service if he desires to read the file; lying

or avoiding the metadata update will prevent him from gaining access. Therefore, the thief cannot

access the file without causing an audit record associated with correct and up-to-date metadata to be

logged on the corresponding audit services.

2.3.5 Using Paired Devices for Disconnected Access

Although disconnected operations are assumed to be the exception rather than the rule, Keypad must

still support them. One option is to cache keys for an extended period of time and accumulate meta-

data registrations locally. However, this forces the user to give up auditability for the disconnected

duration, which can be dangerous. Further, caching is not applicable to storage-only devices like

USB sticks. To address this issue, we developed a paired-device extension to Keypad that supports

disconnected operations without sacrificing auditability semantics.

Many of today’s users carry multiple devices when they travel, such as a laptop as well as a smart

phone or a tablet. These devices support short-range, low-latency networks, such as Bluetooth. The

paired-device architecture, shown in Figure 2.4, uses a cell phone as a transparent extension of

27

the Keypad key and metadata services. Keypad on the laptop is configured as usual, using strict

caching, prefetching, and metadata registration policies to ensure fine-grained auditing. The phone

is configured to hoard [108] any recently used keys, cache them until connectivity is restored, log

any accesses and metadata updates to the local disk, and upload the logs when connectivity returns.

If only the laptop is lost, the phone is used along with the audit service logs to provide a full audit

trail. If the phone is stolen along with the laptop, then the audit service will list more files as exposed

than if the laptop were stolen alone.

In addition to supporting (increasingly rare) disconnected cases, the paired-device architecture

has another advantage: it can improve performance over slow mobile networks without sacrificing

auditing. Because the laptop–phone link is relatively efficient, the paired phone can improve lap-

top performance by acting as a cache for it. Here the phone is configured to perform aggressive

directory-level key prefetching and caching. On a key miss, the laptop contacts the phone via blue-

tooth and the phone returns the key, if available; otherwise the phone fetches the missed key and

other related keys from the key service and returns the key to Keypad. Section 2.5 evaluates the

performance improvement for this solution. As before, auditing properties are preserved if only the

laptop is stolen. If both devices are stolen, then auditing is at a directory-level granularity.

2.3.6 Partial Coverage

Not all files necessarily require audit log entries. For example, as a trivial optimization we could

exclude non-sensitive files such as binaries, libraries, and configuration files from Keypad’s audited

protection domain. In this scenario protected files are encrypted locally and their keys and metadata

are stored remotely; unprotected files are (optionally) encrypted locally, but their encryption keys

are derived from the user’s login credentials.

The benefits of this optimization are obvious: Keypad’s performance and availability costs are

only incurred for protected files. There is also a risk: if a sensitive file is accidentally placed in

an untracked file or directory, the audit logs will not reveal accesses to that sensitive data. One

reasonable protection policy is to track accesses to any file in crucial directories, such as the user’s

home and temporary directory (e.g., /home and /tmp on Linux).

28

2.3.7 Summary

Keypad provides strong guarantees to its users. If a protected file is accessed, then at least one

record related to that access will appear in the remote audit logs, and up-to-date metadata about

the file will be available online. As we have shown, one challenge Keypad faces is preserving this

strong property while overcoming the performance impact of communicating with remote services

in the critical path of file accesses. We introduced a series of novel techniques to meet this challenge.

Though some of these techniques have an impact on the quality of the information in the audit logs,

we show in Section 2.5.2 that this impact is small.

2.4 Prototype Implementation

We implemented a Keypad prototype including the client-side Keypad filesystem, the key service,

and the metadata service as shown in Figure 2.2. All components are coded in C++ and communi-

cate using encrypted XML-RPC with persistent connections. Our client-side Keypad file system is

an extension of EncFS [64], an open-source block-level encrypted file system based on FUSE [75].

EncFS encrypts all files, directories, and names under a single volume key, which is stored on disk

encrypted under the user’s password. Keypad extends EncFS in two ways. First, we modified EncFS

to encrypt each file with its own per-file key. The single volume key is still used, however, to protect

file headers and the file system’s namespace, e.g., file and directory names. Second, Keypad stores

all file keys on a remote key server and maintains up-to-date metadata on a metadata server. To sup-

port forensic analysis we built a simple Python tool; given a Tloss timestamp and an expiration time,

Texp, the tool reconstructs a full-fidelity audit report of all accesses after Tloss−Texp, including full

path names and access timestamps.

Keypad File Structure. Figure 2.5(a) shows the internal structure of a Keypad file F , which con-

sists of two regions: the file’s header and its content. The file’s header is fixed size and is encrypted

using EncFS’ volume key. For the file’s content, our implementation adds a level of indirection

for encryption keys to support techniques such as IBE efficiently. Specifically, file F ’s content is

encrypted using a 256-bit random data key, denoted KD
F . The data key is stored in the file’s header

encrypted under the remote key, denoted KR
F . The remote key is stored on the key server and is

identified by the file’s audit ID (IDF), which is a randomly generated 192-bit integer that is stored

29

Fi
le

 H
e a

de
r

IDF

DKFKR
F

Enc ()

Enc (data)DKF

Fi
le

 C
o n

te
nt

(a) Keypad File.

IDF

DKFKR
F

IBE (Enc ())

Enc (data)DKF

F+IDFF
ile

 H
e a

d
er

F

ile
 C

o
nt

en
t

(b) IBE-Locked File.

Figure 2.5: Keypad File Formats. Keypad on-disk file structure for the normal case (a) and the

IBE-locked case (b).

in the file’s header along with the encrypted data key. This internal file structure is transparent to

applications, which see only the decrypted contents of a file.

FS Operations. Keypad intercepts and alters two types of EncFS operations: file-content operations

(read, write) and metadata-update operations (create, rename for files or directories). When

an application accesses file content, Keypad: (1) looks up the file’s audit ID from its header, (2)

retrieves the remote key KR
F , either from the local cache or the key service, (3) decrypts the data

key KD
F using KR

F , (4) caches KD
F temporarily, and (5) decrypts/encrypts the data using KD

F .

When an application creates or updates file metadata, Keypad: (1) locks the data key using IBE,

if enabled, and (2) sends the new metadata to the metadata service. The metadata is the file’s path

reported as a tuple of the form directoryID/filename. The names of Keypad directories are

also kept current on the metadata service. While our current prototype applies IBE for file metadata

update operations (e.g., file create, rename), it does not apply it to directory metadata operations

(e.g., mkdir or directory rename), although this should be possible to add.

Key Expiration. Keypad caches keys for a limited time for performance. A background thread

purges expired keys from the cache. If a key has been reused during its expiration period, the thread

requests the key from the key service again, causing an audit record to be appended to the access log

for that audit ID. If a response arrives before the key expires, the key’s expiration time is updated

in the cache, otherwise the key is removed. As a result, absent network failures, keys in Keypad

never expire while in use. This ensures that long-term file accesses, such as playing a movie, will

not exhibit hiccups due to remote-key fetching.

30

Key Prefetching. Key prefetching attempts to anticipate future file accesses by requesting file keys

before the files are accessed. For our prototype, we sought a simple policy that would have both

reasonable performance and little impact on auditability. We have experimented with two policies:

(1) a random-prefetch scheme that prefetches random keys from the local directory upon every key-

cache miss and (2) a full-directory-prefetch scheme that prefetches all keys in a directory when

it detects that the directory is being scanned by an application. Our experiments indicated that

the latter policy provided equally good performance, while incurring fewer false positives in the

audit logs. Hence, our Keypad prototype uses it by default. The intuition behind our full-directory

prefetch design is to avoid producing false positives for targeted workloads (such as interacting

with a document, viewing a video, etc.) and to improve performance for scanning workloads (such

as grepping through the files in a directory or copying a directory). Our full-directory-prefetch

scheme avoids recursive prefetches to ensure that any false positives are triggered by real accesses

to (related) files in the same directory. While other more effective prefetching policies may exist, our

results show that our full-directory-prefetch policy, combined with our caching policies, reduce the

number of blocking key requests to a point where the performance bottleneck shifts from blocking

key requests to metadata requests (see Section 2.5).

IBE. To avoid blocking for metadata-update requests, our prototype implements IBE-based meta-

data registration, using an open-source IBE package [145]. On a metadata-update operation, Keypad

locks the file until the metadata service confirms the receipt of the new file path; however, file op-

erations can proceed for a one-second window, as previously described, to absorb network latency.

Figure 2.5(b) shows the structure of an IBE-locked file. Its encrypted data key is further encrypted

using IBE under a public key consisting of the file’s path (directoryID/filename) and the

audit ID (IDF). Embedding IDF into the public key strongly binds IDF and the path together at

the metadata server. Handling updates for other types of file metadata functions (such as setfattr)

works similarly, although our current prototype only supports pathnames as metadata. An attacker

cannot pre-obtain private IBE keys for popular file paths from the metadata server prior to stealing

the device, because directory and file IDs are drawn at random from a gigantic space (2192).

Android-Based Paired-Device Prototype. We implemented a prototype of the paired-device ar-

chitecture (Figure 2.4) using the Google Nexus One phone. A simple daemon (431 lines of Python)

31

on the phone accepts key requests from the laptop over Bluetooth, saves accesses to a local database,

responds to the laptop, and uploads access and metadata information to Keypad servers in bulk over

wireless. It leverages the key derivation mechanism to easily fetch directory keys upon a key-cache

miss. For example, when the laptop requests a file key, the Nexus will fetch the parent directory’s

key from the key server, cache it, compute the file’s key by applying HMAC to the directory key,

and return the file key to the laptop. Thus, when pairing with the Nexus, the key server provides

directory-level auditing, while the phone offers fine-grained auditing.

2.5 Evaluation

This section quantifies Keypad’s performance and auditing quality. Keypad must be fast enough

to preserve the usability of desktop and mobile applications, even in the face of adverse network

conditions (e.g., 3G), while providing high quality auditing.

For our experiments, we used an eight-core 2GHz x86 machine running Linux 2.6.31 as our

client. Our key service and name service daemons ran on 8 core 2.6GHz servers with 24GB of

RAM, connected via gigabit Ethernet. We used Linux’s traffic control utility to emulate different

network latencies. We did not emulate different bandwidth constraints, however, Keypad’s band-

width requirements are very low. During a 12-day period in which one of our authors used Keypad

continuously, average Keypad bandwidth was under 5 kb/s, with occasional spikes up to 45 kb/s.

Throughout the evaluation, we emulate the following RTTs for various networks: 0.1ms RTT

for a LAN, 2ms RTT for a wireless LAN (WLAN), 25ms RTT for broadband, 125ms RTT for a

DSL network, and 300ms RTT for a 3G cellular network. To illustrate network latency effects on

Keypad performance, we often use examples from extreme network conditions, such as fast LANs

and slow 3G networks, even though popular mobile connections today rely on WLAN and 4G.

2.5.1 Performance

To understand where the time goes for Keypad operations, we microbenchmarked file content (read

and write) and metadata (create, rename, and mkdir) operations. Our measurements in-

cluded client, server, and network latencies, as well as latency contributions for EncFS and Keypad.

Figure 2.6(a) shows the latency of file read and write operations for two cases: key-cache misses,

32

0.505 0.337
0.587 0.453

1.322 1.302

300 300

0.1

1

10

100

1000

LAN 3G LAN 3G LAN 3G LAN 3G

Read,
key cache miss

Read,
key cache hit

Write,
key cache miss

Write,
key cache hit

T
im

e
 (

lo
g

s
c

a
le

 -
m

s
)

Network

KeyPad

EncFS

0.001
0.007

(a) FS Content Operations: read, write.

0.848 1.012
0.445 0.5 0.473

0.752 1.071 1.526

300 300 300

0.1

1

10

100

1000

LAN 3G LAN 3G LAN 3G LAN 3G LAN 3G

Create
without IBE

Create
with IBE

Rename
without IBE

Rename
with IBE

Mkdir

Ti
m

e
(lo

gs
ca

le
 -

m
s)

Network
KeyPad
EncFS

25.29925.299

(b) FS Metadata Operations: create, rename,

mkdir.

Figure 2.6: File Operation Latency. The latency of Keypad (a) content and (b) metadata-update

operations. For each, we show the time spent in EncFS code, Keypad client and server code, and on

the network. Labels on the graph show the latency for each component in the 3G 300ms RTT case.

Results are averaged over 10 trials with a warm disk buffer cache.

which must fetch the key from the server, and key-cache hits, which use a locally cached key. For

each case we show data for two extreme networks: a fast 0.1ms-RTT LAN and a slow 300ms-RTT

3G network. The results show that misses are expensive on both networks, but for different reasons.

On a LAN, the network is insignificant, but Keypad adds to the base EncFS time due to the XML-

RPC marshalling overhead. On 3G, network latency dominates. When the key-cache hits, both the

network and marshalling costs are eliminated; a file read with a cached key is only 0.01ms slower

than the base EncFS read time of 0.337ms. This shows the importance of key caching to avoid

misses, which we accomplish by carefully choosing our expiration and prefetching policies.

Figure 2.6(b) shows the latency of file metadata update operations. For create and rename,

we show latency with and without IBE; mkdir is shown only without IBE, since it does not benefit

from this optimization in our prototype. Without IBE, metadata update latency is driven primarily

by network RTT: file creation takes 1.618ms on a LAN, and 302ms over 3G. With IBE, metadata

update latency is independent of network delay and is dominated by the computational cost of IBE

itself. The figure shows that IBE meets its goal of improving performance of metadata updates over

3G. While IBE would add overhead for a LAN, it is unnecessary and would be disabled in the LAN

environment.

33

Optimizations

We now demonstrate the effectiveness of our optimizations on a challenging workload: Apache

compilation. While this workload is not characteristic of mobile devices, its complex nature make

it ideal for evaluating the impact of our optimizations. In Section 2.5.1, we extend our evaluation to

more typical workloads for mobile devices. As baselines, the Apache compilation takes 112s using

the unmodified EncFS encrypted file system (i.e., with encryption but without auditing) and 63s

on ext3 (i.e., without encryption or auditing). Because Keypad enhances EncFS, the fair baseline

comparison for Keypad is EncFS, and not ext3.

In what follows, we inspect the effect of optimizations as we enable one optimization after the

other. We begin by showing the effect of purely key caching with no other optimizations, then we

add prefetching, then IBE, and finally we add the paired-device optimization.

Key Caching and Expiration. Key caching is crucial to performance. Even a cache with one-

second expiration time has significant impact: 18% improvement on a LAN and 4.9x on 3G, relative

to no caching at all. Figure 2.7 shows additional improvements for Apache compilation time as

expirations are lengthened beyond one second. No optimizations other than caching are enabled

here. Our results suggest that short expiration times are sufficient to extract nearly all the benefits.

For LAN, Broadband, or DSL latencies, an expiration of 10s or so is optimal. Over 3G, a 100s

key expiration time achieves all the benefit and provides 8.6x improvement over 1s (from 79.4

minutes down to 9.2 minutes). In comparison to EncFS, Keypad’s performance degradation for

100s expiration times is already small over a LAN (5.3% overhead over EncFS), while for the other

network types, further optimizations are required for performance.

Note that a 100s timeout is extremely small. To benefit from cached keys, a thief needs to steal

the device within 100 seconds of the user’s last access. Even in such cases, the user will know which

files were exposed. We therefore believe that we can achieve both good performance and accurate

auditing with these parameters.

Directory-Key Prefetching. Key caching alone avoids many key service requests: of the 75,744

reads and writes in the Apache compilation, only 486 involve the server when using a 100s expira-

tion time. Directory-key prefetching avoids additional server requests. Prefetching a directory key

on the first, third, or tenth miss in a directory results in 101, 249, and 424 key-cache misses, which

34

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 100 1000

A
p

a
c
h

e
 C

o
m

p
il

e
 T

im
e
 (

s
)

Key Expiration (s)

3G (RTT=300ms)

DSL (RTT=125ms)

Broadband (RTT=25ms)

LAN (RTT=0.1ms)

Figure 2.7: Effect of Key Expiration Time. This graph shows the effect of key expiration without

any other optimizations enabled. A 100-s key expiration time is nearly optimal, and achieves com-

pilation times of 115s, 153s, 292s, and 551s over a LAN, Broadband, DSL, and 3G, respectively.

For comparison, the Apache compilation takes 112s on the unmodified EncFS and 63s on ext3.

translates into 63.3%, 24.1%, and 2.4% improvements, respectively, over not using directory-key

prefetching over 3G. We adopted a prefetch-on-third-miss policy to strike a good balance between

performance and auditing quality (which is evaluated in Section 2.5.2). Over fast networks, such

as a LAN and WLAN, the prefetch-on-third-miss policy coupled with 100-s key caching results in

negligible performance overheads compared to EncFS: 2.8% for LAN and 4.3% for WLAN. Over

slower networks, especially 3G, other smarter prefetching policies may improve performance by

further eliminating blocking key requests. However, we find that with our simple prefetching pol-

icy, the dominating runtime component now becomes the blocking metadata requests (932 blocking

metadata requests compared to the 249 blocking key requests). We next focus on optimizing meta-

data requests.

IBE. IBE hides the latency of metadata updates over slow mobile networks. Figure 2.8(a) shows the

impact of IBE on Apache compilation as a function of network RTT. As we see in the figure, IBE

provides dramatic improvements on high-latency networks, including 3G- and 4G-class networks.

For example, IBE improves the benchmark’s performance on 3G by 36.9%. The crossover for IBE is

around 25ms, i.e., it should be used only for networks with RTTs over 25ms and disabled otherwise.

As mentioned above, for faster networks, such as LANs or WLANs, IBE is not even necessary, as

Keypad’s overhead is already negligible after applying key caching and prefetching.

35

0

50

100

150

200

250

300

350

400

450

500

0.1 1 10 100

A
p

a
c
h

e
 C

o
m

p
il

a
ti

o
n

 T
im

e
 (

s
)

Network RTT (ms)

Keypad without IBE

Keypad with IBE

EncFS

Ext3

LAN WLAN Broadband

DSL

3G

(a) Effect of IBE.

0

50

100

150

200

250

300

350

0.1 1 10 100

A
p

a
c
h

e
 C

o
m

p
il

e
 T

im
e
 (

s
)

Network RTT (ms)

Keypad without phone

Keypad with phone

EncFS

Ext3

LAN WLAN

Broadband

DSL 3G

(b) Effect of Device Pairing.

Figure 2.8: Effect of IBE and Device-pairing Optimizations. (a) Effect of applying the IBE

optimization atop a 100-s key caching policy and a third-miss prefetching policy; no device pairing

is used here. (b) Effect of applying the device-pairing optimization atop the optimization setup in

(a).

The Paired Device. Our paired device design is aimed at facilitating disconnected operation, but it

can also provide performance benefits for high-latency network environments. Figure 2.8(b) shows

the effect on the Apache workload of using a paired device as a caching proxy for key and metadata

services. Two conclusions can be reached from the figure. First, performance for disconnected

operation over Bluetooth should be similar to or better than that of a broadband connection (the

latencies are similar). Second, pairing with another device is always beneficial for performance

over cellular networks, because most operations only traverse the lower latency Bluetooth link.

Obviously the paired device should not be used if fast networks are available, where Keypad is

already efficient enough compared to EncFS.

Office-Oriented Workloads

Figure 2.9 shows the impact of our optimizations on more typical office-oriented workloads. We add

optimizations incrementally, reporting additional improvement as more optimizations are added.

The labels on top of each bar group show the total improvement with all three optimizations en-

abled. Different workloads benefit the most from different optimizations, depending primarily on

36

0

10

20

30

40

50

60

70

80

90

100

Find file in
hierarchy

Copy photo
album

OpenOffice
- launch

OpenOffice -
create doc.

Thunderbird -
read email

P
e

rf
o

rm
a

n
c

e
 I
m

p
ro

v
e

m
e

n
t

O

v
e

r
U

n
o

p
ti

m
iz

e
d

 (
%

)

Workload

Caching Caching + prefetching Caching + prefetching + IBE

Total: 74.9%
(from 57s to 14s)

Total: 70.3%
(from 57s to 17s)

Total: 66.5%
(from 14s to 5s)

Total: 90.4%
(305ms to 29ms) Total: 65.2%

(from 5.5s to 1.9s)

Figure 2.9: Impact of Optimizations on Various Applications. Impact of three of the optimiza-

tions on an emulated 3G network; labels indicate the total performance improvement when using all

three optimizations over the unoptimized case, as well as the absolute numbers for the unoptimized

and optimized.

the relative frequency of those operations. For example, caching and prefetching are important for a

read-intensive workload such as a recursive grep (“Find file in hierarchy”). IBE provides large im-

provements for workloads that create files (“OpenOffice – create doc”). For mixed content/metadata

workloads, such as copying a photo album across directories, all optimizations are important.

To better understand performance across many applications, we benchmarked the time to per-

form a number of popular tasks using EncFS and Keypad over several emulated networks (Ta-

ble 2.1). For Keypad, we show both warm and cold key-cache times. A user will likely experience

both, but with well-chosen key expiration times many operations will be absorbed by a warm cache.

From a user’s perspective, Keypad performs roughly identically to EncFS over fast networks,

such as a LAN and a wireless LAN. Hence, while at the office, the user should never feel our file

system’s presence, whether its key cache is warm or cold. With only a few exceptions, the user

should perceive similar application performance over broadband with Keypad and the unmodified

EncFS. Over mobile networks, the user may notice some application slowdown, especially after

extended periods of inactivity.

The table and our own experience confirm that application launches are particularly expensive

over 3G networks, as they often encounter a cold cache and many file system interactions. Keypad

could optimize launch by profiling applications and prefetching needed keys; other file systems,

such as NTFS, perform similar special-case optimizations to speed up application launch.

37

Application Task

Time (seconds)

EncFS

Keypad

LAN

(RTT=0.1ms)

WLAN

(RTT=2ms)

Broadband

(RTT=25ms)

DSL

(RTT=125ms)

3G

(RTT=300ms)

OpenOffice

Word

Processor

Launch 0.5 0.5 | 0.5 0.6 | 0.6 1.3 | 1.3 2.7 | 2.7 4.6 | 4.6

New document 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.1 0.0 | 0.3

Save as 1.4 1.4 | 1.4 1.4 | 1.4 1.5 | 1.5 1.6 | 1.8 2.0 | 2.3

Open 1.7 1.7 | 1.7 1.8 | 1.8 2.0 | 2.2 2.1 | 4.0 2.1 | 7.5

Quit 0.1 0.1 | 0.1 0.1 | 0.1 0.3 | 0.4 0.4 | 0.7 0.4 | 1.2

Firefox

Launch 3.7 3.7 | 3.7 3.8 | 3.8 4.4 | 4.4 6.0 | 6.0 8.8 | 8.8

Save a page 0.7 0.7 | 0.7 0.7 | 0.7 0.7 | 0.8 0.9 | 1.5 1.3 | 2.8

Load bookmark 4.5 4.5 | 4.5 4.5 | 4.5 4.5 | 4.6 4.5 | 5.0 4.5 | 5.7

Open tab 0.2 0.2 | 0.2 0.2 | 0.2 0.2 | 0.2 0.2 | 0.4 0.2 | 0.8

Close tab 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.1 0.0 | 0.3

Thunderbird

Launch 1.3 1.3 | 1.3 1.3 | 1.3 1.4 | 1.4 2.0 | 2.0 3.1 | 3.1

Read email 0.3 0.4 | 0.4 0.4 | 0.4 0.5 | 0.6 1.0 | 1.5 1.9 | 2.5

Quit 0.2 0.2 | 0.2 0.2 | 2.2 0.2 | 0.4 0.2 | 1.3 0.2 | 2.9

Evince PDF

Viewer

Launch 0.1 0.1 | 0.1 0.1 | 0.1 0.1 | 0.1 0.1 | 0.1 0.1 | 0.4

Open document 0.1 0.1 | 0.1 0.1 | 0.1 0.1 | 0.1 0.2 | 0.2 0.4 | 0.4

Quit 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0

x | y: x = time with warm key cache

y = time with cold key cache

Table 2.1: Typical Application Performance Over Keypad. For Keypad, we show both warm and

cold key-cache times, separated by a |.

Comparison to Other File Systems

A networked file system might be an alternative to Keypad; instead of just storing keys remotely, all

file system content would be remote. NFS provides a reasonably fair comparison to Keypad, since

its short-term caching might provide audit properties comparable to ours. In contrast, for AFS and

Coda, their long-term, coarse granularity caching policies might interfere more with precise audit

semantics.

Figure 2.10 shows the relative performance of Keypad to (remote) NFSv3 and (local) EncFS for

Apache compilation. We configured NFS with asynchronous batched writes and its default caching

policy; this improves its performance, but would have some impact on auditing. Note that for

these experiments, as before, we emulated different network RTTs but we did not constrain network

bandwidth; thus, our results are upper bounds of NFS performance. Over actual 3G links, NFS

performance would be significantly degraded because of wireless bandwidth constraints.

With LAN latencies, Keypad’s performance is almost identical to EncFS with only a 2.78%

increase in runtime, but worse than NFS, with a 75% increase. For reference, the unmodified EncFS

38

0.01

0.1

1

10

0.1 1 10 100

A
p

a
c
h

e
 C

o
m

p
il

e
 T

im
e
 R

a
ti

o

(K
e
y
p

a
d

 T
im

e
 /

 O
th

e
r

F
S

 T
im

e
)

Network RTT (ms)

Ext3

EncFS

NFS

Faster than

Keypad

Slower than

Keypad

Figure 2.10: Comparison to EncFS and NFS.

itself is 71% slower compared to NFS with LAN-like latencies. As RTT grows, NFS degrades

significantly. Even with an RTT of 2ms, NFS is 8.8% slower than Keypad, while for 3G network

latencies of 300ms, NFS is 36.4x slower than Keypad! In contrast, Keypad is only 2.7x slower than

EncFS over a 300ms network.

On large-RTT networks, NFS impacts interactivity. For example, launching OpenOffice over

NFS with 3G latency takes 50.6 seconds, loading a bookmark in Firefox takes 27.6 seconds, and

opening an email in Thunderbird takes 12.5 seconds, which we believe is unacceptable performance

for these user-facing tasks.

Anecdotal Experience

Anecdotally, one co-author used Keypad continuously to protect his laptop’s $HOME and /tmp direc-

tories over a 12-day period, with an emulated 300ms client-to-server latency. Overall, the experience

was positive: in most cases, there was no noticeable performance impact. Some activities, such as

file system intensive CVS checkouts or recursive copies, were slower but usable. Other more typical

activities, such as browsing the Web, editing documents, and exchanging email, had no noticeable

performance degradation.

39

0

50

100

150

200

250

300

350

1 10 100 1000

A
v
g

.
n

u
m

b
e

r
o

f
fi

le
s

in

 m
e

m
o

ry

Key expiration time (s)

Prefetch on 1st miss

Prefetch on 3rd miss

No prefetch

Figure 2.11: Effect of Optimizations on Auditability. The average number of keys that reside in

memory at any point in time, under various key expiration times and prefetching policies.

2.5.2 Auditing Properties

We now evaluate our optimizations’ impact on auditability.

In-memory Key Sets. As described in Section 2.3.3, keys for recently-accessed or prefetched files

stay in memory for their expiration period Texp. This is not an issue for a thief who steals a passive

storage device, such as a USB stick. For a laptop, because a thief can theoretically access cached-

key files without triggering a server-side audit log, users must consider all files whose keys were

retrieved between Tloss − Texp and Tloss as compromised. The size of this set at any point in time

depends on the user’s workload and on the aggressiveness of the caching and prefetching schemes.

To quantify this issue we used a trace gathered during our twelve-day deployment experience

(Section 2.5.1) to calculate the impact of various optimizations on auditability. Figure 2.11 shows

the size of the in-memory key set at any point in time averaged over use periods, for different key

expiration times and prefetching policies. The graph shows that for reasonable key expiration and

prefetching strategies, the average number of in-memory keys is small. For example, with a 100-

second key expiration time and a prefetch-directory-on-third-miss strategy, on average there are 38

keys in memory at any instant. This is a small number and furthermore we observed that most of

these keys exist as a side-effect of prefetching; i.e., they are files in the same directory as a file that

was accessed by a user or program.

40

False Positives. Prefetching affects forensics by introducing false positives in the audit log. The

rate of false positives depends on the prefetching policy as well as the thief’s workload, since false

positives only concern time post-Tloss. In the absence of an accepted “thief workload,” we created

a few scenarios that a thief might follow. Our goal was to gauge the impact of various prefetching

policies on the rate of false positives, as a thief tries to find sensitive information on a captured

device. We investigated three scenarios: (1) the thief launches Thunderbird, reads a few emails,

browses folders, and searches for emails with a particular keyword; (2) he launches a document

editor and looks at a few files; and (3) he inspects the history, bookmarks, cookies, and passwords

in a Firefox window. For these workloads, our default prefetch policy (prefetch directory keys on

the 3rd miss) leads to the following ratios between false positives and total accessed keys: 3:30,

6:67, and 0:12 for our Thunderbird, document editor, and Firefox workloads, respectively. Audit

precision is high for these scenarios.

We have also discovered bad scenarios; if the thief navigates to a web page in Firefox, loading

several files from the cache directory causes Keypad to prefetch the entire directory. While this

causes several false positives, the user correctly learns that activity happened in the Firefox cache

directory. Even in such cases, the auditing implications of our non-recursive prefetching policy are

minimal, since all false positives are localized to one directory.

2.5.3 Summary

We measured the performance of our Keypad prototype on several workloads. Our measurement re-

sults and our experience using the system show that Keypad meets its goals of adding little overhead

in the office or home environment, while remaining highly usable over cellular networks, such as

3G. Overall, our results show that with properly parameterized optimizations, Keypad can provide

good performance while also maintaining good auditing fidelity. Furthermore, with current and fu-

ture improvements of cellular network connectivity (e.g., 4G), we expect Keypad to have even better

performance.

41

2.6 Security Analysis

Keypad is designed to provide strong audit guarantees for encrypted file systems if the first layer of

defense, encryption with a password or cryptographic token, is breached. Keypad can additionally

destroy the ability to read files after a mobile device is reported lost or stolen. Although we evaluated

security properties extensively inline above, we now return for a unified discussion.

Context and Threat Model. We designed Keypad assuming that individuals who find or steal a

mobile device range in sophistication, degree of planning, and interest. Curious individuals may

insert a found USB stick into their computer, enter the password on the attached sticky note, and

browse through a few files trying to find the device owner. Petty thieves may grab laptops oppor-

tunistically but have no real interest in accessing confidential files. Corporate spies may plan and

execute device theft carefully, with the goal of accessing confidential files before the victim reports

the device missing. We refer to all such individuals as “attackers.”

Because a user has no way of knowing the motivation and skill of a potential attacker, Keypad

assumes the worst. We assume that an attacker has full access to the lost device’s hardware (for

laptops and USB sticks) and software (for laptops). The attacker can perform cold-boot attacks on

laptops, install new software, and manipulate or sever the device’s network traffic. The attacker

can also perform lower-level activities, such as physically extracting the hard drive from a laptop or

memory from a USB stick and interrogating it with custom hardware. However, we do not consider

attacks in which the adversary gains control of the device, modifies it, and returns it to the victim

without his knowledge (see our non-goals discussion in Section 2.1.1). Any attacker with control

over a device while in the user’s possession could mount a slew of malicious attacks outside the

scope of a forensic file system, ranging from online data exfiltration to the installation of password

key loggers. Malware is therefore also explicitly outside our threat model.

Analysis. We begin with the premise that the audit servers are trusted and secure. The key and

metadata servers are trusted to maintain accurate logs, and they are assumed to incorporate strong

defenses to adversarial comprise, routinely back up their state, and have their own audit mechanisms.

Neither the key server nor the metadata server is, however, fully trusted with the private informa-

tion about a user’s file access patterns prior to Tloss; accessing that information requires collusion

between both servers or the device owner’s invocation of the Keypad post-loss audit mechanisms.

42

The unavailability of servers can deny access to files; for highly sensitive data, we argue that users

would prefer unavailability over the potential for unaudited future file disclosure. Further, although

not implemented in our prototype, the communications between the Keypad file system and the

servers should be encrypted to ward off attackers who intercept network communications prior to

device theft. The keys must change every Texp seconds to ensure that an attacker who extracts the

current network encryption key from the device cannot decrypt past intercepted data.

Consider now an attacker who obtains a lost or stolen Keypad device. If the device is cold,

such as a powered-down laptop or a USB stick, then any successful attempt to access a protected

file must generate at least one log record on the Keypad audit servers. This is true whether the

attacker uses the Keypad file system or his own hardware or software to perform the access. All of

Keypad’s mechanisms – the storing of KR
F on remote servers, the entangling of the metadata server

and key server states to ensure consistency, and our method for using IBE – enforce this property.

Additionally, the selection of 192-bit audit IDs at random makes it infeasible for an attacker to

request information about valid audit IDs from the key and metadata servers prior to physically

obtaining the protected device; such requests are additionally thwarted by authenticating the device

to the servers.

Attackers who obtain warm, computational devices – such as running or hibernated laptops –

may seek to violate the properties of Keypad by directly accessing the device’s memory. Cached

keys KR
F should be evicted from memory upon device hibernation, and such evictions should be

recorded on the audit servers. For fully running devices, we must assume that an attacker has ac-

cessed any file with an audit log entry after Tloss − Texp. Although Keypad’s focus is on providing

file system auditing, a forensic analyst must also acknowledge that applications may have sensitive

data in memory. A conservative analyst might use various heuristics to identify potentially vulnera-

ble cleartext data. For example, he might mark as compromised any file opened since the device’s

last boot or hibernation, events that could be recorded on the audit servers. A potentially better

future solution to this problem might be to employ encrypted memory technology [159], possibly

coupled with auditing.

Most importantly, even against an attacker who obtains warm computational devices, Keypad

preserves the following invariant: if an analyst does not mark a file as accessed, then one can

confidently conclude that the file has indeed not been accessed by an attacker. Finally, because

43

entries in the key service are identified per-device, the service can deny access to all relevant keys if

a device is reported missing.

For completeness, we must also consider an attacker who attempts to generate spurious entries

in the remote audit logs. While such spurious entries might complicate the task of a forensic analyst,

an attacker cannot use such actions to hide their actual accesses of confidential data.

2.7 Related Work

Keypad is related to previous work in three areas: (1) theft-protection systems, (2) data-protection

systems, and (3) distributed file systems. We next review these solutions to provide a clear differ-

entiation with Keypad, and complement the discussion with an overview of the third type of related

system.

Theft-Protection Systems. Theft-protection systems, such as Adeona [166] and Apple’s Mo-

bileMe [11], provide best-effort auditing semantics, where audit logs are batched and uploaded to

a trusted server, making them vulnerable to hardware and disconnection attacks. Keypad provides

strong forensic and data-destruction capabilities even against thieves who use their own hardware

and software to attack a Keypad-protected file system or (temporarily) block the device’s access to

the network. Unlike in MobileMe and Adeona, where the audit log for a file access occurs after the

fact, the audit log in Keypad is produced before the access can occur, making it mandatory.

Data-Protection Systems. Encrypted file systems exist in academia (e.g., [24]) and industry (e.g.,

BitLocker, PGP Whole Disk, TrueCrypt). None provide remote auditing capabilities, therefore a se-

curity breach may go undetected. Keypad’s forensic and data-destruction capabilities are orthogonal

to work increasing the resilience of encrypted file systems to breach. Keypad can compose with new

advances in encrypted file systems, providing both stronger barriers to access and a forensic trail if

that barrier is breached.

ZIA [47] and follow-on work [48] protect files on a device with transient authentication. In ZIA,

users wear tokens that broadcast their presence, and the device decrypts or encrypts itself depending

on whether the user is located close to the device or not, respectively. Protection is lost if an attacker

obtains both the device and the token, with no forensic guarantees. Keypad does not require a paired

44

device, but if one is used, Keypad still provides a forensic trail of potential accesses even if both are

lost or stolen. Keypad could be combined with ZIA for additional defense in depth.

Keypad’s remote key-escrow architecture has been used frequently in the past to achieve a num-

ber of security and privacy goals. First, capture-resilient cryptography [119] uses a key server to

prevent dictionary attacks against login passwords on stolen devices, as well as to enable remote

wipe-out. Second, location-aware encryption [199] uses a remote key server to dynamically adapt

a device’s data protection level based on its location. While the device is at a trusted location

(e.g., at its owner’s home), the server provides the decryption key; when the device is at an un-

known or untrusted location, the server will require the user to enter a special password to return

obtain the decryption key. Third, assured-delete systems, such as the Ephemerizer [149], revocable

backup systems [27], and our own Vanish distributed-trust self-destructing data system [81] adopt

the key-escrow architecture to ensure the deletion of sensitive data stored in backup systems or on

Web services. Keypad resembles all of these systems in its remote key-escrow architecture and

its secondary goal: post-theft data destruction. It differs from these systems in its primary goal:

fine-grained auditability of mobile device data accesses.

In general, today’s data-protection systems differ from our system in that they focus on data

exposure prevention, whereas Keypad focuses on data exposure detection should prevention systems

fail. In that sense, they should be considered as complementary rather than competitors.

Networked File Systems. Work in distributed file systems has aimed at providing shared and avail-

able remote storage (e.g., [94, 113, 174]). Bayou [150] and Coda [134] support mobility, discon-

nected operation and data consistency. Coda’s disconnected operation [108] relies on data caching,

whereas Keypad uses device pairing, coupled with key caching, to support offline accesses. Coda

supports encrypted communication but not storage. LBFS [135] uses compression to reduce latency

for interactive file access over slow wide-area networks. SFS [124, 74] is a network file system

that supports secure network file transfers, avoiding the need for distributed key infrastructure by

embedding public keys in file pathnames. SFS is concerned with secure communication, not with

protecting a user’s stored data from theft; it does not encrypt data on disk and does not support

auditing.

In general, these systems do not support encryption and auditing. While they could be modified

45

to support both on the server, there are significant performance issues, e.g., streaming an NFS-

hosted video over 3G or wireless is slow and expensive. Finally, all of these systems are concerned

with the transfer of file data between a client and server; in contrast, Keypad is concerned with

key management and the transfer of encryption keys between a file system and a remote key server.

Keypad is unique in its support for (and integration of) encryption and audit logging; it demonstrates

the advantage of separating encryption and key management to enforce auditing for mobile device

data.

2.8 Summary

This chapter described Keypad, an auditing file system for loss- and theft-prone devices. Unlike

basic disk encryption, Keypad provides users with evidence that sensitive data either was or was

not accessed following the disappearance of a device. If data was accessed, Keypad gives the user

an audit log showing which directories and files were touched. It also allows users to disable file

access on lost devices, even if the device has been disconnected from the network or its disk has been

removed. Keypad achieves its goals through the integration of encryption, remote key management,

and auditing. Our measurements and experience demonstrate that Keypad is usable and effective

for common workloads on today’s mobile devices and networks.

46

Chapter 3

VANISH: DATA LIFETIME CONTROL WITH SELF-DESTRUCTING DATA

Today’s technical and legal landscape presents formidable challenges to personal data privacy.

First, as described in Chapter 1, our increasing reliance on Web services causes personal data to

be cached, copied, and archived by third parties, often without our knowledge or control. Second,

the disclosure of private data has become commonplace due to carelessness, theft, or legal actions.

This chapter proposes Vanish, a self-destructing data system that provides users with control over

the lifetime of their data stored in untrusted Web services. Vanish ensures that all copies of certain

data – such as emails on Hotmail, photos on Facebook, or documents on Google Docs – become

unreadable after a user-specified time. Vanish’s initial design was introduced in a 2009 paper [81]

and subsequently revised for increased security in a 2011 technical report [80].

3.1 Motivation and Overview

We target the goal of creating data that self-destructs or vanishes automatically after it is no longer

useful. Moreover, it should do so without any explicit action by the users or any party storing or

archiving that data, in such a way that all copies of the data vanish simultaneously from all storage

sites, online or offline.

Numerous applications could benefit from self-destructing data. As one example, consider the

case of email. Emails are frequently cached, stored, or archived by email providers (e.g., Gmail,

or Hotmail), local backup systems, ISPs, etc. Such emails may cease to have value to the sender

and receiver after a short period of time. Nevertheless, many of these emails are private, and the act

of storing them indefinitely at intermediate locations creates a potential privacy risk. For example,

imagine that Ann sends an email to her friend discussing a sensitive topic, such as her relationship

with her husband, the possibility of a divorce, or how to ward off a spurious lawsuit (see Fig-

ure 3.1(a)). This email has no value as soon as her friend reads it, and Ann would like that all copies

of this email — regardless of where stored or cached — be automatically destroyed after a certain

47

Ann Carla

Hotmail Gmail

Husband's lawyer

Future
subpoena

archived
copy

(a) Example Scenario.

“This message will self-destruct in 16 hours”

“Decapsulate this email”
Decapsulated email content

popup window

(b) Vanishing Emails plugin for Gmail.

Figure 3.1: Example Scenario and Vanish Email Screenshot. (a) Ann wants to discuss her marital

relationship with her friend, Carla, but does not want copies stored by intermediate services to be

used in a potential child dispute trial in the future. (b) The screenshot shows how Carla reads a

vanishing email that Ann has already sent to her using our Vanish Email Firefox plugin for Gmail.

period of time, rather than risk exposure in the future as part of a data breach, email provider mis-

management [140], or a legal action. In fact, Ann would prefer that these emails disappear early —

and not be read by her friend — rather than risk disclosure to unintended parties. Both individuals

and corporations could benefit from self-destructing emails.

More generally, self-destructing data is broadly applicable in today’s Web-centered world, where

users’ sensitive data can persist “in the cloud” indefinitely. With self-destructing data, users can

regain control over the lifetimes of their Web objects, such as private messages on Facebook, docu-

ments on Google Docs, or private photos on Flickr. Similarly, this concept could be used to protect

the privacy of sensitive SMS and MMS text messages, which are increasingly being used as evi-

dence in divorce cases and other legal actions [219, 146]. As a news article states, “don’t ever say

anything on e-mail or text messaging that you don’t want to come back and bite you [141].” Fi-

nally, some have argued that the right and ability to destroy data are essential to protect fundamental

societal goals like privacy and liberty [122, 144].

Observation and Goals. A key observation in these examples is that users need to keep certain data

for only a limited period of time. After that time, access to that data should be revoked for everyone

48

– including the legitimate users of that data, the known or unknown entities holding copies of it, and

the attackers. This mechanism will not be universally applicable to all users or data types; instead,

we focus in particular on sensitive data that a user would prefer to see destroyed early rather than

fall into the wrong hands.

Motivated by the above examples, as well as our observation above, we ask whether it is possible

to create a system that can permanently delete data after a timeout: (1) even if an attacker can

retroactively obtain a pristine copy of that data and any relevant persistent cryptographic keys and

passphrases from before that timeout; (2) without the use of any explicit delete action by the user or

the parties storing that data; and (3) without relying on any dedicated centralized service.

A system achieving these goals would be broadly applicable in the modern digital world as we’ve

previously noted, e.g., for files, private blog posts, on-line documents, Facebook entries, content-

sharing sites, emails, messages, etc. In fact, the privacy of any digital content could potentially

be enhanced with self-deleting data. However, implementing a system that achieves this goal set

is challenging. Section 3.2.1 describes many natural approaches that one might attempt and how

they all fall short. In this chapter we focus on a specific self-deleting data scheme that we have

implemented, using email as an example application.

Our Approach. The key insight behind our approach and the corresponding system, called Vanish,

is to leverage the services provided by existing decentralized, global-scale infrastructures, such as

peer-to-peer distributed hash tables (DHTs) or the World-Wide-Web. Intuitively, Vanish encrypts a

user’s data locally with a random encryption key not known to the user, destroys the local copy of

the key, and then sprinkles pieces (Shamir secret shares [157]) of the key across random Internet

locations in the decentralized system. For example, a DHT-based Vanish implementation selects

random indexes and stores the key pieces at the nodes responsible for storing those indexes; a

WWW-based implementation selects random Web sites and stores or computes shares to/from them.

In this chapter, we present Vanish’s design, implementation, and evaluation, focusing on a DHT-

based approach. In Section 3.7, we show how Vanish can be extended to leverage other global-scale

decentralized infrastructures, such as the WWW. Our initial choice of DHTs as storage systems

for Vanish stems from three intuitive properties that make DHTs attractive for our data destruction

goals. First, their huge scale (over 1 million nodes for the Vuze DHT [67]), geographical distribu-

49

tion of nodes across many countries, and complete decentralization make them robust to powerful

and legally influential adversaries. Second, DHTs are designed to provide reliable distributed stor-

age [123, 171, 198]; we leverage this property to ensure that the protected data remains available

to the user for a desired interval of time. Finally, DHTs have an inherent property that intuitively

helps with data destruction: the fact that the DHT is constantly changing means that the sprinkled

information will disappear over time as the DHT nodes churn or internally cleanse themselves by

explicitly erasing old values, thereby rendering protected data permanently unavailable. In fact,

it may be impossible to determine retroactively which nodes were responsible for storing a given

value in the past. Unfortunately, Sybil attacks [62] and aggressive replication schemes in today’s

deployed DHTs challenge these intuitive properties in practice. Hence, in addition to the Vanish

design, we also demonstrate how DHTs can be re-designed to match Vanish’s needs by describing

our own large-scale deployment of changes to an existing, million-node DHT (Vuze DHT).

Implementation and Evaluation. To demonstrate the viability of our approach, we implemented

three prototype Vanish implementations: one that relies on Bittorrent’s Vuze DHT client [214], one

that leverages the WWW as its key store, and one that allows the combination of two or more key

stores – such as DHTs and the WWW – for increased security and defense-in-depth. On top of all

three Vanish prototypes, we built two applications: a Firefox plugin for Gmail and other Web sites,

and a self-destructing file management application. Figure 3.1(b) shows how a user can decapsulate

a vanishing email from her friend using our Gmail plugin (see Section 3.4 for detailed interface

description). Our performance evaluation shows that simple optimizations can support even latency-

sensitive applications, such as our Gmail plugin, with acceptable user-visible execution times.

Security is critical for our system and hence we consider it in depth. Vanish targets post-facto,

retroactive attacks; that is, it defends the user against future attacks on old, forgotten, or unreachable

copies of her data. For example, consider the subpoena of Ann’s email conversation with her friend

in the event of a divorce. In this context, the attacker does not know what specific content to attack

until after that content has expired. As a result the attacker’s job is very difficult, since he must

develop an infrastructure capable of attacking all users at all times. We leverage this observation to

estimate the cost for such an attacker. We target no formal security proofs, but rather evaluate the

security of our system analytically and experimentally.

50

In particular, DHT-specific attacks are a major concern for security, and we dedicate thorough

analysis to some of them, including detailed, large-scale experimentation with deployed defenses

against select attacks on the Vuze DHT. However, we explicitly do not seek to deploy or measure

defenses against all known DHT-specific attacks, but rather direct the reader to past research on

defenses against some of them (e.g., [28, 35, 45, 62, 160]). For improved security of our system

against still unpatched vulnerabilities, we present extensions to Vanish’s core architecture that allow

its use of other key stores and combinations thereof for defense in depth.

Contributions. While the basic idea of our approach is simple conceptually, care must be taken

in handling and evaluating the mechanisms employed to ensure its security, practicality, and per-

formance. Looking ahead, and after briefly considering other tempting approaches for creating

self-destructing data (Section 3.2.1), the key contributions of this work are to:

• identify the principal requirements and goals for self-destructing data (Section 3.2.2);

• propose a method for achieving these goals that combines cryptography with decentralized,

global-scale systems, such as DHTs (Section 3.3);

• present a Vanish prototype implementation on top of the existing, million-node Vuze DHT, as

well as applications on top of it (Section 3.4);

• evaluate Vanish’s security analytically and experimentally (Section 3.5); our analysis includes

the design, large-scale deployment, and experimental evaluation of a new security-oriented

Vuze DHT design that better meets Vanish’s security requirements (Section 3.6); and

• describe and evaluate a set of architectural extensions that increase Vanish’s security in front

of retroactive attacks (Section 3.7).

Together, these contributions provide the foundation for empowering users with greater control

over the lifetimes of private data scattered across the Internet.

3.2 Candidate Approaches, Goals, and Threat Models

We now review potential options for protecting Web data against retroactive attacks against privacy

and their limitations, after which we formulate our own goals, assumptions, and threat models for

Vanish.

51

3.2.1 Potential Approaches and Their Limitations

Although prior to our Vanish contribution lifetime control for Web data had been largely unad-

dressed, a number of existing and seemingly natural approaches may appear applicable to achieving

our objectives. Upon deeper investigation, however, we find that none of these approaches are suffi-

cient to achieve the goals enumerated in Section 3.1. We consider these strawman approaches here

and use them to further motivate our design constraints in Section 3.2.2.

One obvious approach might be to use a standard public key or symmetric encryption scheme,

as provided by systems like PGP and its open source counterpart, GPG. However, traditional en-

cryption schemes are insufficient for our goals, as they are designed to protect against adversaries

without access to the decryption keys. Under our model, though, we assume that the attacker will

be able to obtain access to the decryption keys, e.g., through a court order or subpoena.1

A potential alternative to standard encryption might be to use forward-secure encryption [17,

34], yet our goal is strictly stronger than forward secrecy. Forward secrecy means that if an attacker

learns the state of the user’s cryptographic keys at some point in time, they should not be able to

decrypt data encrypted at an earlier time. However, due to caching, backup archives, and the threat

of subpoenas or other court orders, we allow the attacker to either view past cryptographic state or

force the user to decrypt his data, thereby violating the model for forward-secure encryption. For

similar reasons, plus our desire to avoid introducing new trusted agents or secure hardware, we do

not use other cryptographic approaches like key-insulated [16, 59] and intrusion-resilient [57, 58]

cryptography. Finally, while exposure-resilient cryptography [32, 60, 61] allows an attacker to view

parts of a key, we must allow an attacker to view all of the key.

For online, interactive communications systems, an ephemeral key exchange process can pro-

tect derived symmetric keys from future disclosures of asymmetric private keys. A system like

OTR [4, 29] is particularly attractive, but as the original OTR paper observes, this approach is not

directly suited for less-interactive email applications, and similar arguments can be made for OTR’s

unsuitability for the other above-mentioned applications as well.

An approach with goals similar to ours is the Ephemerizer family of solutions [138, 148, 149],

1U.S. courts are debating whether citizens are required to disclose private keys, although the ultimate verdict is unclear.
We thus target technologies robust against a verdict in either direction [84, 139]. Other countries such as the U.K. [143]
require release of keys, and coercion or force may be an issue in yet other countries.

52

TimeT1T1 T2T2 T4T4 T5T5

T1: User 1 creates VDO;

T2: Service archives a pristine VDO copy;

T3: User 2 gets a VDO copy and may
 decapsulate it repeatedly (optional);

T4: All copies of VDO expire;

T5: Attacker decides to attack this VDO;

T6: Attacker obtains pristine VDO copy
 from service/users; copy is unreadable

T6T6T3*T3*

Attacker

Service

User 1

Begins
attack

all VDO
copies
expire

Obtains
VDO

User 2*

Figure 3.2: Timeline for VDO Usage and Attack.

along with revocable backup systems [27]. These approaches require the introduction of one or

more (possibly thresholded) trusted third parties which (informally) escrow information necessary

to access the protected contents. These third parties destroy this extra data after a specified timeout.

The biggest risks with such centralized solutions are that they may either not be trustworthy, or

that even if they are trustworthy, users may still not trust them, hence limiting their adoption. For

example, if Ann does not trust Gmail or Facebook to delete her data, why would she trust another

centralized service to do so? Indeed, many users may be wary to the use of dedicated, centralized

trusted third-party services after it was revealed that the Hushmail email encryption service was of-

fering the cleartext contents of encrypted messages to the federal government [184]. This challenge

calls for a decentralized approach with fewer real risks and perceived risks.

3.2.2 Goals and Assumptions

To support a broad range of target applications (self-destructing email, Facebook messages, text

messages, trash bins, etc.), we introduce the notion of a vanishing data object (VDO). A VDO en-

capsulates the user’s data (such as a message, photo, or file) and prevents its contents from persisting

indefinitely and becoming a source of retroactive information leakage. Regardless of whether the

VDO is copied, transmitted, or stored in the Internet, it becomes unreadable after a predefined time

period even if an attacker retroactively obtains both a pristine copy of the VDO from before its

expiration and all the user’s past persistent cryptographic keys and passwords. Figure 3.2 illustrates

these VDO properties by showing the timeline for typical VDO usage and attack.

53

Our VDO abstraction and Vanish system make several key assumptions:

1. Time-limited value. The VDO encapsulates data that is of value to the user and the user’s

trusted communicants for only a limited period of time (e.g., a few days or weeks for emails,

Web objects, and SMSs).

2. Known timeout. Users creating a VDO know the approximate VDO lifetime they desire.

3. Internet connectivity. Users are connected to the Internet when interacting with VDOs. In-

ternet connectivity is presently required for many applications, such as sending and receiving

email or interacting with the Web, and the move towards ubiquitous connectivity through

WiFi and 3G makes this assumption reasonable for many other applications, as well. Such

connectivity is not required for deletion; a VDO will become unreadable even if connectivity

is removed from its storage site (or if that storage site is turned off).

4. Dispensable under attack. Vanish is designed for use with data that is private but whose

persistence is not critical. Rather than risk exposure, users prefer that the VDO be destroyed

prematurely.

5. Trusted communicants. Users sharing VDOs trust each other not to save decapsulated (clear-

text) copies.

Based on these assumptions, we formulate the following goals for self-destructing data and

Vanish:

1. Destruction after timeout. A VDO must expire automatically and without any explicit action

on the part of its users or any party storing a copy of the VDO. Once expired, the VDO must

also be inaccessible to any party who obtains a pristine copy of the VDO from prior to its

expiration.

2. Accessible until timeout. During its lifetime, a VDO’s contents should be available to legiti-

mate users.

3. No single or small number of trusted parties. A VDO’s post-timeout privacy should not

depend on the correct functioning of one or a few trusted parties.

4. Leverage existing infrastructures. The system must leverage existing infrastructures. It must

not rely on external, special-purpose dedicated services.

5. No secure hardware. The system must not require the use of dedicated secure hardware.

54

A corollary of goal (1) is that the VDO will become unavailable to the legitimate users after the

timeout, which is compatible with our applications and assumption of time-limited value.

Our desire to leverage existing infrastructure (goal (4)) and to have no single point of trust

stems from our belief that special-purpose services may hinder adoption. As noted previously,

Hushmail’s disclosure of the contents of users’ encrypted emails to the federal government [184]

suggests that, even if the centralized service or a threshold subset of a collection of centralized

services is trustworthy, users may still be unwilling to trust them.

3.2.3 Threat Model

The above list enumerates the intended properties of the system without the presence of an adversary.

We now consider the various classes of potential adversaries against the Vanish system, as well as

the desired behavior of our system in the presence of such adversaries.

The central security goal of Vanish is to ensure the destruction of data after a timeout, despite

potential adversaries who might attempt to access that data after its timeout. Obviously, care must

be taken in defining what a plausible adversary is, and we do that below and in Section 3.5. But

we also stress that we explicitly do not seek to preserve goal (2) — accessible prior to a timeout

— in the presence of adversaries. As previously noted, we believe that users would prefer to sacri-

fice availability pre-timeout in favor of assured destruction for the types of data we are protecting.

For example, we do not defend against denial of service attacks that could prevent reading of the

data during its lifetime. Moreover, we explicitly do not seek to protect the data’s privacy against

pre-timeout attacks; such a property is either provided by traditional encryption mechanisms (if

the attacker does not know the user’s keys) or seems impossible (if the attacker has access to the

encrypted data and the user’s keys). Making these assumptions let us focus on the primary novel

insights in this work: methods for leveraging decentralized, large-scale, distributed systems in order

to ensure data destruction.

We therefore focus our threat model and subsequent analyses on attackers who wish to compro-

mise data privacy. Two key properties of our threat model are:

1. Trusted data owners. Users with legitimate access to the same VDOs trust each other.

2. Retroactive attacks on privacy. Attackers do not know which VDOs or users they want to

access until after the VDOs expire.

55

3. Unrestricted access to past data and passphrases following the attack. Attackers are allowed

access to all data stored on persistent storage prior to the start of the retroactive attack, as well

as access to all the user’s past passphrases.

4. Possible precomputation. While attackers do not know which VDOs or users they want to

access until after the VDOs timeout, they can do arbitrary VDO-agnostic precomputations at

any time in preparation for a possible future attack.

The first aspect of the threat model is straightforward, and in fact is a shared assumption with

traditional encryption schemes: it would be impossible for our system to protect against a user who

chooses to leak or permanently preserve the cleartext contents of a VDO-encapsulated file through

out-of-band means. For example, if Ann sends Carla a VDO-encapsulated email, Ann must trust

Carla not to print and store a hard-copy of the email in cleartext.

The second aspect of the threat model – that the attacker does not know the identity of a specific

VDO of interest until after its expiration – was discussed briefly in Section 3.1. For example, email

or SMS subpoenas typically come long after the user sends a particular sensitive email. Therefore,

our system defends the user against future attacks against old copies of private data.

The third aspect of the threat model implies that attackers have access to all past, persistent

cryptographic keys (conceptually, any cryptographic information that must survive a system reboot).

While some implementations may strive to make such access as difficult as possible – such as storing

keys on tamper-responding secure tokens – we seek a solution that provides a high level of security

even without access to such storage mechanisms, which may be unavailable or may have unknown

vulnerabilities, e.g., following [8].

The retroactive restriction (bullet (2) in the threat model) describes an attacker who does not

know which VDOs or users he will wish to attack until sometime after those VDOs timeout. This

reflects a natural class of threats. However, an attacker may know that he’ll wish to expose some (as

yet unknown) VDOs in the future. Such an attacker might try to maximize his potential success prior

to knowing which VDOs will be of interest. Referring to Figure 3.2, an attacker might attempt some

form of precomputation against all VDOs created by all users at all times, and then try to leverage

the results of that precomputation once the target VDO is known at time T5. This is captured by

bullet (4) of the threat model. The precise form of precomputation will depend on the adversary in

question, as well as our system’s design.

56

3.3 Vanish Architecture

We designed and implemented Vanish, a system capable of satisfying all of the goals listed in

Section 3.2.2. A key contribution of our work is to leverage existing, decentralized, large-scale

Distributed Hash Tables (DHTs). After providing a brief overview of DHTs and introducing the

insights that underlie our solution, we present our system’s architecture and components.

Overview of DHTs. A DHT is a distributed, peer-to-peer (P2P) storage network consisting of

multiple participating nodes [123, 171, 198]. The design of DHTs varies, but DHTs like Vuze

generally exhibit a put/get interface for reading and storing data, which is implemented internally

by three operations: lookup, get, and store. The data itself consists of an (index, value) pair.

Each node in the DHT manages a part of an astronomically large index name space (e.g., 2160 values

for Vuze). To store data, a client first performs a lookup to determine the nodes responsible for

the index; it then issues a store to the responsible node, who saves that (index, value) pair in

its local DHT database. To retrieve the value at a particular index, the client would lookup the

nodes responsible for the index and then issue get requests to those nodes. Internally, a DHT may

replicate data on multiple nodes to increase availability. Finally, DHTs typically enforce limits on

the time some data item can be stored at a particular index, to protect storage nodes from storage

denial-of-service (DoS) attacks. For example, a Vuze DHT node storing some object erases that

data at a configurable time that must be less than three days.

Numerous DHTs exist in the Internet, including Vuze, Mainline, and KAD. These DHTs are

communal, i.e., any client can join, although DHTs such as OpenDHT [164] only allow authorized

nodes to join.

DHT-related Insights. Three intuitive properties of DHTs make them appealing for use in the

context of a self-destructing data system:

1. Availability. Years of research in availability in DHTs have resulted in relatively robust prop-

erties of today’s systems, which typically provide good availability of data prior to a specific

timeout.

2. Scale, geographic distribution, and decentralization. Measurements of the Vuze and uTor-

rent DHTs estimate in excess of one million [67] and five million simultaneously active DHT

57

nodes, respectively. The data in [194] shows that while the U.S. is the largest single contribu-

tor of nodes in Vuze, a majority of the nodes lie outside the U.S. and are distributed over 190

countries.

3. Inherent Cleansing Properties. DHTs evolve naturally and dynamically over time as new

nodes constantly join, old nodes leave, and nodes internally cleanse themselves. We call this

evolution churn. The average lifetime of a node in the DHT varies across networks and has

been measured from minutes on Kazaa [88] to hours on Vuze/Azureus [67]. Similarly, all

DHTs present internal cleansing functions that protect them against storage DoS attacks. For

example, Vuze imposes a maximum 72-hour time limit and OpenDHT imposes a one-week

time limit.

The first property provides us with solid grounds for implementing a useful system. The sec-

ond property makes DHTs more resilient to certain types of attacks than centralized or small-scale

systems. For example, while a centrally administered system can be compelled to release data by

an attacker with legal leverage [184], obtaining subpoenas for multiple nodes storing a VDO’s key

pieces would be significantly harder, and in some cases impossible, due to their distribution under

different administrative and political domains.

Traditionally, DHT research has tried to counter the negative effects of churn on availability. For

our purposes, however, the constant churn in the DHT is an advantage, because it means that data

stored in DHTs will naturally and irreversibly disappear over time as the DHT evolves.

Vanish. Vanish is designed to leverage one or more DHTs. Figure 3.3 illustrates the high-level

system architecture. At its core, Vanish takes a data object D (and possibly an explicit timeout T),

and encapsulates it into a VDO V .

In more detail, to encapsulate the data D, Vanish picks a random data key, K, and encrypts D

with K to obtain a ciphertext C. Not surprisingly, Vanish uses threshold secret sharing [181] to split

the data key K into N pieces (shares) K1, . . . ,KN . A parameter of the secret sharing is a threshold

(M) that can be set by the user or by an application using Vanish. The threshold determines how

many of the N shares are required to reconstruct the original key. For example, if we split the key

into N = 20 shares and the threshold is 10 keys, then we can compute the key given any 10 of the

58

Vanish

Encapsulate
(data, timeout)

Vanish Data Object
(VDO = {C, L, N, M})

Secret
Sharing

(M of N)

k1
k2

kN

.

.

.

k3

Ann

C = EK(data)

L

K

VDO = {C, L, N, M}

Carla (trusted)

1

Vanish

Decapsulate
(VDO = {C, L, N, M})

data

Secret
Sharing

(M of N)

data = DK(C)

L

K

P
R

N
G

 (
ra

nd
om

 D
H

T
 i n

de
xe

s) k1

kN

.

.

.

k3
k1

kN

k2

World-Wide
DHT

P
R

N
G

(r

an
do

m
 D

H
T

 i n
de

xe
s)

k3

k2

Figure 3.3: The Vanish System Architecture. Shows the encapsulation and decapsulation opera-

tions. PRNG denotes a secure pseudo-random number generator.

20 shares. In this section we often refer to the threshold ratio (or simply threshold) as the percentage

of the N keys required, e.g., in the example above the threshold ratio is 50%.

Once Vanish has computed the key shares, it picks at random an access key, L. It then uses

a cryptographically secure pseudorandom number generator [25], keyed by L, to derive N indices

into the DHT, I1, . . . , IN . Vanish then sprinkles the N shares K1, . . . ,KN at these pseudorandom

locations throughout the DHT; specifically, for each i ∈ {1, . . . , N}, Vanish stores the share Ki at

index Ii in the DHT. If the DHT allows a variable timeout, e.g., with OpenDHT, Vanish will also set

the user-chosen timeout T for each share.

The final VDO V consists of (L,C,N,M) and is sent over to the email server or stored in the

file system upon encapsulation. The decapsulation of V happens in the natural way, assuming that

it has not timed out. Given VDO V , Vanish (1) extracts the access key, L, (2) derives the locations

of the shares of K, (3) retrieves the required number of shares as specified by the threshold, (4)

reconstructs K, and (5) decrypts C to obtain D.

VDO destruction occurs due to independent loss of the key shares by their storage peers. Two

processes cause share loss in a DHT. First, each of the nodes is programmed to erase key shares after

the specified time. All existing DHTs have an inherent data expiration function, which is essential

59

for them to protect themselves against storage DoS attacks. VDO timeout flexibility depends on

the underlying DHT. For example, the Vuze DHT currently supports hourly timeouts of up to three

days and OpenDHT allows timeouts of up to one week. Second, churn causes key shares to be lost

from the DHT, as nodes leave the network and the DHT’s structure itself evolves. As a result, the

DHT will lose key shares over time. Once more than (N − threshold) shares are lost, the VDO

becomes permanently unavailable. Hence, in Vanish, key share disappearance from the independent

and automonous DHT nodes makes the data disappear on its own without relying on actions by any

centralized party.

Threshold Secret Sharing, Security, and Robustness. For security we rely on the property that

the shares K1, . . . ,KN will disappear from the DHT over time, thereby limiting a retroactive ad-

versary’s ability to obtain a sufficient number of shares, which must be ≥ the threshold ratio. In

general, we use a ratio of < 100%, otherwise the loss of a single share would cause the loss of the

key. DHTs do lose data due to churn, and therefore a smaller ratio is needed to provide robust stor-

age prior to the timeout. We consider all of these issues in more detail later; despite the conceptual

simplicity of our approach, significant care and experimental analyses must be taken to assess the

durability of our use of large-scale, decentralized DHTs.

Using multiple or no DHTs. As an extension to the scheme above, it is possible to store the shares

of the data key K in multiple DHTs. For example, one might first split K into two shares K ′

and K ′′ such that both shares are required to reconstruct K. K ′ is then split into N ′ shares and

sprinkled in the Vuze DHT, while K ′′ is split into N ′′ shares and sprinkled in OpenDHT. Such an

approach would allow us to argue about security under different threat models, using OpenDHT’s

closed access (albeit small scale) and Vuze’s large scale (albeit communal) access.

An alternate model would be to abandon DHTs and to store the key shares on distributed but

managed nodes. This approach bears limitations similar to Ephemerizer (Section 3.2.1). A hybrid

approach might be to store shares of K ′ in a DHT and shares of K ′′ on managed nodes. This way,

an attacker would have to subvert both the privately managed system and the DHT to compromise

Vanish. Inspired by these ideas, we propose a set of architectural extensions for Vanish that allow

it to (1) sprinkle key shares across random Web sites in the Internet and (2) combine multiple key

stores, such as DHTs and Web sites, for increased security (Section 3.7).

60

Forensic Trails. Although not a common feature in today’s DHTs, a future DHT or managed stor-

age system could additionally provide a forensic trail for monitoring accesses to protected content.

A DHT could, for example, record the IP addresses of the clients that query for particular indices

and make that information available to the originator of that content. The existence of such a foren-

sic trail, even if probabilistic, could dissuade third parties from accessing the contents of VDOs that

they obtain prior to timeout. Chapter 4 shows how customizable DHTs could in the future support

particular features like forensic trails without the need for large-scale deployments.

Composition. Our system is not designed to protect against all attacks, especially those for which

solutions are already known. Rather, we designed both the system and our applications to be com-

posable with other systems to support defense-in-depth. For example, our Vanish Gmail plugin can

be composed with GPG in order to avoid VDO sniffing by malicious email services. Similarly, our

system can compose with Tor to ensure anonymity and throttle targeted attacks.

3.4 Prototype, Applications, and Performance Evaluation

We have implemented a Vanish prototype capable of integrating with both Vuze and OpenDHT. To

integrate Vanish with the Vuze DHT, we made two types of changes to the Vuze client: local changes

and deployed changes. The local changes needed patching of only the Vanish user’s Vuze code and

included: (1) a security measure to prevent lookup sniffing attacks (see Section 3.6) and (2) several

performance optimizations suggested by prior work [67] to achieve reasonable performance for our

applications. The deployed changes required full-scale deployment on the live, million-node Vuze

DHT before they could take advantage. These included: code that parameterizes data timeouts to

one-hour increments (prior to our changes, the Vuze DHT used to impose fixed 8-hour limits on

data lifetime in the DHT), a new replication scheme that limits the amount of data dissemination in

the DHT for security reasons, and a new lightweight anti-Sybil defense. Section 3.6 describes the

most relevant modifications.

3.4.1 Vuze Background

The Vuze (a.k.a. Azureus) DHT is based on the Kademlia [123] protocol. Each DHT node is as-

signed a “random” 160-bit ID based on its IP and port, which determines the index ranges that it

will store. To store an (index, value) pair in the DHT, a client looks up 20 nodes with IDs closest

61

Decapsulate VDO

(a) Vanishing Facebook messages. (b) Google Doc with vanishing parts.

Figure 3.4: Vanish Applications. Screenshots of two example uses of vanishing data objects on the

Web. (a) Carla is attempting to decapsulate a VDO she received from Ann in a Facebook message.

(b) Ann and Carla are drafting Ann’s divorce document using a Google Doc; they encapsulate

sensitive, draft information inside VDOs until they finalize their position.

to the specified index and then sends store messages to them. Vuze nodes republish the entries in

their cache database every 30 minutes to the other 19 nodes closest to the value’s index in order to

combat churn in the DHT. Nodes further remove from their caches all values that were stored more

than a given timeout in the past. The timeout can be specified by a client upon store on a one-hour

granularity and cannot exceed 72 hours.2

3.4.2 Vanish Applications

We built two prototype applications that use a Vanish daemon running locally or remotely to ensure

self-destruction of various types of data.

FireVanish. We implemented a Firefox plugin for the popular Gmail service that provides the

option of sending and reading self-destructing emails. Our implementation requires no server-side

2Originally, Vuze had a fixed 8-h timeout for all data; with the help of Vuze engineers, we have deployed a parame-
terized timeout of maximum 72h.

62

changes. The plugin uses the Vanish daemon both to transform an email into a VDO before sending

it to Gmail and similarly for extracting the contents of a VDO on the receiver side.

Our plugin is implemented as an extension of FireGPG (an existing GPG plugin for Gmail) and

adds Vanish-related browser overlay controls and functions. Using our FireVanish plugin, a user

types the body of her email into the Gmail text box as usual and then clicks on a “Create a Vanishing

Email” button that the plugin overlays atop the Gmail interface. The plugin encapsulates the user’s

typed email body into a VDO by issuing a VDO-create request to Vanish, replaces the contents of

the Gmail text box with an encoding of the VDO, and uploads the VDO email to Gmail for delivery.

The user can optionally wrap the VDO in GPG for increased protection against malicious services.

In our current implementation, each email is encapsulated with its own VDO, though a multi-email

wrapping would also be possible (e.g., all emails in the same thread).

When the receiving user clicks on his email, FireVanish inspects whether it is a VDO email,

a PGP email, or a regular email. Regular emails require no further action. PGP emails are first

decrypted and then inspected to determine whether the underlying message is a VDO email. For

VDO emails, the plugin overlays a link “Decapsulate this email” atop Gmail’s regular interface

(shown previously in Figure 3.1(b)). Clicking on this link causes the plugin to invoke Vanish to

attempt to retrieve the cleartext body from the VDO. If the VDO has not yet expired, the plugin pops

up a new window showing the email’s cleartext body; otherwise, an error message is displayed.

FireVanish Extension for the Web. Self-destructing data is broadly applicable in today’s Web-

oriented world, in which users often leave permanent traces on many Web sites [189]. Given the

opportunity, many privacy-concerned users would likely prefer that certain messages on Facebook,

documents on Google Docs, or emails on Gmail disappear within a short period of time.

To make Vanish broadly accessible for Web usage, FireVanish provides a simple, generic, yet

powerful, interface that permits all of these applications. Once the FireVanish plugin has been

installed, a Firefox user can select text in any Web page input box, right click on that selected

text, and cause FireVanish to replace that text inline with an ecapsulated VDO. Similarly, when

reading a Web page containing a VDO, a user can select that VDO and right click to decapsulate

it; in this case, FireVanish leaves the VDO in place and displays the cleartext in a separate popup

window. Some Web sites, such as Gmail, may store draft copies of the text as it is being written;

63

19.00.082124.3200

14.00.08294.7150

9.20.08264.5100

4.70.08232.850

2.00.08216.920

0.90.08210.510

With
prepush

Without
prepush

Decapsulate
VDO

Encapsulate VDO

Time (seconds)

N

Table 3.1: VDO Encapsulation and Decapsulation Performance.

for such cases, we recommend that the user either install additional existing plugins to disable that

functionality or type the email in a separate textbox.

Figure 3.4 shows two uses of FireVanish to encapsulate and read VDOs within Facebook and

Google Docs. The screenshots demonstrate a powerful concept: FireVanish can be used seamlessly

to empower privacy-aware users with the ability to limit the lifetime of their data on Web applica-

tions that are unaware of Vanish.

Vanishing Files. Finally, we have implemented a vanishing file application, which can be used

directly or by other applications, such as a self-destructing trash bin or Microsoft Word’s autosave.

Users can wrap sensitive files into self-destructing VDOs, which expire after a given timeout. In

our prototype, the application creates a VDO wrapping one or more files, deletes the cleartext files

from disk, and stores the VDO in their place. This ensures that, even if an attacker copies the raw

bits from the laptop’s disks after the timeout, the data within the VDO will be unavailable. Like

traditional file encryption, Vanishing Files relies upon existing techniques for securely shredding

data stored on disks or memory.

3.4.3 Performance Evaluation

Although performance is not a primary concern for Vanish and its applications, we now present a

brief performance evaluation aimed at demonstrating that Vanish is practical from a performance

perspective. In the next section, we switch our evaluation criteria to more critical aspects of our

system, such as security and availability, which we evaluate in depth.

We measured the performance of our Vuze-based SDDS, focusing on the times needed to encap-

64

sulate and decapsulate a VDO. Our measurements used an Intel T2500 2.0GHz DUO with 2GB of

RAM, Java 1.6, and a broadband network. In all experiments, Vuze operations (put, get) accounted

for 99% of all execution times for medium-sized data (up to tens of MB, like most emails). En-

cryption, Shamir secret sharing operations, and encryption/decryption accounted for the remaining

1%. For much larger data sizes (e.g., files over hundreds of MB), encryption/decryption becomes

the dominating component.

Table 3.1 shows optimized encapsulation and decapsulation times for 2KB of data as a function

of the number of shares (N) (threshold is 0.83% for all values of N). Our experiments revealed

the importance of configuring Vuze DHT parameters on our latency-aware applications. With no

special tuning, Vuze took over 4 minutes to store 60 shares, even using parallel stores. By employing

several Vuze performance improvements suggested in [67], we reduced the store time to 32 seconds,

as shown in the without prepush column of the Table. While this time is 7x better than the non-

tuned Vuze, we still judged it as too slow for our application. We therefore implemented a simple

optimization: to mask storage delays from the user, our system proactively generates data keys and

pre-pushes shares into the DHT. This optimization led to an unnoticeable DHT encapsulation time

of 82ms, shown in the with-prepush column. The graph shows that decapsulation is relatively fast

— under 5 seconds for N = 60, which is reasonable for emails and similar content.

3.5 Security Analysis

To evaluate Vanish’s security, we seek to assess two key properties: that (1) Vanish does not in-

troduce any new threats to privacy, and (2) our Vuze-based prototype can be made secure against

adversaries attempting to retroactively read a VDO post-expiration.

It is straightforward to see that Vanish adds no new privacy risks. In particular, the key shares

stored in the DHT are not a function of the encapsulated data D; only the VDO is a function

of D. Hence, if an adversary is unable to learn D when the user does not use Vanish, then the

adversary would be unable to learn D if the user does use Vanish. There are three caveats, however.

First, external parties, like the DHT, might infer information about who is communicating with

whom (although the use of an anonymization system like Tor can alleviate this concern). Second,

given the properties of Vanish, users might choose to communicate information that they might not

65

communicate otherwise, thus amplifying the consequences of any successful data breach. Third,

the use of Vanish might raise new legal implications. In particular, the new “eDiscovery” rules

embraced by the U.S. may require a user to preserve emails and other data once in anticipation

of a litigious action. The exact legal implications to Vanish are unclear; the user might need to

decapsulate and save any relevant VDOs to prevent them from automatic expiration.

The remainder of this security analysis, along with the evaluation of our deployed DHT security

defenses in Section 3.6, focuses on retroactive attacks against old data privacy. These attacks,

described in Section 3.2.3 and the timeline in Figure 3.2, are targeted at revoking the privacy of

data encapsulated within expired VDOs. This section provides a broad analysis of such attacks and

possible defenses, after which Section 3.6 dives deeply into attacks that integrate adversarial nodes

directly into the DHT.

Retroactive Attackers. Our motivation is to protect against retroactive data disclosures, e.g., in

response to a subpoena, court order, malicious compromise of archived data, or accidental data

leakage. For some of these cases, such as the subpoena, the party initiating the subpoena is the ob-

vious “attacker.” The final attacker could be a user’s ex-husband’s lawyer, an insurance company, or

a prosecutor. But executing a subpoena is a complex process involving many other actors, including

potentially: the user’s employer, the user’s ISP, the user’s email provider, unrelated nodes on the

Internet, and other actors. For our purposes, we define all the involved actors as the “adversary.”

Attack Strategies. The architecture and standard properties of the DHT cause significant challenges

to an adversary who does not perform any computation or data interception prior to beginning

the attack. First, the key shares are unlikely to remain in the DHT much after the timeout, so

the adversary will be incapable of retrieving the shares directly from the DHT. Second, even if

the adversary could legally subpoena the machines that hosted the shares in the past, the churn in

Vuze makes it difficult to determine the identities of those machines; many of the hosting nodes

would have long disappeared from the network or changed their DHT index. Finally, with Vuze

nodes scattered throughout the globe [194], gaining legal access to those machines raises further

challenges. In fact, these are all reasons why the use of a DHT such as Vuze for our application is

compelling.

We therefore focus on what an attacker might do prior to the expiration of a VDO, with the goal

66

of amplifying his ability to reveal the contents of the VDO in the future. We consider three principal

strategies for such precomputation.

Strategy (1): Decapsulate VDO Prior to Expiration. An attacker might try to obtain a copy of

the VDO and revoke its privacy prior to its expiration. This strategy makes the most sense when we

consider, e.g., an email provider that proactively decapsulates all VDO emails in real-time in order

to assist in responding to future subpoenas. The natural defense would be to further encapsulate

VDOs in traditional encryption schemes, like PGP or GPG, which we support with our FireVanish

application. The use of PGP or GPG would prevent the web-mail provider from decapsulating the

VDO prior to expiration. And, by the time the user is forced to furnish her PGP private keys, the

VDO would have expired. For the self-destructing trash bin and the Vanishing Files application,

however, the risk of this attack is minimal.

Strategy (2): Sniff User’s Internet Connection. An attacker might try to intercept and preserve

the data users push into or retrieve from the DHT. An ISP or employer would be most appropriately

positioned to exploit this vector. Two natural defenses exist for this: the first might be to use a DHT

that by default encrypts communications between nodes. Adding a sufficient level of encryption

to existing DHTs would be technically straightforward assuming that the ISP or employer were

passive and hence not expected to mount man-in-the-middle attacks. For the encryption, Vanish

could compose with an ephemeral key exchange system in order to ensure that these encrypted

communications remain private even if users’ keys are later exposed. Without modifying the DHT,

the most natural solution is to compose with Tor [56] to tunnel one’s interactions with a DHT through

remote machines. One could also use a different exit node for each share to counter potentially

malicious Tor exit nodes [125, 232], or use Tor for only a subset of the shares.

Strategy (3): Integrate into DHT. An attacker might try to integrate itself into the DHT in order

to: create copies of all data that it is asked to store; intercept internal DHT lookup procedures

and then issue get requests of his own for learned indices; mount a Sybil attack [62] (perhaps as

part of one of the other attacks); or mount an Eclipse attack [186]. Such DHT-integrated attacks

deserve further investigation, and we provide such an analysis in Section 3.6.

As foreshadowing to Section 3.6, we show that small, practical modifications deployed in the

Vuze DHT can increase store-based sniffing attack cost by three orders of magnitude, making it

67

impractical for all but the most powerful attackers. Specifically, we have designed, implemented,

deployed at scale, and measured two practical DHT defenses in the live, million-node Vuze DHT: (1)

a conditional replication scheme that limits data an integrated attacker’s sniffing opportunities and

(2) an anti-Sybil defense. Combined, these techniques require to have extreme IP diversity for a suc-

cessful store-based attack: the adversary must continuously control 10,000 IPs scattered in 1,000

distinct /24 IP prefixes and 20 distinct /15 IP prefixes. Moreover, we show how lookup-based

attacks can be easily thwarted using localized changes to Vanish clients that require no deployment

in the Vuze DHT.

Deployment Decisions. Given attack strategies (1) and (2), a user of FireVanish, Vanishing Files,

or any future Vanish-based application is faced with several options: to use the basic Vanish system

or to compose Vanish with other security mechanisms like PGP/GPG or Tor. The specific decision

is based on the threats to the user for the application in question.

Vanish is oriented towards personal users concerned that old emails, Facebook messages, text

messages, or files might come back to “bite” them, as eloquently put in [141]. Under such a scenario,

an ISP trying to assist in future subpoenas seems unlikely, thus we argue that composing Vanish with

Tor is unnecessary for most users. The use of Tor seems even less necessary for some of the threats

we mentioned earlier, like a thief with a stolen laptop.

Similarly, it is reasonable to assume that email providers will not proactively decapsulate and

archive Vanishing Emails prior to expiration. One factor is the potential illegality of such accesses

under the DMCA, but even without the DMCA this seems unlikely. Therefore, users can simply

employ the FireVanish Gmail plugin without needing to exchange public keys with their correspon-

dents. However, because our plugin extends FireGPG, any user already familiar with GPG could

leverage our plugin’s GPG integration.

Data Sanitization. In addition to ensuring that Vanish meets its security and privacy goals, we

must verify that the surrounding operating environment does not preserve information in a non-self-

destructing way. For this reason, the system could leverage a broad set of approaches for sanitizing

the Vanish environment, including secure methods for overwriting data on disk [89], encrypting

virtual memory [159], and leveraging OS support for secure deallocation [42]. However, even

absent those approaches, forensic analysis would be difficult if attempted much later than the data’s

68

expiration for the reasons we’ve previously discussed: by the time the forensic analysis is attempted

relevant data is likely to have disappeared from the user’s machine, the DHT’s natural churn and

internal cleansing mechanisms would have made relevant shares and nodes disappear irrevocably.

3.6 Designing a Security-Sensitive DHT

We now focus on DHT-integrated adversaries and show how DHTs should be designed to be robust

against them. DHT-integrated attacks are of two types: (1) generic attacks, which are applicable to

any DHT application (e.g., Sybil [62], Eclipse [186]) and (2) Vanish-specific attacks, which are only

applicable to our system (e.g., harvesting shares by sniffing store and lookup requests). This

section presents our experience deploying and measuring at full scale practical defenses against

Vanish-specific attacks in the million-node Vuze DHT (Sections 3.6.2 and 3.6.3), followed by a

review of existing techniques for generic attacks (Section 3.6.4). To the best of our knowledge, ours

are the first DHT defenses deployed and evaluated experimentally in a large, live, commercial DHT.

We begin by defining DHT-integrated adversaries, after which we present the defenses.

3.6.1 DHT-Integrated Adversaries

An adversary who interacts with the DHT prior to a VDO’s expiration can, in the future, aid in

retroactive attacks against the VDO’s privacy. During such a precomputation phase, however, the

attacker does not know which VDOs (or even which users) he might eventually wish to attack.

While the attacker could compile a list of worthwhile targets (e.g., politicians, actors, etc.), the use

of Tor would thwart such targeted attacks. Hence, the principle strategy for the attacker would be to

create a copy of as many key shares as possible. Moreover, the attacker must do this continuously –

24x7 – thereby further amplifying the burden on the attacker.

Such an attacker might be external to the DHT — simply using the standard DHT interface in

order to obtain key shares — or internal to the DHT. While the former may be the only available

approach for DHTs like OpenDHT, the approach is also the most limiting to an attacker since the

shares are stored at pseudorandomly generated and hence unpredictable indices. An attacker inte-

grating into a DHT like Vuze has significantly more opportunities and we therefore focus on such

DHT-integrating adversaries here.

69

Attack vectors for DHT-integrated adversaries are enumerated in Section 3.5 (Strategy (3)).

They include: sniffing shares by recording store requests issued when they are initially placed in

the DHT or subsequently as they are being replicated (we call this attack a data-crawling attack,

following the naming in [226]); sniffing share locations from lookup requests as they are being

accessed by Vanish during decapsulations; and a variety of generic attacks that are known in the

literature. We next present defenses against the first two attack types, after which we overview

well-known techniques for dealing with the last attack type.

3.6.2 Defending Against Data-Crawling Attacks

A fundamental challenge in leveraging an existing DHT to build Vanish is the tension between

availability and security. Because of churn in the DHT, good availability requires some replication of

key shares and low secret sharing threshold ratios to withstand nodes that crash or leave the system.

On the other hand, a high replication level increases the likelihood that a key share might be exposed

to an untrustworthy node. Additionally, a low secret sharing threshold increases the likelihood that

multiple nodes under an adversary’s control may capture enough shares to reconstruct the key for a

VDO. Therefore, good security demands little replication and high secret sharing threshold ratios.

We experimented with the Vanish prototype on two versions of the Vuze system: (1) the original

Vuze prior to any Vanish-specific modifications, and (2) the current Vuze, which incorporates new

security and functional enhancements that we designed and deployed on Vuze. Version v4.4 was

the first to include our modifications; hence the remainder of this section denotes the original DHT

as pre-v4.4 Vuze and the security-enhanced DHT as post-v4.4 Vuze. Our original SDDS prototype

implementation was built on top of pre-v4.4 Vuze [81]. This section describes vulnerabilities in

pre-v4.4 Vuze, which made it susceptible to store-sniffing attacks, and proposes two techniques,

which combined raise the cost of a store-sniffing attack by three orders of magnitude.

Vulnerabilities in pre-v4.4 Vuze

Two vulnerabilities in pre-v4.4 Vuze design made our prototype particularly susceptible to the attack

demonstrated in the Clearview paper [226]. First was an extremely aggressive replication system

consisting of two unnecessarily eager mechanisms. Vuze’s push-on-join replication scheme caused

70

neighbors of a new node to push copies of their contents to a node when it joined the DHT. A

malicious node could therefore quickly obtain data in its ID-space vicinity and then “jump” from

ID to ID (by picking different ports to assume different IDs) to sweep data in multiple regions. In

addition, Vuze’s 20-way replication caused every node to replicate each of its values to its 19 closest

neighbors every 30 minutes. These replication mechanisms made for a very efficient attack, yet as

our measurements will show, these mechanisms were unnecessary for availability. Second, Vuze’s

lack of Sybil defense let an attacker scatter as many nodes as it pleased at any locations in the DHT,

which allowed it to benefit from the eager replication traffic.

Guided by these observations, we modified Vuze in two ways:

1. Conditional Replication: We designed a new security-sensitive replication algorithm, called

conditional replication, that significantly increases security while preserving availability.

2. Anti-Sybil Defense: We designed a new DHT ID fabrication function that imposes harsh limits

on the set of IDs that can be fabricated from one physical machine and from various network

IP prefixes (e.g., from within the network of a corporation or an organization).

We now describe and evaluate each of these modifications separately. Because neither of these

defenses is enough to protect against data crawling, we defer an overall assessment of the security

of the current Vuze-based Vanish prototype to Section 3.6.2.

Defense 1: Conditional Replication

In general, it is impossible to scan the Vuze DHT by guessing indexes – the SIDi values for a

Vuze-based SDDS are chosen randomly from an astronomically large address space; however, the

aggressive replication scheme of pre-v4.4 Vuze design made it possible for malicious DHT nodes

to learn a large number of values simply by listening to replication messages from nearby nodes.

We call this a data crawling precomputation attack because malicious nodes attempt to “crawl” the

hash table simply through large-scale infiltration and protocol listening.

To limit the opportunities for data crawling, we leverage the following crucial observation.

Thanks to our use of secret sharing, Vanish can tolerate some data loss and in fact prefers it to

over-replication. Guided on this observation, we altered Vuze’s replication mechanism in three

ways. First and most obvious, we completely eliminated push-on-join replication, which allowed an

71

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

V
D

O
 A

va
ila

bi
lit

y
(%

)

Time (h)

3 replicas
4 replicas
5 replicas
7 replicas
9 replicas

11 replicas
20 replicas

Figure 3.5: VDO Availability Under Conditional Replication. Availability for 60 shares, thresh-

old ratio 85%, and various replication schemes: every-4h conditional replication with 3–11 replicas

and default 20-way, every-30-minute Vuze replication.

attacker to capture a large number of the shares during an 8-hour period, even with a small number

of simultaneous nodes [226].

Second, in place of Vuze’s default 20-way replication scheme, we designed and deployed a new

replication algorithm, called conditional replication, which severely limits the amount of replication

going on in the system. With conditional replication, a Vuze node considers replicating a value only

when a specified minimum replication interval has passed since the value was last replicated or

stored. Imposing a minimum replication interval helps us protect against attacks where colluding

nodes might attempt to force a node into replicating prematurely (a variant of the cuddling attack

described in [226]). Moreover, a node first checks to see how many replicas exist for the value

before replicating. If the number of existing replicas is at or above a specified replication factor,

no replication is performed; otherwise, the node bumps the number of value replicas back to the

replication factor. Finally, we parameterized Vuze’s replication factor and, using experiments, were

able to show that a mere replication factor of 5 (instead of 20) is needed to guarantee high VDO

availability (99.99%) in face of today’s churn condition in Vuze.

Thus, conditional replication reduces data dissemination caused by replication traffic. However,

without caution that reduction has the potential to harm data availability. Below we discuss the

availability/security tradeoff of conditional replication and examine its impact on crawling attacks.

72

Availability Under Conditional Replication. Figure 3.5 illustrates the effect of secret sharing

on VDO availability for conditional replication with different maximum replica factors. All curves

shown use a four-hour replication interval, 60 key shares, and a threshold ratio of 85% (i.e., 51 shares

are required to reconstruct the key). The bottom curve shows VDO availability with a replication

factor of three. Here we see a rapid falloff of availability over time, with a spike up every four

hours when a replication event occurs. The curve for four replicas is a little better but shows similar

characteristics; in both cases the replication factor is too low to make up for natural share loss and

results in poor VDO availability.

However, the graph also shows that conditional replication using a replication factor of five or

more achieves over 99% VDO availability (these curves all run along the top of the graph). These

results confirm our assumption that Vuze’s default replication strategy – 20-way replication every

30 minutes – is significantly over-engineered and over-provisioned for real churn conditions. For

the rest of our measurements, we therefore use conditional replication with a replication factor of

five and a four-hour replication interval.

Impact of Conditional Replication on Data Crawling Attacks. Relative to the original Vuze

replication scheme, conditional replication should greatly reduce the data-harvesting ability of an

attacker who has infiltrated the DHT. To evaluate this impact, we joined the DHT using a large

number of Sybil attack nodes, with each Sybil hopping to a new DHT ID every replication interval.

Figure 3.6(a) shows the probability of capturing individual DHT values (not VDOs) with 25, 000

simultaneous attack nodes as a function of the ages of the values (i.e., the time since the values were

stored in the DHT). Lines are shown for different replication factors, all using a 4-hour minimal-

replication interval.

The figure quantifies the probability of the two types of captures: those due to direct puts (the

points at age = 0) and those due to replication (the points around age = 4, 8, and 12 hours).

Conditional replication significantly reduces the attacker’s share capture: the top curve shows the

original Vuze 20-way replication policy, which results in nearly 100% capture at 8 hours, compared

to 40% capture at eight hours for conditional replication with a replication factor of five.

Thanks to our use of secret sharing, compromising a VDO is much more difficult than com-

promising a single DHT value. Figure 3.6(b) illustrates the dramatic thresholding effect of secret

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16P
ro

b.
 S

in
gl

e-
S

ha
re

 Is
 C

ap
tu

re
d

B
y

T
hi

s
A

ge

Value Age (h)

3 replicas
5 replicas
7 replicas
9 replicas

11 replicas
Vuze Default

(a) Share Compromise vs. Time.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

2 4 6 8 10 12 14 16 18Default

P
ro

b.
 o

f V
D

O
 C

om
pr

om
is

e
(N

=
60

)

Replicas (Use Max. M:N For Availability)

(b) VDO Compromise vs. Replicas.

Figure 3.6: The Data-Crawling Attack Under Conditional Replication. (a) Single-share compro-

mise probability by a 25K-node attacker, 4-h minimum replication interval, and replication factors

3–11. Points labeled “Vuze Default” correspond to 20-way, every-30-minute replication. (b) VDO

compromise probability with the number of replicas, 60 shares, using the maximum M : N ratio to

ensure availability for 8 hours with high probability (99.9%).

sharing on VDO security. For 2 to 12 replicas, the figure shows the probability of the attacker cap-

turing a given VDO (with N = 60 shares, threshold of 0.85) using 25, 000 simultaneous attack

nodes hopping every 4 hours. For each of the replication factors, we use the maximum threshold

ratio allowable to ensure VDO availability for the default 8h timeout (99.9% availability throughout

its lifetime).

The graph’s V shape illustrates an interesting tradeoff and the presence of an optimum replica-

tion factor. For very small replication factors (e.g., two replicas), churn greatly affects single-share

availability, requiring us to use extremely low secret sharing threshold ratios, which results in poor

security. The graph clearly shows that five replicas is the optimal replication factor for security,

providing a probability of VDO compromise of approximately 10−10. As the replication factor in-

creases above five, the small increase in allowable threshold ratio does not offset the increase in

per-share capture that we saw in Figure 3.6(a), resulting again in weaker security.

Thus, conditional replication severely limits the number of opportunities that an attacker has

to capture a share during its lifetime. This implies that the attacker must hop less frequently and

74

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

P
ro

b.
 o

f V
D

O
 C

om
pr

om
is

e
(N

=
60

)
(L

og
sc

al
e)

Number of Simultaneous Sybils

"Safety" threshold

Default replication, timeout=8h
Cond. replication, timeout=16h
Cond. replication, timeout=8h

Figure 3.7: Probability of VDO Compromise vs. Attack Size Under Conditional Replication.

Conditional replication significantly increases the resistance to attack compared with original Vuze’s

default replication policy.

instead maintain a much larger continuous DHT presence. Figure 3.7 shows the probability of

VDO compromise for an increasingly powerful attacker, measured by the number of simultaneous

nodes it maintains in the DHT at all times. The graph compares conditional replication under our

recommended parameters (5 replicas, 4-hour replication interval) with the default Vuze post-v4.4

Vuze 20-way, every 30-minute replication policy, a sterner replication policy than the one Clearview

attacked (recall that Vuze, at the time of the Clearview attack, also implemented aggressive push-

on-join replication). For conditional replication, we show results for two different timeouts: 8h

(the default in our SDDS prototype) and 16h. Points on the graph indicate results directly obtained

from our experiments with various simultaneous attacker nodes integrated into the million-node

DHT with conditional replication enabled. Lines in the figure indicate the predictions of a sim-

ple probabilistic model seeded with results from the 10,000-simultaneous-node experiment. For

interpretation, the “safety threshold” line marks the 10−3 capture probability, which we believe is

a conservative estimate for the success rate required by an adversary to mount a continuous data-

crawling attack.

With conditional replication and VDO timeouts of 8 and 16 hours, attackers would require, to

maintain at least 50, 000 and 37, 000 nodes, respectively, continuously integrated in the 1M-node

Vuze DHT (24x7x365) in order to have even a slim chance (10−3) of capturing any given VDO.

75

Comparing to the pre-v4.4 Vuze evaluated by the Clearview paper [226], conditional replication

makes a radical improvement. That paper indicates that fewer than 500 simultaneously connected

nodes were necessary to obtain 25% of the VDOs by hopping once every 150s. Hence, our mod-

ifications to the production Vuze DHT represent at least a two-order-of-magnitude increase in the

number of Sybils required by the attack.

Conditional replication has a significant impact on the number of nodes an attacker would need

to infiltrate the DHT to learn even a small number of VDOs. To complement this impact, we now

describe a practical mechanism that raises the bar against Sybil attacks, which could otherwise

enable such large-scale attacks from a limited number of physical machines.

Defense 2: Anti-Sybil Defense with Limited Node Identifiers

The pre-v4.4 Vuze was extremely susceptible to Sybil attacks, in which one physical node could

inject a large number of malicious DHT nodes into the DHT. In response, we designed a simple-

to-deploy Sybil defense to limit an attacker’s ability to infiltrate the DHT at very large scale. Many

anti-Sybil techniques have been proposed in the literature, including [28, 53, 55, 62, 114, 231] (see

also Section 3.8). In choosing a Sybil defense for Vuze, we were guided by practical concerns.

We contemplated many solutions, including the use of node certifications obtained from Vuze and

BGP-prefix-based DHT IDs, but Vuze, Inc. deemed these to be too heavyweight or inconvenient.

Hence, to limit the number of nodes that an attacker can emulate, we devised a new lightweight,

yet effective, function for computing DHT IDs. The revised node ID calculation acts as an admission

control mechanism, capping the number of nodes that an attacker with limited IP diversification can

create. Previous systems have relied on IP diversity to defend against routing attacks in unstructured

P2P systems; e.g., nodes in Tarzan [73] select relays from diverse jurisdictional and operational

boundaries to create anonymizing paths through a mix network. However, we believe that to date

no one has incorporated IP diversity requirements in DHT ID calculations to limit Sybil attacks.

In Vuze and many other DHTs, a joining node’s ID is generated by computing the SHA1 hash

of the node’s publicly visible address (IP) and port number (P), i.e., H(IP, P) = SHA1(IP || P),

where || is the bitstring concatenation. We created a new DHT ID assignment function that: (1)

limits the number of nodes in the DHT from a single IP address, and (2) also limits the number of

nodes that can participate in the DHT from a given IP prefix. Let IP1, . . . , IP4 be the first through

76

fourth bytes of an IP, with IP1 being the most significant (e.g., 128 in the case of IP 128.18.15.3).

The following function generates IDs for nodes joining the DHT and determines their locations in

the DHT: H(IP, P) = SHA1(IP1 || (IP2 || (IP3 || (IP4 || (P % k4)) % k3) % k2) %k1)

The function H(·) limits an IP to at most k4 identities and caps the number of identities that

can be generated by /8, /16, and /24 prefixes to k1, k2, and k3, respectively. As a concrete example,

the University of Washington (UW) uniquely controls a 16-bit IP prefix (128.208) and can generate

IP addresses 128.208.0.0 through 128.208.255.255.3 UW can therefore create up to 64K unique IP

addresses that could be deployed in a Vuze Sybil attack if it were malicious. However, by setting k2

to 2K, for example, we reduce by a factor of 32 the number of DHT positions that UW (and all other

/16 owners) can occupy in the DHT – from 64K positions to 2K positions. If a successful Sybil

attack requires placement at, say, 64K positions, then UW would need to co-opt at least another

thirty-one /16 networks to collaborate in the attack. Moreover, assuming that we also set k4 = 4

nodes, a hacker who controls one or a few IP addresses in each /16 would not be able to mount the

attack. Rather, the attacker must either control the routers of all thirty-two /16 networks or control

500 different IP addresses in each /16 network. This would be a formidable task for UW. 4

Our technique has two side effects. First, it prevents some nodes from operating as full partici-

pants in the DHT, e.g., only k4 nodes could fully participate from behind a NAT. A node that cannot

participate will not store values on behalf of other DHT nodes and will not be reached by other

nodes’ lookups. However, it can still operate as a DHT client, i.e., the node can still perform its own

stores and lookups. Such nodes can use BitTorrent swarms and store or read Vanish shares. Some

existing DHTs, such as OpenDHT [164], already include a distinction between client and fully par-

ticipating nodes by design, so this consequence is neutral. Second, our IP-based ID limitation might

reduce the DHT’s size. In particular, if many nodes were prevented from participating in the DHT’s

maintenance traffic (e.g., storage, replication, etc.), then the DHT would be smaller than it could be,

which could increase the workload on participating nodes.

To examine the benefit-cost tradeoff of our scheme, we collected data on DHT membership from

3IP spoofing has no value for a data harvesting attack, because the attacker would not receive return packets with data
values. Route hijacking is possible, though hijacking a large number of routes over a long time (months or years) poses
a great challenge.

4We believe that we can be as effective in filtering in classless IP systems, such as IPv6; investigation of this aspect is
left for future work.

77

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06
P

er
ce

nt
 o

f D
H

T
 N

od
es

 In
cl

ud
ed

 In

P
re

fix
es

 w
ith

 <
=

 N
 n

od
es

Number of Nodes (N) - logscale

/16 prefixes with 910 or fewer nodes
account for 95% of the DHT nodes

/32 prefix
/24 prefix
/16 prefix
/8 prefix

Figure 3.8: Evaluation of Anti-Sybil Defense. Shows the percentage of nodes that would be

included by prefixes with a maximum node limit shown on the X axis. Harsh limits can be applied

through ID filtering without impact on DHT size.

a Vuze, Inc. version server to which all nodes that run the default Vuze application report. In a 24h

period, we saw 1, 842, 628 nodes (IP-port pairs) that originated from 1, 724, 363 distinct IPs. We

then quantified the change in DHT size for different prefix-based ID limiting parameters.

For the standard IP prefix lengths (/8, /16, and /24), Figure 3.8 shows the percentage of DHT

nodes (y axis) that would be included by prefixes with a given maximum node limit (x axis). (For

the /32-prefix line, we show the percent of DHT nodes that would be included by IPs with at most

a certain number of ports/IDs.) For all prefix lengths except /8, the presence in the DHT of any

specific prefix is surprisingly small. For example, /16 prefixes with 910 or fewer nodes account for

95% of the nodes in our trace. Similarly, /24 prefixes with 10 or fewer nodes and IPs with 2 or

fewer ports each account for 95% of the DHT nodes.

These results are significant. They suggest that harsh limits can be imposed on the number of

nodes that come from each prefix. We choose our limits conservatively based on these results, as

follows: k4 = 5 (at most 5 IDs from any IP); k3 = 50 (at most 50 IDs from any /24 prefix);

k2 = 2, 500 (at most 2, 500 IDs from any /16 prefix). Limits on /8s are also possible and result in

only a slightly greater DHT size reduction. However, given that the threat from the few companies

owning /8s today is remote, we decided not to impose such limits at this time. Overall, choosing

these values reduces the number of distinct IP-Port pairs in our trace from 1, 842, 628 to 1, 575, 786

78

Defense Effect

Disable on-join-replication Limits data dissemination

Conditional replication Limits data dissemination

Reduce replication factor (3x impact) Limits data dissemination

Increase min. repl. interval (80x impact) Limits data dissemination

Prefix-based ID calculation Limits Sybil

NAT traversal (2x on direct puts) Increases DHT size

Port to larger DHTs (up to 6x impact) Increases DHT size

Table 3.2: Vuze Data-Crawling Defenses and Effects.

distinct IDs, a reduction in DHT size of only 15% (which we believe is an overestimate due to the

24-hour-long trace). Thus, harsh per-prefix restrictions will have only a marginal impact on DHT

performance but will significantly toughen the DHT’s ability to withstand Sybil attacks.

Thus far, we have presented the impact of two deployed defenses – conditional replication and

DHT admission control – in isolation on a data-crawling attack. We next combine these results to

assess Vanish’s security on top of the current, patched Vuze DHT.

Security of post-v4.4 Vuze with Data Crawling Attacks

Taken together, our new conditional replication and DHT admission control mechanism renders a

Sybil-based data-crawling attack extremely challenging. Our results show that a successful Clearview-

like attack would require access to 10,000 IPs scattered in 1,000 distinct /24 IP prefixes and 20

distinct /16 IP prefixes. Few attackers have access to such resources without contracting with major

international companies, ISPs, or a botnet. Moreover, on today’s larger DHTs such as uTorrent, with

5M nodes, an attacker must maintain about 250, 000 simultaneous DHT nodes (IDs) and 50, 000 IPs

continuously, 24x7x365, in the hope that something they learn would be of value in the future.

In addition to the two discussed security measures, we have made other design modifications to

increase Vuze’s security against this and other attacks. Table 3.2 summarizes the defenses we have

explored. We have deployed all of the data dissemination defenses on Vuze. We deployed prefix

ID calculation but have not yet enabled it, as this would have prevented us from conducting the

79

large-scale attack measurements needed for this section. NAT traversal is implemented in the Vuze

P2P system but not yet in the DHT.

Finally, the size of the attack required for success is a linear function of the size of the DHT.

The results shown here are for the 1M-node size of the Vuze DHT as of December 2009. The

much larger sizes of other deployed DHTs – such as uTorrent, a DHT with over 5M simulatenous

nodes – would improve Vanish’s security. Specifically, an attacker would intuitively need a constant

presence approximately 5X larger – or over 250,000 nodes – assuming that uTorrent implements a

security-sensitive design similar to the one we have developed for Vuze. As DHT use continues to

grow, then, the cost of attack should increase proportionally.

Data crawling attacks, which we investigated in this section, are one type of Vanish-specific

attack. We next present defenses against another Vanish-specific attack the lookup-sniffing attack.

3.6.3 The Lookup Sniffing Attack

In addition to seeing store requests, a DHT-integrated adversary also sees lookup requests.

Although Vuze only issues lookups prior to storing and getting data objects, the lookups pass

through multiple nodes and hence provide additional exposure for VDO key shares. In a lookup

sniffing attack, whenever an attacker node receives a lookup for an index, it actively fetches the

value stored at that index, if any. While more difficult to handle than the passive store attack, the

lookup attack could increase the adversary’s effectiveness.

Fortunately, a simple, node-local change to the Vuze DHT thwarts this attack. Whenever a

Vanish node wants to store to or retrieve a value from an index I , the node looks up an obfuscated

index I ′, where I ′ is related to but different from I . The client then issues a store/get for the

original index I to the nodes returned in response to the lookup for I ′. In this way, the retrieving

node greatly reduces the number of other nodes (and potential attackers) who see the real index.

One requirement governs our simple choice of an obfuscation function: the same set of replicas

must be responsible for both indexes I and I ′. Given that Vuze has 1M nodes and that IDs are

uniformly distributed (they are obtained via hashing), all mappings stored at a certain node should

share approximately the higher-order log2(10
6) ≈ 20 bits with the IDs of the node. Thus, looking

up only the first 20b of the 160b of a Vuze index is enough to ensure that the nodes resulted from the

80

lookup are indeed those in charge of the index. The rest of the index bits are useless in lookups and

can be randomized, and are rehabilitated only upon sending the final get/store to the relevant

node(s). We conservatively choose to randomize the last 80b from every index looked up while

retrieving or storing mappings.

Lacking full index information, the attacker would have to try retrieving all of the possible

indexes starting with the obfuscated index (280 indexes), which is impossible in a timely manner.

This Vuze change was trivial (10 lines of modified code) and completely local to Vanish nodes.

3.6.4 Generic DHT Attacks and Defenses

In the previous sections we offered an in-depth analysis of two data confidentiality attacks in DHTs

(data crawling and lookup sniffing), which are specific in the context of our system. However, the

robustness of communal DHTs to more general attacks has been studied profusely in the past and

such analyses, proposed defenses, and limitations are relevant to Vanish, as well. A comprehensive

survey [207] describes most known attacks including: Sybil attacks, where malicious nodes amplify

their presence; Eclipse attacks, where the attacker nodes blackhole honest nodes by corrupting their

routing tables; and routing and storage attacks, where malicious nodes do not follow the routing and

storage protocols correctly.

Numerous defenses have been proposed to defend against all of these attacks. Sybil defenses

include centralized certification, trusted measurement infrastructure, social networks, and compu-

tational puzzles [15, 28, 35, 53, 55, 170, 217, 231]. Eclipse attacks can be defended by disabling

proximity optimizations, using both optimized and unoptimized routing tables, or doing anonymous

auditing [14, 35, 45, 93, 185, 186, 188, 198]. Finally, common defenses to routing and storage at-

tacks include routing through a diverse set of nodes, identifying multiple independent paths, using

iterative routing as opposed to recursive routing, and storing redundant replicas at multiple loca-

tions [35, 53, 92, 93, 218].

These long-known attacks, along with some of the corresponding defenses, apply to DHT-based

self-destructing data systems and should be incorporated in Vuze. For example, Vuze currently

uses 20-way path redundancy, which can protect against some forms of routing attacks [92, 93],

and Vuze lookups can be further strengthened by using routes that maximize AS diversity [73].

81

Similarly, stronger anti-Sybil defenses might be required to protect against attackers with immense

IP diversity, such as botnets or ISPs.

3.6.5 Summary of Deployed Defenses

This section described the design, implementation, and evaluation of deployed DHT defenses against

Vanish-specific attacks. Our techniques – conditional replication, anti-Sybil DHT admission con-

trol, and obfuscated lookups – raise the bar against attack by three orders of magnitude compared to

the original Vuze, making data-crawling attacks impractical for all but the most powerful attackers.

We recognize that defenses against all of the other known attacks must also be deployed on to-

day’s DHTs before our DHT-based Vanish can be considered secure. However, from a research per-

spective, we have chosen to focus Vanish-specific attack types – the recently proposed data-crawling

attack [226] and the lookup sniffing attack – and advance the state of the art in understanding and

defending against this attack from a practical, measurement-driven perspective. We hope that our

deployment of practical techniques to protect against these attacks on the commercial Vuze DHT

will inspire researchers in the future to deploy defenses for other attacks, thereby creating a more

secure large-scale, distributed, P2P platform for building distributed-trust applications, such as Van-

ish. Until the vision of a secure DHT is realized, Vanish can draw its security by building upon other

large-scale, distributed, decentralized deployed systems. We next review such alternative solutions.

3.7 Architectural Extensions for Security

DHTs are one type of distributed, decentralized, global-scale infrastructure, but there are many

others. This section shows how to use the World-Wide-Web to create data that self-destructs (Sec-

tion 3.7.1) and how various distributed storage infrastructures can be combined for defense in depth

(Section 3.7.2).

3.7.1 A World-Wide-Web-based Self-Destructing Data System

The Web is effectively the world’s largest peer-to-peer system, composed of millions of indepen-

dently administered and autonomous interacting Web sites. This section explores how to leverage

existing Web infrastructure to build self-destructing data. For example, suppose that many of the

82

world’s Website owners – understanding the need for privacy and supportive of our pro-privacy

efforts – would be willing to expend minimal effort to support self-destructing data. What would

be required to build a distributed-trust key store? Would we need a full-blown DHT-like structure

among participating Websites or an encryption-heavy Ephemerizer-like system, or can we build

something simple, easy to manage, non-intrusive, and safe? Finally, would the resulting Web-based

Vanish face the same challenges as our DHT-based system, would new challenges arise, or does the

Web environment include inherent properties that simplify our task?

This section presents Tide, a system whose goal is to organize Web sites from around the world

into a distributed-trust key store for Vanish. We first describe the basic design for Tide and then

evaluate our proof-of-concept Tide-based Vanish prototype.

System Design and Prototype

Tide’s goal is to leverage thousands of Websites across the planet, easing deployment through the

use of widely used open software platforms, such as the Apache Web server. The Tide concept is

simple: Tide-modified Websites accept small pieces of data (key shares) for storage until a specified

timeout, at which point they erase them. Instead of sprinkling key shares across random nodes in

a DHT, Vanish now scatters them across random Tide-enabled Web sites in the Internet. Each key

share in Tide is protected by association with a random 256-bit index that acts as a capability; to

retrieve a share via the exposed interface, a client must know its gigantic, unguessable index.

The Tide Apache Module. We designed the Tide key store to have three important properties:

1. Simple and easily deployable. To maximize deployability, we implemented Tide as a small,

dynamically loadable Apache module that exports a RESTful put/get interface. The module

maintains an in-memory hashtable of (index, value) pairs, each with an associated timeout.

To minimize the risk of improper share cleanup at the timeout, we pin the hashtable into main

memory. To Tide-enable a Website, the administrator simply downloads our Tide module and

installs it in one of his front-end servers. Once installed, server will handle incoming /tide

requests. The Apache module is small (826 lines of C code) and is designed to be easily

understood and inspected for vulnerabilities by concerned administrators.

/tide

83

2. Lightweight and safe. Tide relies on volunteer opt-in, therefore, we must ensure that our

module remains unobtrusive to the server’s general functioning. Section 3.7.1 demonstrates

that our system is extremely lightweight under normal conditions. To safeguard against DoS

attacks, we install harsh limits on the size of each stored index and value, the maximum

memory consumption by the module, and the maximum timeout. Standard IP-based rate-

limiting can also be used to limit the amount of traffic serviced by our module and the number

of shares being stored by a particular client. The use of secret sharing makes Tide resilient to

server failure or unavailability due to excessive load; a server can opt out without impacting

the overall system.

3. Supportive of a variety of deployment strategies. Due to its simplicity and use of a common

infrastructure – the Apache Web server – Tide can be deployed in multiple ways. For exam-

ple, Tide could run on a global collection of public Websites. Potential early adopters might

include privacy advocates (e.g., pgp.com), open-information supporters (e.g., kernel.

org, sourceforge.net), freedom-of-speech supporters (e.g., rsf.org, eff.org),

academic institutions (e.g., cs.washington.edu), and worldwide testbed participants

(e.g., PlanetLab members). Tide could also run on private servers known only to a small

community. For example, a group of tech-savvy people could host Tide-enabled servers to

support self-destructing emails for friends, or a company could run Tide for its employees.

There are several important differences between the Tide environment, based on Web servers,

and the P2P/DHT environment, based on personal machines. First, a server-based environment has

lower churn, which eliminates the need for cross-Website share replication. With no replication or

other inter-Website communication, harvesting of key shares through such mechanisms is impossi-

ble. A Tide server can only receive shares if a client directly puts those shares to the server. Second,

the Web provides the opportunity to embed the notion of node trust into the system. DHT nodes are

anonymous and indistinguishable in terms of trustworthiness, hence they are all treated the same.

This makes DHTs particularly vulnerable to Sybil infiltration, which caused us to develop the ad-

missions control mechanism we described for Vuze. Infiltration attacks on a Web-based Vanish are

also possible; however, in the Web environment, there have been numerous efforts to gauge the

trustworthiness of Websites. These include the development and adoption of SSL/TLS with server

pgp.com
kernel.org
kernel.org
sourceforge.net
rsf.org
eff.org
cs.washington.edu

84

certificates [163], DNSSEC [12], heuristics for identifying spamming and phishing domains, and

Perspectives-like [220] P2P approaches for establishing the trustworthiness of public keys in the

absence of PKIs.

Finding Tide Servers Securely. The mechanism by which Vanish obtains a list of all Tide-enabled

servers in the world affects security and is therefore crucial. For example, if an attacker could bias

a client’s selection of Tide servers, perhaps by infiltrating the list of possible servers with malicious

Web sites or hiding the existence of honest sites, that would seriously degrade security. We have

identified three potential alternatives for directory services:

1. Web Search. The simplest way to find Tide servers is to use a general-purpose search engine

(such as Google, Yahoo, and Bing) to search for Tide-specific keywords. Naturally, these

solutions are vulnerable to search engine compromises; however, using multiple services (e.g.,

Google and Yahoo and Bing) with secret sharing and some server filtering would mitigate

these concerns. Our current prototype implements this option.

2. Web-of-Trust-Based Directory Service. A PGP-like web-of-trust scheme could serve as a

distributed directory service [234]. Applications would supply the server lists from trusted

communicants to Vanish. For example, if Dan trusts Doris, he might incorporate her list of

trusted servers into his own list of servers, possibly with scaled-down trust levels. With such

a solution, users would not have to trust any centralized directory service and would avoid the

directory-hijacking attack. We leave the full investigation of this solution for future work.

3. Communicant-Based Server Discovery. The communicants themselves – or their employers

– might host Tide servers for the timely destruction of their communications. For exam-

ple, when Dan sends a self-destructing email from his account (dan@biz1.com) to Doris

(doris@biz2.com), the Vanish email application on Dan’s machine could automatically

search for Tide servers at http://www.biz1.com/tide and http://www.biz2.

com/tide and, if present, use them, requiring both in order to reconstruct the key. Such a

protocol may be applicable between two companies that trust each other but do not want to

rely completely on each others’ data destruction mechanisms.

Server filtering can be used to further withstand infiltration by malicious entities. The space of

potential filtering policies is large on the Web. To prevent infiltration of multiple URLs from a single

dan@biz1.com
doris@biz2.com
http://www.biz1.com/tide
http://www.biz2.com/tide
http://www.biz2.com/tide

85

DNS domain – the equivalent of Sybil attacks from DHTs – our prototype eliminates duplicate URLs

from any two-level domain (e.g., URLs https://cs.washington.edu/tide and https:

//washington.edu/tide are duplicates and one of them is dropped); this approach could

be internationalized. Another potential admission control scheme might include only (or mostly)

Tide servers from trusted domains, such as .edu domains or Fortune 500 URLs. Implementations

could also ensure that domains in the local list span sufficient geographical regions or avoid certain

geographical regions altogether, or that they have been registered for a long enough period of time

(i.e., presumably not spam domains).

Tide-Based Vanish Prototype. We built a proof-of-concept prototype Vanish system using Tide as

its backend. We have implemented a subset of the features supported by the architecture described

above. In particular, our prototype integrates only Tide servers returned by search on Google and

performs only rudimentary duplicate-elimination admission control. Prototype Tide Websites “reg-

ister” with Google by including their Tide URLs on an indexable page or in their sitemaps. For

example, a Tide server that our Website hosts is referenced from our Download page and has been

indexed by Google. To find Tide-enabled sites, clients query Google’s AJAX search API for URLs

containing tide/keystore by issuing the query “allinurl: tide keystore.” Although we find

that this keyword combination is currently unpopular in URLs (our Tide server is the only result

returned), our module tests URLs for a valid Tide module before including them on the local list.

We now evaluate our Tide-based Vanish prototype. Recall from Section 3.3 that threshold secret

sharing and its parameters play a crucial role in the tradeoff between security and availability and

hence will be a central focus of our evaluation.

Evaluation of Tide-based Vanish Prototype

We now evaluate the performance, availability, security, and lightweightness of our Tide-based Van-

ish prototype. To create in a realistic global setting, we deployed Tide-enabled Apache Web servers

on 462 PlanetLab nodes. These nodes are servers scattered all around the world and should approx-

imate a realistic global Tide deployment.

Performance. We evaluate Tide performance by measuring response times for encapsulation and

decapsulation on our PlanetLab deployment. Figure 3.9(a) shows results for various numbers of

https://cs.washington.edu/tide
https://washington.edu/tide
https://washington.edu/tide
tide/keystore

86

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100

O
pe

ra
tio

n
T

im
e

(m
s)

Number of Shares N
(Use Max M:N for Availability)

Encapsulation
Decapsulation

(a) Performance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

M
ax

im
um

 T
hr

es
ho

ld
 R

at
io

 M
:N

 T

o
E

ns
ur

e
A

va
ila

bi
lit

y

Number of Shares (N)

Timeout = 8h
Timeout = 2 days
Timeout = 1 week

(b) Availability.

Figure 3.9: Tide’s Performance and Availability. (a) Encapsulation and decapsulation times. (b)

Maximum threshold ratio to ensure VDO availability with high probability (> 99.999%).

shares (N), obtained from measurements of 10, 000 operations of each type. For each value of N ,

we again use the maximum threshold that ensures VDO availability for 8 hours. As the number

of shares increases, VDO encapsulation times increase close to linearly, while VDO decapsulation

times quickly level off. This is because encapsulation must await responses from all N servers, while

decapsulation waits only for the fastest M shares to arrive. Overall, encapsulation and decapsulation

response times remain under 1.3s and 600ms, respectively. Building on our availability results (see

below), we recommend using N = 30 shares and a threshold ratio of 90%, which leads to 484ms

decapsulation times and 820ms encapsulation times.

VDO Availability. To estimate VDO availability, we leverage the uptime information obtained

from our 462 PlanetLab servers and simulate VDOs under various numbers of shares and threshold

ratios. We compute the probability that any given VDO would remain available until its timeout

given crashes and reboots.

Server churn is typically small: e.g., the median node uptime in our PlanetLab trace is 59 days.

Therefore, it is not difficult to achieve good availability guarantees for VDOs with timeouts of up

to a week. In particular, for most values of N (N ≥ 5), we can identify a range of secret sharing

threshold ratios that ensure VDO availability with high probability. As with Vuze, our goal is to find

the ratio that provides the optimal security-availability tradeoff.

Figure 3.9(b) graphs the maximum threshold ratio capable of providing VDO availability with

87

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

A
pa

ch
e

S
er

ve
r

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
)

Tide Request Rate (requests/s)

10 simultaneous requests
50 simultaneous requests

100 simultaneous requests

(a) Tide Throughput Overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80 100

P
ro

ba
bi

lit
y

of
 V

D
O

 C
om

pr
om

is
e

Percent of Compromised Servers

N=5
N=10
N=30
N=60
N=90

(b) Tide’s Security.

Figure 3.10: Tide’s Security and Overhead. (a) Probability of VDO capture as a function of the

percentage of compromised servers for various values of N . E.g., for N = 30 an attacker must

control at least 70% of the Tide servers in order to have a 10−3 chance of capturing the user’s VDO.

(b) Performance impact of Tide workload on web server throughput. Results are averaged over 10

trials.

a probability 99.9% for various numbers of shares and timeouts of 8 hours, 2 days, and 1 week. For

an 8-hour timeout (our prototype’s default), scattering shares across 30 servers permits a threshold

ratio of 90%; i.e., with very high confidence, at least 27 (90%) of those 30 servers will remain

up during the VDO’s 8-hour lifetime. For larger timeouts, such as one week, required threshold

ratios are much lower. In this case, again with 30 shares, the maximum ratio Tide can support is

around 60% (i.e., we require over 18 of the 30 shares to reconstruct the VDO or risk losing the

VDO prematurely). The reason is intuitive: during one week there is a higher chance that servers

will reboot or crash compared to an 8-hour period, so we must adjust the secret sharing threshold

ratio accordingly.

VDO Security. We evaluate security in the context of an adversary who controls a fraction f of the

Tide servers. The adversary can achieve control either by infiltrating into or compromising some

of the Web servers in a non-targeted precomputation attack, or by compromising the specific Web

servers that used to store key shares for a specific VDO in a post-timeout targeted attack.

88

Given that VDO shares are placed at random on the servers, capturing VDOs is probabilistic.

To assess the probability that an attacker captures a VDO, we use a simple combinatorial model

that takes f and the VDO parameters (N , threshold ratio M : N) as inputs. Figure 3.10(b) shows

the probability of VDO compromise as the fraction of compromised servers increases for various

numbers of shares. For each value of N , we use the maximum allowable threshold ratio M : N

to ensure availability for the 8-hour default Cascade timeout. Using N = 30 again as an example,

we see that an attacker who has compromised 80% of those servers (24 servers) will capture only

15% of the VDOs given the 90% threshold ratio (Figure 3.10(b), third curve from the left). Hence,

in the context of a real-world deployment like our Planetlab Tide experimental setup, we conclude

that using N = 30 shares and a threshold ratio of 90% provides both good availability for 8-hour

timeouts and good security.

Tide Module Lightweightness. Because Tide relies on volunteer opt-in, we needed to verify that

it is non-intrusive to the hosting server’s performance. To measure the impact of handling a Tide

workload on the throughput of Apache, we drove two workloads simultaneously against Apache

2.2.14 running on a modest server with a 1GH dual-core CPU and 1.5GB of memory. First was a

Tide workload that we drove at various rates using httperf [133]. Second was a Web workload

that we drove using the Apache Benchmark tool (ab) to measure the server’s throughput when

downloading a small 13-B HTML index page.

Figure 3.10(a) shows the impact of increasing the Tide workload on Apache’s Web-workload

throughput. We include results for increased numbers of concurrent Web-workload requests, which

correspond to higher Web workloads. The points on the y axis (x = 0) correspond to the server’s

base throughput without Tide. The points with x = 100 show the server’s Web-workload throughput

when it is being pounded by a 100-request/second Tide workload. The almost horizontal lines

demonstrate that even under heavy Tide workloads, Apache’s Web-workload throughput remains

within 93–96% of its base throughput (the largest penalty occurs for high Web workloads of 100

concurrent requests).

Similar results can be shown for per-Web-request latencies, where where the penalty of hosting

a heavily-loaded Tide server (100 Tide requests/second) results in a 4–7% average latency increase

and a 6–15% 90th-percentile-latency increase. In addition, lightweight conclusions can be reached

89

Cascade Extensible Core

K
K1 K2 K3

K1 1K1 2K1 3 K2 1K2 2K2 3K2 4 K3 1 K3 2

Vuze
Extension

Extension API

Vuze DHT Tide Web Servers OpenDHT

…

…

…

…

Cascade Application API

Firefox
Plugin

PGP Encypted
Drive

…

data VDO = <header, E
K

(data)>

3/3

2/3 3/4 1/2

Tide
Extension

Extension API
OpenDHT
Extension

Extension API

A
pp

s
C

as
ca

de
 C

a
sc

ad
e

B

ac
ke

nd
s

Figure 3.11: Multi-Key-Store Self-Destructing-Data Architecture. Distributes encryption mate-

rial over i different distributed-trust key stores using hierarchical secret sharing (i = 3 here).

for memory overhead. Maintaining one Tide (index, share) pair requires only 72 bytes; hence, with

a modest 256MB of memory on each Tide server in our 462-server PlanetLab deployment, Tide

could support the creation of 3-day-timeout VDOs at a rate of 200 new VDOs/second – almost a

third of Facebook’s status-update rate.

3.7.2 Combining Distributed Key Stores

This section briefly describes the potential for creating a single self-destructing data system that

composes Tide with Vuze and/or other distributed-trust key stores. The composition of multiple key

stores is relatively straightforward and has an unusual advantage: while in general a system is only

as secure as its weakest link, a composed self-destructing data system is as strong as the union of its

components, thereby moving distributed trust to a new level. As a result, a successful attack must

subvert all of the key stores involved, rather than just one. We have extended our Vanish prototype

support such combinations.

Figure 3.11 shows the architecture of the multi-key-store Vanish. The composed system uses a

hierarchical secret sharing approach. The figure shows a self-destructing data system using three

underlying key stores: a Vuze DHT key store, a Tide Web-based key store, and an OpenDHT key

store (OpenDHT is a closed-membership DHT with different properties than Vuze). To encapsulate

90

data in this configuration, the random encryption key K would first be broken into three shares – one

for each key store – thus requiring all three keys to reconstruct K. Each of the three per-key-store

shares would then be further broken into shares. For example, we might: (1) break the Vuze share

into 60 sub-shares to be stored on Vuze, requiring 85% of them for decryption; (2) break the Tide

share into 30 sub-shares, requiring 90% of them; and (3) break the OpenDHT share into however

many shares are appropriate for that DHT. The figure shows key-store-specific extension compo-

nents, which provide a standard key-store interface and handle the protocol details and parameters

for each key store. New key stores can be easily plugged into the self-destructing data system by

adding new extensions.

Two reasons exist for such multi-store trust distribution. The first is an argument for N-versioning

and defense-in-depth. Different key stores exhibit different strengths and weaknesses. For example,

Tide might be attractive to those concerned about botnets, whereas a DHT-based system might be

more vulnerable to a botnet-based attack. Conversely, an entirely P2P system might be attractive

to conspiracy theorists strongly resistant to certain Tide admission control policies (such as open

admission to Tide servers from .edu or .gov domains). Even different admission control poli-

cies for Tide provide different security properties. By combining different key stores – especially

very distinct ones, such as Tide and Vuze – we significantly raise the bar against both perceived

untrustworthiness and real attacks. Attackers well positioned to attack one key store may not be

well positioned another. For example, an attacker willing to use illegal botnets might not be well

positioned to collaborate with large corporations, educational institutions, or governments in host-

ing nefarious Tide servers, and vice versa. Second, key store composition allows the incremental

deployment of new key stores. As an example, our currently deployed, significantly strengthened

Vuze key store can foster the gradual deployment of our new Tide key store. Without composability,

incremental deployability could be a bottleneck for Tide.

3.7.3 Summary

The Web is composed of an enormous set of interconnected services, many of them based on Apache

or other open, standardized components. This section presented a unique scheme for creating a

distributed-trust key-value store for self-destructing data based on this infrastructure. To the best

.edu
.gov

91

of our knowledge, our Tide implementation is the first easily deployable and lightweight key-value

store that leverages the massive world-wide Web. Our measurements, conducted on over 400 world-

wide PlanetLab nodes, demonstrate the viability of this approach in real-world settings. If Tide were

deployed widely, we believe it might be useful in other contexts independent of self-destructing data.

3.8 Related Work

We discussed numerous related works inline above. We return here to a summary of two key classes

of related works: cryptographic foundations for and other explorations related to self-destructing

data, and past work on DHT attacks and defenses.

Key establishment protocols often target the derivation of ephemeral session keys for interactive

communications [129]. Past work has also considered leveraging third parties to assist in the de-

struction of stored content, including the Ephemerizer [138, 148], revocable backup systems [27],

and multiple commercial self-destructing email and SMS companies like Disappearing Inc. and

Tiger Text. Multiple cryptographic techniques have also been developed with goals compatible

with self-destructing data, including forward-secure [17, 34], key-insulated [16, 59], intrusion-

resilient [57, 58], and exposure-resilient [32, 60, 61] cryptography. These techniques differ from

ours in that we incorporate a high distribution of trust directly into the core of our system design

and evaluation, we target attackers with significant retroactive access capabilities, we do not wish

to require the use of auxiliary tokens or secure hardware, and we target the Web rather than content

like local files and backup tapes.

Steganography [152], deniable encryption [33], or a deniable file system [49] is also related to,

though different from, self-destructing data. Intuitively, if one could hide, deny the contents of,

or deny the existence of private historical data, one would not need to destroy. These approaches

are attractive but hard to scale and automate for many applications, e.g., generating plausible cover

texts for emails and photos. In addition to the problems observed with deniable file systems in [49]

and [126], deniable file systems would also create additional user hassles for a trash bin application,

whereas our approach could be made invisible to the user.

Further afield, but focused on the Web, others have proposed limiting the lifetime of personal

Web data by making that data less sensitive over time, albeit with a significant level of trust placed

92

on the storing Web services [212]. Others have also considered overlaying access policies on top

of existing cloud storage services like S3, e.g., [203]. Self-destructing data systems are explicitly

different than DRM systems: an SDDS assumes that end-users who have access to a VDO during

its lifetime are trusted by the VDO creator, whereas DRM systems target precisely untrusted users.

DRM systems are, however, related in that they target control over the lifetime and use of data, and

thus [122] proposes extending DRM techniques to user-generated content. Tide is also related to

hyper-encryption, an information-theoretically secure encryption scheme which leverages a decen-

tralized collection of dedicated machines [161]. These machines continuously serve random pages

of data, where each page can be read at most twice. Tide differs from hyper-encryption in its goals

(self-destructing data as opposed to information-theoretic secure communications between two par-

ties sharing a secret key) and complexity (e.g., a recent implementation of hyper-encryption [103]

requires two communicants to interactively reconcile their accessed pages, whereas Tide’s use of

secret sharing creates no such need).

We touch on prior work on various DHT attacks and defenses in Section 3.6. We now specifically

contrast our Sybil defense with earlier proposals. Our work contributes a simple yet surprisingly

effective technique for limiting identity fabrication. Prior defenses include strong identities minted

by a logically centralized authority [62], computational puzzles and bandwidth contributions to

make peers prove that they are not Sybils [28], and leveraging social networks [114, 231]. None of

these defenses have been adopted by today’s DHTs like Vuze, because there was no perceived need

for existing applications and many of these defenses were deemed too complex or heavyweight. We

instead propose simpler measures that cap the number of DHT IDs that an attacker with limited IP

diversification can create. Our mechanism relies on IP addresses as weak identities and separates

service nodes from client nodes, i.e., anyone can obtain service from a DHT (get or put values), but

only a limited number of clients from a given IP or prefix can serve as DHT data-storage nodes. As

we noted, while previous systems have used IP diversity to route robustly in the face of malicious

routing attacks [46, 73, 115], this is the first use of DHT ID assignment as an admission control

mechanism, forcing extensive IP diversity to counter DHT Sybil attacks.

Section 3.6 examined the newest class of DHT attacks: the Sybil data-crawling attacks [201,

226]. No defenses against these attacks are known, so we designed, implemented, deployed, and

evaluated defenses against them in the Vuze DHT. To the best of our knowledge, until this work, no

93

defenses against such attacks have been deployed and measured on large-scale, live DHTs.

3.9 Summary

Data deletion has become increasingly important in our litigious and online society. This chapter

introduced Vanish, a new concept for protecting data privacy from attackers who retroactively ob-

tain, through legal or other means, a user’s stored data and private decryption keys. A new aspect

in Vanish is the combination of threshold secret sharing with distributed, global-scale decentralized

infrastructures, such as P2P DHTs. We prototyped Vanish on top of the Vuze global-scale DHT.

Our prototype causes sensitive information, such as emails, files, or text messages, to self-destruct

without any action on the user’s part and without relying on any centralized or trusted service.

Our experience revealed that leveraging existing DHTs to create self-destructing data is chal-

lenging. Specifically, Vuze’s design was at times misaligned with Vanish’s requirements. For ex-

ample, the limited 8-h timeouts in the original Vuze DHT limited Vanish’s usefulness; its excessive

replication exposed Vanish to data crawling attacks; and its lack of node admission controls opened

our system to Sybil. To make Vuze more suitable for our needs, we deployed a series of security

and functional modifications to its codebase. Using large-scale experiments, we have shown that

our modifications increase Vanish’s robustness to certain attacks by three orders of magnitude.

Our large-scale deployment of security measures in a commercial, world-wide DHT – the first

of its kind – was difficult and time-consuming. While the changes required to make Vuze better

match Vanish’s requirements were conceptually simple, deploying them took months of work with

Vuze’s DHT designer. Moreover, testing and experimenting is difficult and can only be done after

large-scale adoption of code revisions, which slows the deployment process even further.

This deployment experience motivated the design of Comet, an extensible DHT that allows each

application to customize the way its data is managed in the DHT. With Comet, Vanish can control

how its key shares are replicated, when they expire, and how accesses to them are entered in a

forensic log. If Comet existed at the time Vanish was designed, then making the DHT fit Vanish’s

requirements better would not have required painful large-scale deployments of new replication

schemes. The next chapter describes Comet’s design and broad applicability to Vanish and other

applications.

94

Chapter 4

COMET: DATA MANAGEMENT CONTROL WITH EXTENSIBLE STORAGE

The previous two chapters addressed security and privacy challenges raised by untrusted cloud

and mobile environments. This chapter turns to a second problem in cloud computing: the inflexi-

bility and lack of control over how the data is managed in trusted clouds. For example, how can a

client specify where her sensitive Google documents should or should not be stored, how can she

obtain a forensic access log of her data on Facebook, or how can she lower the replication factor

on private data stored in a DHT? Even if trusted, these clouds simply do not support such levels of

customization over data management and properties.

To increase control, we argue that extensibility and customizability should be built into public

clouds. Specifically, clouds such as Amazon S3, Google Docs, Facebook, and the Vuze DHT should

allow their clients to customize data management properties, such as data placement, availability of

forensic logs, and replication schemes. This chapter takes a first step toward the realization of

the extensible-cloud vision, proposing the design, implementation, and evaluation of Comet, an

extensible distributed storage system initially introduced in a 2010 paper [82]. While motivated

broadly by the inflexibility in today’s Web clouds, Comet focuses on a particular kind of cloud

service – a distributed key/value store based on peer-to-peer DHTs. Comet’s design is informed

by our experience building Vanish on top of the inflexible Vuze DHT. We begin by describing this

context and motivate the need for extensible DHTs.

4.1 Motivation and Overview

Weakly-connected key/value stores, or DHTs, have become storage backends for many of today’s

applications, ranging from Web services to peer-to-peer applications. For example, Amazon’s S3 [6]

provides a key/value store for external Web services. Amazon’s Dynamo [54], Apache Cassan-

dra [10], and Project Voldemort [158] provide reliable and scalable DHTs for company-internal ap-

plications (for Amazon, Facebook, and LinkedIn, respectively). On the global Internet, DHTs pro-

95

vided by BitTorrent-based systems, such as Vuze [214] and uTorrent [208], store metadata for mil-

lions of clients using peer-to-peer file-sharing applications. And finally, researchers have developed

complete file systems on top of untrusted clients in widely distributed P2P environments [2, 51, 172].

A significant limitation of today’s DHTs for generic application support, however, is that differ-

ent applications have different needs. As an example, each Dynamo application inside of Amazon

runs its own Dynamo instance [54], even though a single instance might be logically better and

more resource efficient. As shown in the previous chapter, as part of our own work on Vanish, we

needed to make application-specific parameter and policy changes to Vuze (a million-node com-

mercial DHT) in order to harden it against attack. While these changes were conceptually simple,

e.g., modifying the storage replication algorithm, deploying these changes was difficult and time-

consuming. Other Vuze applications may wish to make their own application-specific changes or

enhancements, but doing so is neither feasible nor supportable, and it doesn’t scale. We believe that

with the huge consolidation benefits of shared cloud storage services, either inside or outside of the

enterprise, supporting specialization of storage services can have high payoffs in the future.

We present Comet, a next-generation, flexible, distributed storage system, which opens the world

of distributed storage to a new set of more complex storage applications. In particular, Comet

permits multiple applications to share a single Comet instance, while enabling each application to

change the behavior of its storage elements to suit its own requirements. For example, a storage

element can make decisions based on its access history, its current number of replicas, the time of

day, etc. Therefore Comet can easily support different storage lifetimes, access methods, access

control schemes, or replication schemes for different storage-element types, in a way that makes

them easy to deploy and test. Using Comet, we can also carry out interesting measurement-based

experiments from within the DHT.

Comet implements active storage objects (ASOs). An active storage object consists of a key,

an associated value (an untyped blob), and optionally, a set of simple handlers. An ASO’s han-

dlers execute as a result of common storage events on the object (such as get and put) or from

timer events that its handlers request. As a result, an ASO can modify its environment, monitor its

execution, and make dynamic decisions about its state.

The concept of extensible systems has been widely explored in the past in many domains,

including operating systems [20, 180, 106], networks [221, 204], messages [213], routers [110],

96

databases [137], and browsers. We discuss these and other related works in Section 4.7. At a high

level, Comet brings extensibility to a new environment – key/value stores – which creates an inter-

esting set of design questions. For example, what features should the system provide for applications

and which can (and should) be left out? What is the proper tradeoff between power and safety? How

can client nodes be confident that active storage objects will not cause damage or interference? How

can we prevent the use of active storage objects to mount a DDoS attack? And overall, how can we

extend the storage system without losing its principal characteristics? Our Comet design considers

these and other issues.

The remainder of this chapter describes our goals, architecture, experience, and evaluation of

Comet. To provide concrete insight into Comet’s design and potential, we implemented a Comet

prototype and used it to create and deploy a set of over a dozen Comet applications. Our proto-

type leverages Vuze: each Comet instance is an extended Vuze client that can execute Comet active

storage objects while also serving as a full participant in the million-node Vuze DHT. Comet ap-

plications are written in Lua – a common application-extension language. We modified the Lua

runtime to meet our isolation and safety requirements, providing a safe sandbox for handler exe-

cution. To test our applications we ran our Comet clients from several hundred PlanetLab nodes

and measured their behavior. Overall, our experience demonstrates that a highly restrictive but ac-

tive distributed storage system can provide significant power to simultaneously support applications

with diverse storage needs.

4.2 Goals and Assumptions

Comet is a distributed key-value storage system. Like other such systems, a Comet storage object is

a <key,value> pair. Unlike previous systems, however, Comet’s design facilitates extensible, active

storage objects. A Comet application performing a put can therefore include, along with a key and

value, a small set of handlers for that object. The node receiving the put stores the handlers along

with the key and value, registers the handlers for events that they specify, and executes the handlers

when their respective events occur.

Comet’s system goals are:

1. Flexibility. Comet should be easily customizable to achieve our target functions.

2. Isolation and safety. A client node running Comet should be protected from the execution

97

of handlers (e.g., an executing handler cannot corrupt the node or use unlimited resources).

Handlers should not be able to mount messaging attacks on other nodes.

3. Performance. The performance of gets/puts on a Comet ASO with null handlers should

be the same as on a non-active system, and execution of handlers should have only negligible

performance impact.

Isolation and safety are particularly important to our architecture. While Comet can be used

in different environments, we designed it to enable wide-scale, outside-the-firewall deployment on

autonomous nodes, similar to P2P systems and DHTs. Users downloading Comet must trust it and

have guarantees about its behavior. For this reason, Comet enforces four important restrictions:

1. Limited knowledge: an ASO is not aware of other objects or resources stored on the same

node and has no direct way to learn about them.

2. Limited access: an object handler can manipulate only its own value and cannot modify the

values of other objects on its storage node.

3. Limited communication: an active storage object cannot send arbitrary messages over the

network.

4. Limited resource consumption: an ASO’s resource usage is strictly bounded, e.g., the system

limits the amount of computation and memory it can consume.

We are specifically not attempting to build a general-purpose distributed programming system,

such as PlanetLab [9, 151]; such a system would be unacceptable in our target environment and

inappropriate (and unnecessary) for our needs. Rather, our goal is to support relatively simple

specializations or actions on simple storage objects. Even very simple specializations can provide a

significantly more powerful storage system that enables new types of applications. We therefore take

a lightweight and limited approach. As examples, an ASO should be able to perform the following

functions:

• Statistics gathering. Collect statistics about its use, e.g., count the number of gets and

puts.

• Information tracking. Log information, such as a list of IPs that performed get operations

on its value or a recent history of the values it stored.

• Time awareness. Take time-based actions, e.g., to make periodic changes to its state or self-

destruct after a timer has elapsed.

98

Key-Value Store

ASO2

Routing Substrate

ASO1

- state
- code (handlers)

Storage Node

Remote
Storage Node

Application /
User

put/get/delete

Active Subsystem

Security
Policies

ASO API ASO Handlers

ASO
Runtime

External
Interaction

K1 ASO1

ASO2K2

S
a

nd
b o

x

(a) Architecture.

getSystemTime()→ UTC

getIP()→ node’s external IP

getID()→ node’s DHT ID

getKey()→ ASO’s key

deleteSelf(): deallocate ASO

get(key, [args])→ value, storage nodes

put(key, value[, nodes])

lookup(key)→ nodes closest to a key

(b) ASO API.

Figure 4.1: Comet Architecture and APIs. (a) depicts the decomposition of a Comet node into

two vertical components - the core Comet code, which is trusted from the node’s perspective, and

the ASO code which is arbitrary and, therefore, untrusted. (b) details the API exposed to ASOs.

• Location awareness. Make location-based decisions, e.g., choosing where to store based on

nodes’ network locations.

• Access control. Implement simple access control policies on its own.

• Replication. Implement different replication policies.

• Storage system measurement. Provide insight into the behavior of the distributed storage

system as seen by clients executing within the system itself.

As we shall see, the only long-term state available to a handler is its object’s value; therefore,

any logs, counts, etc., must be stored as part of that value. However, an active object can choose to

report only a subset of its stored value record on a get, or it can selectively report different values

to different callers based on call parameters.

The following sections describe Comet’s architecture. In particular, we discuss the tradeoffs

required to provide flexibility while also achieving isolation and safety.

A fundamental assumption in Comet is that DHT nodes are trusted. While Comet applications

are not trusted, a fundamental assumption in our system is that applications trust DHT nodes. That

is, Comet does not strive to improve security in front of potential DHT attacks, such as byzantine

nodes and Sybil attacks [62].

99

4.3 Comet Architecture and Implementation

This section describes Comet’s active storage architecture and prototype implementation. One could

imagine running Comet in various environments, e.g., an inside-the-firewall corporate deployment

or a distributed environment with autonomous untrusted nodes. We focus our current architecture

and prototype on the latter.

4.3.1 Architecture

Figure 4.1(a) shows the high-level architecture of our Comet distributed storage system. The Comet

storage system consists of three basic components. First is the routing substrate (Figure 4.1(a) bot-

tom), which implements the value/node mapping, allowing a client to find nodes that store specific

data items. In the case of a DHT, for example, the routing substrate typically applies a hash func-

tion to the key to compute the IDs of nodes that store the associated value. However, other routing

substrates may locate values in other ways.

The second component is the key-value store, which maintains a set of key-value pairs on each

node. A key-value storage system typically exports a simple get/put interface. While existing

storage systems store arbitrary, untyped byte strings, the Comet storage system stores active storage

objects (ASOs). An ASO consists of a key and its associated state (i.e., a value, stored as an untyped

byte string), along with optional code that operates on that state. The code is structured as a set of

handlers that specify how the object behaves, i.e., how it modifies its state when certain events

occur. For example, an ASO’s onGet handler is invoked whenever a remote client performs a

get operation to access an object. This handler might perform some simple operation, such as

incrementing a counter for the number of gets or appending the client’s IP address to a log structure.

The counter or the log structure would be stored as part of the ASO’s state that can be accessed by

the handler.

The third architectural component is the active runtime system. The runtime system handles

ASO invocations and provides the security policy and execution environment. An application run-

ning on a remote client specifies the initial state and handlers for an ASO when initially storing the

object via a put operation. When a client performs a get or a put, it can optionally request a

cryptographic checksum of the code associated with the target ASO. This can serve as an integrity

100

onGet(caller[, callbackID, payload])

Invoked when a get is performed on the ASO. Returns a value

which will be passed back to the caller. Instead of returning a

value immediately, the handler could also perform a put at the

optional callbackID sometime in the future. The handler also takes

an optional payload argument of arbitrary type.

onPut(caller)

Invoked upon initial put when the object is created. Returns the

value that should be stored by the node (e.g., itself or nil).

onUpdate(new value, caller)

Invoked on an ASO when a put overwrites an existing value. Re-

turns the value that should be stored, e.g., new value if it should

be replaced, or itself if not.

onTimer()

Invoked periodically. This handler has no return value. It is used

to perform periodic maintenance such as replication.

Table 4.1: ASO Handler Calls.

check that the client’s initial put is to a key with no associated ASO and that subsequent operations

are performed on ASOs created by the application. In most implementations, a Comet node distrusts

remote nodes and client applications; therefore, the runtime component of the active subsystem im-

plements and enforces an ASO execution sandbox (Figure 4.1(a), top). Our Comet prototype uses

a language sandbox based on Lua [168] to prevent a handler from accessing outside state and to

constrain the ASO from consuming too many computational and memory resources on the host.

The ASO runtime consults a security policy module, which specifies all execution limits.

While some applications may be satisfied by an entirely sandboxed execution, many would

benefit from an ASO’s limited ability to interact with or “sense” its environment. For example, to

implement the conditional replication scheme we added to Vuze for Vanish, an ASO requires knowl-

edge of the number of replicas in the DHT and the time of day (to enforce the desired minimum

replication interval). For this reason, the active subsystem exposes a small API (called the ASO

API) to the handlers.

101

4.3.2 Active Storage Object API

Table 4.1 and Figure 4.1(b) show the handler and ASO runtime APIs, respectively. The handler API

supports invocations based on the primary storage functions – put, get – as well as an onTimer

handler to be executed periodically (e.g., once every 10 minutes) during the object’s lifetime. For

example, an ASO could directly implement a custom replication policy in its onTimer handler.

The ASO runtime API is the only way for an ASO to interact with its environment outside of

the sandbox. Our design supports two types of useful interactions: (1) obtaining information about

the local node, and (2) executing various storage system operations. The former category includes

functions to obtain the time of day, the hosting machine’s external IP address, etc. The latter includes

functions to interact with other storage system objects. The ASO API was not designed to be entirely

general; rather, our goal was to provide a minimal interface, informed in part by our requirements

of security, privacy, and isolation. We tested this interface by implementing and running over a

dozen applications on our Comet prototype. Interestingly, we were able to build a relatively diverse

set of applications with a surprisingly small interface, which has remained relatively stable through

the project. This suggests that a small interface, like the one shown in Figure 4.1(b), can support

a wide variety of applications. Naturally, there are limitations. For example, we explicitly prohibit

any direct network-level interactions with remote nodes on the Internet. While this feature might be

desirable to certain measurement applications, its DDoS implications would be unacceptable.

4.3.3 Language Based Sandbox

Our Comet prototype focuses on a DHT environment composed of a large number of untrusted au-

tonomous nodes that cooperate to support the distributed active storage system. In this environment,

the key challenges include providing a strong sandbox and limiting ASO resource consumption. We

briefly describe how our system addresses these challenges using a language based sandbox.

The Comet prototype required an ASO programming environment that reflected our needs for

simple extensibility, flexibility, performance, isolation, and safety. To meet these needs, we chose

Lua [168], a lightweight and easily constrained scripting language. A dynamically typed, imperative

and functional programming language, Lua is most commonly used for coding application exten-

sions. In this context, it lets users add or modify features in video game engines, Web servers, ver-

102

sion control systems and other applications (specific examples include World of Warcraft, SimCity

4, Adobe Photoshop Lightroom, and Squeezebox Jive Platform). Several properties make Lua well

suited for implementing ASOs. First, it employs a small set of programming constructs (including

first-order functions) and a small number of data types (including tables, which are heterogeneous

associative arrays). Second, Lua compiles to simple bytecode, which makes it relatively easy to

sandbox. Finally, ASOs written in Lua are concise and small when serialized; the Lua ASOs we

implemented are all under 1.5KB, about five to ten times smaller than Java equivalents.

Comet represents ASOs as Lua tables that encapsulate both persistent state and the handlers

to be invoked on that state. Lua tables can implement basic arrays, associative arrays, or both.

While an associative array can contain any name-value mappings, we treat certain associations as

handlers. In particular, if the ASO table contains an associative array with the names “onGet,”

“onPut,” “onUpdate,” or “onTimer” – and those names are associated with values that are Lua

functions – then the runtime invokes those functions when the corresponding events occur. Our

runtime system serializes Lua tables into a byte stream for transmission to a storage node on a put

request.

We made several modifications to the standard Lua interpreter for the Comet runtime system. We

sandbox ASOs by removing all but the core libraries from the runtime, leaving only a math package,

string manipulation, and table manipulation. As a result, handlers are extremely restricted: they have

no direct network access, no system execution capabilities, no thread creation capabilities, and no

file system access. We also strictly bound the amount of resources that a handler can consume. For

example, the runtime limits both the number of bytecode instructions that a handler can execute

and the amount of memory it can consume. If a handler exceeds either of these limits, the runtime

terminates its execution.

The Comet runtime exposes a DHT wrapper object to handlers, which allows an ASO to com-

municate with its environment. The ASO can learn information about the hosting node, including

the external IP address and the current system time. It can also perform a restricted set of DHT oper-

ations. For example, it can perform get and put operations on replicated copies of its value stored

at other nodes. In the API presented in Section 4.3.2, these operations return values or neighboring

node IDs. However, since these operation are slow in the DHT setting and may block for seconds

or even minutes, we chose to implement them using function callbacks. Each such operation takes

103

an optional parameter, a function which accepts the result as its parameter. For example, instead

of returning a value, a get operation takes a function which is eventually passed the result of the

operation. The operation returns immediately with no value, and the get is actually performed after

the ASO execution has completed. While this presents a slightly different paradigm to the user, we

think this provides a greater ability to optimize the performance of Comet-based applications.

4.3.4 Comet Prototype Implementation

We built the Comet prototype on the Vuze DHT, which supports the widely used Vuze BitTorrent

client. The DHT is used mainly for distributed tracking of torrents; however it has been used in

research as well [98, 81].

Vuze implements the Kademlia routing protocol, in which each node is assigned a 160-bit ID

based on the SHA1 hash of its IP address and port. Basic DHT operations (get, put, and remove)

take a 160-bit key, perform a lookup to find nodes whose ID is close to that key, and then send a

read or store RPC to those nodes.

We minimally extended the Vuze interface to conform to Comet’s abstract operations. For ex-

ample, we augmented get to allow a caller to pass an arbitrary byte-string argument. This supports

a parameterized get operation, where the ASO can return different values depending on the param-

eter (analogous to the semantics for GET in HTTP).

Allowing extensibility in a DHT environment creates challenges, e.g., it has the potential to pro-

vide a platform for DDoS attacks. Therefore, in addition to the Lua resource restrictions described

previously, we limit DHT communications that ASOs can perform in two ways.

First, we do not allow an ASO to perform operations on arbitrary DHT keys or nodes, but rather

only on specific key-node pairs. An ASO may communicate with any of its neighboring nodes that

are responsible for replicas of the ASO. We also allow the ASO to communicate with key-node pairs

that have interacted with it in the past, once for each such interaction. To enable this functionality,

we extended Comet requests to include the ID of the requesting node and the ID of a local key

contained within the node. If an ASO receives a get request with a key ID specified, it gains the

capability for a one-time operation on that key to the node that issued the request. The ASO can

then either return a value immediately and exhaust its one-time capability, or save that capability

104

for future use. This mechanism allows applications to respond to DHT requests at a future point in

time, especially if the requested data is not currently available. We do not allow ASOs to pass these

capabilities between each other as doing so would enable a malicious node to mount DDoS attacks.

In Section 4.4 we discuss signed ASOs, which do not have these restrictions.

Second, Comet imposes rate limits on the number of messages generated by an ASO, either

to neighboring nodes storing replicas or to arbitrary key-node pairs that have interacted with it in

the past. This prevents misbehaving ASOs from exhausting the bandwidth resources of the Comet

nodes hosting them. We discuss these security issues further in Section 4.6.

4.4 Applications

This section seeks to demonstrate both the range of storage behaviors that Comet can support and

the ease with which those behaviors can be implemented. To do this, we describe several of the

active storage applications we have implemented, deployed, and measured on our Comet PlanetLab

prototype. We provide code snippets to show how simply these actions can be programmed in

our Lua-based ASO environment. In Section 4.5, we present measurements from some of these

examples.

4.4.1 Customizable Replication

Most DHTs specify a fixed replication policy for stored values, requiring applications to conform to

that policy. In contrast, Comet ASOs can provide their own application-specific replication mech-

anisms, e.g., controlling the replication factor, the replication interval, and the choice of nodes on

which the object will be replicated. This flexibility is useful for applications that place varying

degrees of emphasis on performance, availability, locality, and security. For instance, a security

sensitive application (such as Vanish) might use a small number of replicas and long replication

intervals, limiting the dispersion of its objects stored in the DHT. On the other hand, an application

that values availability might replicate frequently to a large number of nodes.

Listing 4.1 shows how an ASO can define a customized replication policy. In this example, the

onTimer handler wakes up periodically, invokes lookup to determine a list of nodes closest to the

105

ASO’s key, executes selectGoodNodes1 to identify a subset of nodes that will serve as replicas,

and then stores a copy of itself on the selected nodes using put. We have also implemented a timer

handler that replicates only when the number of existing replicas falls below a certain threshold;

this lowers communication overhead and mitigates data harvesting attacks for security sensitive

applications, reflecting the changes we made to Vuze after we published Vanish [81].� �
function aso:handleLookup(nodes)

nodes = self.selectGoodNodes(nodes)

dht.put(dht.getKey(), self, nodes)

end

function aso:onTimer()

dht.lookup(dht.getKey(), self.handleLookup)

end� �
Listing 4.1: Smart Replication

4.4.2 Controlling Data Access

Comet objects can implement various policies that control how data stored in the objects is accessed.

We illustrate a few such examples.

Timeouts and Limited-read values: ASOs can be used to implement objects that will be ac-

cessible for only a limited, application-specified time. Such objects are meaningful for security

applications such as Vanish [81], which provide support for self-destructing digital data by storing

cryptographic keys in a DHT.

Listing 4.2 shows the handler code required to implement application-specific timeouts. Each

replica stores a timestamp when the object is created (stored) and then deletes the object after 60

minutes using a timer handler. In addition, the onGet handler prevents the object’s contents from

being accessed after the timeout but before it is deleted by a timer handler.

An ASO can also choose to delete itself after it has been read – providing a “limited-read value”

– where each replica can be read at most once. In addition to its use for self-destructing data,

1The Lua code for selectGoodNodes is omitted for brevity. It implements an application-specific policy for
choosing replicas.

106

� �
function aso:onPut(value)

self.timeout = dht.getSystemTime() + 60∗MINUTES

return self

end

function aso:onTimer()

if (dht.getSystemTime() > self.timeout) then

−− delete local ASO

dht.deleteSelf()

end

end

function aso:onGet()

if (dht.getSystemTime() > self.timeout) then

−− delete local ASO

dht.deleteSelf()

return nil

end

return self

end� �
Listing 4.2: Timeouts

limited-read values could be used in settings where objects represent tasks and are deleted once they

have been claimed by worker nodes. The object then serves as a synchronizing construct between

the task’s producer and consumer.

Listing 4.3 implements limited-read values. When a get is performed, the node records the fact

that the value has been read. It then propagates the request to every other replica by overwriting

them with nil. Note that the object does not delete itself immediately, but rather stays around for a

while and periodically attempts to delete other replicas to ensure that copies on nodes with transient

connectivity issues [72] are eventually deleted. Note also that concurrent gets issued to different

replica nodes might successfully read the value. In general, as with other distributed storage systems,

consistent update of replicated values would require the use of heavy-weight consensus operations.

Comet does not currently provide such primitives. ASO handlers do however provide the ability for

107

replicas to detect and correct inconsistencies, e.g., ASOs can compare and reconcile replica contents

through periodic invocations of the onTimer handler.

� �
function aso:onGet()

if (self.read) then return nil end

self.read = dht.getSystemTime() + 30∗MINUTES

dht.put(dht.getKey(), nil) −−deletes replicas

return self

end

function aso:onTimer()

if (self.read) then

dht.put(dht.getKey(), nil) −−deletes replicas

if (dht.getSystemTime() > self.read) then

dht.deleteSelf()

end

end

end� �
Listing 4.3: Limited-Read Values

Data Subscription: An ASO can allow clients to “subscribe” so that they will be notified when the

ASO receives a new value. In Listing 4.4, when the subscriber performs a get, the ASO saves the

subscriber’s network location (callerNode) and a key that will serve as the subscriber’s recipient

of the value (callbackKey). When a value update occurs, the ASO distributes the value to all

registered subscribers – the runtime ensures that the ASO distributes these values only to clients who

have actually performed a get on the ASO. In the example shown, the ASO clears its subscriber

list after its put operations; subscribers must then re-subscribe if they’re still interested. Later we

will describe an implementation of a scalable publish-subscribe scheme based on this design.

Sensitive values: ASOs can implement various forms of access control policies. For instance,

Listing 4.5 provides read access to the object’s value only if the client can present a predetermined

108

� �
aso.pending = {}

function aso:onGet(callerNode, callbackKey)

if(self.value) then

return self.value

end

self.pending[callerNode] = callbackKey

return nil

end

function aso:onUpdate(callerNode, value)

self.value = value

for callerNode,key in pairs(self.pending) do

dht.put(key, value, {callerNode})

end

self.pending = {}

end� �
Listing 4.4: Pub-sub

password akin to a feature already provided by some DHTs, like OpenDHT [164]. A client provides

the password as an argument to the get request.

There are a few issues with the code provided above, especially if it were to be extended to

support password-protected updates. A malicious node could claim to store the object but simply

serve as a proxy for clients’ requests and thereby implement man-in-the-middle attacks. This could

be solved by exposing basic encryption primitives to the ASO, like a secure hash function and/or

public key cryptographic primitives. For example, instead of passing the plaintext password to

the ASO, the client hashes the concatenation of the password with its IP/port, thus the ASO can

verify that the request is not being forwarded by a malicious node. The ASO’s security can be

further strengthened by public/private key pairs, with the ASO storing the public key and clients

authenticating themselves by presenting a message signed with the corresponding private key. With

these enhancements, a malicious node storing a copy of the object cannot overwrite the contents of

other replicas since it doesn’t possess the private key.

An application could use multiple mechanisms for controlling data access, e.g., it could use

109

� �
function aso:onGet(caller, callerId, password)

if (password == ‘‘mypass1234’’) then

return ‘‘Well kept secret’’

end

return nil

end� �
Listing 4.5: Password

timeouts in conjunction with password-protected access. While Comet does not allow ASOs to

register multiple handlers for a given storage operation, the developer can combine all of the desired

mechanisms into a single handler. Though this might increase programming complexity, it allows

the application developer to control how different mechanisms interact with each other and provides

the basis for a predictable and deterministic execution model.

4.4.3 Measurements and Monitoring

DHT Measurements: ASOs provide a platform for instrumenting and measuring the DHT using

the DHT nodes themselves. This enables a more detailed and comprehensive view of the DHT

and helps provide accurate estimates of DHT properties such as churn, node lifetime distribution,

transient inconsistencies, etc.

For instance, Listing 4.6 tracks the k closest nodes to the ASO and stores the information it

learns as part of the object state. A measurement application can create objects of this type, store

them at multiple locations within the DHT, and obtain snapshots of DHT membership by retrieving

the objects’ contents using get operations.

While this measurement could be performed by nodes that are not part of the DHT (as in earlier

work [67, 195]), measurements from within the DHT can provide more accurate data. For example,

the lifetime measurement could be carried out by a client that interactively crawls the routing tables

of the DHT nodes and then uses heartbeat messages to monitor the uptimes of the nodes it learns

about. This approach could provide faulty data, however, if the DHT contains firewalled nodes that

do not receive or respond to such heartbeat messages.2 On the other hand, firewalled nodes still

2In fact, about half the nodes in P2P DHTs are firewalled [76].

110

� �
aso.neighbors = {}

function aso:handleLookup(nodes)

self.neighbors[dht.getSystemTime()] = nodes

end

function aso:onTimer()

dht.lookup(dht.getKey(), self.handleLookup)

end� �
Listing 4.6: Lifetime

communicate with neighbors, for example to replicate values. Therefore, measurements performed

from ASOs within the DHT can be more accurate, as we will demonstrate later.

Monitoring uses: An ASO can also maintain audit trails, e.g., indicating where it has been stored

thus far, who has read or updated the object, etc. Such tasks are particularly useful for debug-

ging and aid in rapid prototyping. For example, this may help a developer to learn whether a new

ASO replication mechanism is operating properly. Alternately, logs can also be used for forensics.

Listing 4.7 illustrates a monitoring application that tracks the nodes storing and accessing a value.

This specific implementation comes with a few caveats. Each replica may have a different view

of the list of nodes that have stored or read the value. To address this, the experimenter needs to get

the union of the lists stored in all the replicas, consolidating them as a post-processing step.

4.4.4 Smart Rendezvous

DHTs are used for rendezvous in many distributed systems. In P2P file-sharing systems such as

BitTorrent, the DHT is used as a distributed tracker either with or as a replacement for a centralized

tracker. That is, peers that want to download a particular file use the DHT to identify other peers

who are downloading or sharing the file. The downside with current DHT-based distributed trackers,

however, is that they result in random overlay connections, as there is no mechanism to enforce more

intelligent peer-matching techniques.

With Comet we can address this limitation by using ASOs to track participating nodes, as well as

construct peer lists that are optimized for a requesting node. Peers could be matched in order to lower

111

� �
replicaIps, hostIps, accessorIps = {}

function aso:onGet(callerIp)

table.insert(self.accessorIps, callerIp)

return self

end

function aso:onPut(caller)

table.insert(self.accessorIps, caller.getIP())

table.insert(self.hostIps, dht.localNode.getIP())

return self

end

function aso:handlePut(nodes)

for i,v in ipairs(nodes) do

table.insert(self.replicaIps, v.getIp())

end

end

function aso:onTimer()

dht.put(dht.getKey(), self, 20, self.handlePut)

end� �
Listing 4.7: Monitoring

inter-node latencies [120], maximize reciprocation probability based on peer bandwidths [154], or

lower ISP costs [228, 39]. We have implemented one such matching scheme that uses the nodes’

network coordinates to predict inter-node latencies and provides a list of nearby peers to each joining

node. We describe this in depth in Section 4.5.3.

4.4.5 Signed ASOs

The examples discussed so far adhere to the strict security policy we set out: ASOs cannot perform

operations on arbitrary DHT keys or nodes. We now consider uses where we relax this assumption,

but require that the ASO code be signed by the DHT administrator after manual verification of its

security properties. As we will see below, this allows the DHT to deploy new functionality and

services by using signed ASOs that access arbitrary DHT locations, but are safe (i.e., they do not

112

enable DoS attacks of targeted DHT nodes).3 We have considered signed ASOs in particular as

a mechanism that a DHT’s developer or administrator could use for testing and evaluation of new

features, before they are added to the main-line DHT code.

Recursive Get: Vuze and many other DHTs support iterative routing for key lookups. In this

approach, the node performing the lookup is involved in every step of the routing operation, i.e., it

identifies the target node by repeatedly querying DHT nodes to find other nodes that are closer to

the target key. An alternative is to perform recursive routing, where intermediate nodes on the route

pass the lookup directly to nodes that are closer to the key. Iterative lookup provides greater control

to the node performing the lookup (e.g., it can control lookup parallelism), but it comes at the cost of

increased latency. If both forms of lookup are available, an application would use recursive lookups

by default, but fall back on iterative lookups after persistent failures [52].

With signed ASOs it is possible to implement recursive lookups even though the underlying

DHT supports iterative lookup by default (as is the case with Chord, Kademlia, and Vuze). The

node initiating the lookup creates a query ASO, which contains a reference to itself, and a local

callback ID where it would like to receive the answer. When the signed ASO is created its onPut

handler is invoked; the handler queries the local routing table to find a live node that is closest to the

target key, stores a copy of the signed ASO on this node, and deletes itself from the current node.

This process is repeated until one of the nodes storing the target is reached, and the onUpdate

handler of the target ASO sends the object’s value back to the original node, which initiated the

request.

Caching and Hierarchical Publish-Subscribe: This idea can be extended to accomplish both

caching and hierarchical publish-subscribe data delivery. For caching, the onUpdate handler can

be modified to communicate the object not only to the requesting node but also to the interme-

diate node that conveyed the request. The number of intermediate nodes to which the object is

replicated can be determined by gathering and analyzing statistics on object popularity (also accom-

plished using simple handler code), so that only popular objects are replicated at multiple nodes

3In some cases, the safety of the ASO code could presumably be verified automatically, e.g., by using sophisticated
compile-time analysis; studying this is part of future work.

113

(as in Beehive [162]). To implement hierarchical publish-subscribe, intermediate nodes propagate

a subscription event to the next node in the lookup process only if they haven’t done so before and

maintain state for subsequent queries routed to them. When a value is published, it is propagated

through a dissemination tree so that the communication load is distributed across all intermediate

nodes (as in Scribe and Bayeux [173, 233]).

4.4.6 Summary

This section described a set of example storage objects that we have implemented using Comet.

Through these examples, it should be clear that with very small extensions (on the order of a few

lines or a few tens of lines of code), a Comet application can create a wide range of powerful storage

object behaviors that would be impossible in existing distributed storage systems or DHTs.

4.5 Evaluation

We deployed Comet on approximately 200 PlanetLab hosts and evaluated our design in three steps.

First, we characterize the resource utilization of the various applications that we developed. Second,

we measured micro-benchmarks to understand the overheads associated with active storage objects.

Lastly we report on our experiences with prototyping applications using Comet.

4.5.1 Application Characteristics

Table 4.2 shows resource consumption requirements for our Comet applications. The Max Instruc-

tions column gives the number of dynamic Lua instructions required to execute the most expensive

handler, while Execution Time gives the execution time for that handler. Where this value is data

sensitive, we provide an estimate based on the expected maximum value. Code Size shows the size

of each ASO with the minimum amount of data and Max Size is the maximum size to which the

ASOs might grow for that application. From the table we see that most ASOs execute fewer than

100 Lua instructions and are smaller than 1KB in size.

114

Application Max

Instructions

Execution

Time

Code

Size

Max

Size

Replication < 10 4µs 0.223K < 1K

Smart Replication < 100 6µs 0.444K < 1K

Timeouts ≈ 10 4µs 0.434K < 1K

Limited-Read

Value

≈ 10 4µs 0.553K < 1K

Sensitive Value < 10 4µs 0.230K < 1K

Pub Sub 10, 000s 54µs 0.498K 100K

Hierarchical Pub

Sub

100s 6µs 0.673K 1K

Lifetime (Exter-

nal)

100s 6µs 1K 6K/hr

Lifetime (Internal) < 100 6µs 1.776K ≈ 3K

Monitoring ≈ 10 4µs 0.971K 3K/hr

Smart Rendezvous 1, 000s 14µs 1.107K 10K

Recursive Get ≈ 50 6µs 0.714K ≈ 1K

Table 4.2: Expected Application Resource Consumption.

4.5.2 Performance and Overheads

We report on simple microbenchmark measurements to compare the CPU and memory costs of Vuze

and Comet. These experiments were run on an quad-core machine with Xeon processors clocked at

2.67GHz.

Single-Node Throughput. In this experiment, concurrent get operations are performed on many

values stored in the target node. We measure the throughput of get requests that return successfully

using a closed feedback loop. All operations are issued locally on the node, so that network latency

does not affect throughput.

Figure 4.2(a) compares the throughput of objects with different ASO execution costs, expressed

as the number of Lua bytecode instructions executed per handler. Both Comet and Vuze experi-

ence peak throughput when the number of concurrent operations is equal to the number of cores

(eight). ASOs with zero instructions per handler are functionally equivalent to Vuze values as they

simply return themselves. The peak throughput of Comet ASOs is about 60% smaller than the peak

throughput of Vuze (1.4M operations per second as opposed to 3.5M operations per second). This

115

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

Lo
g(

Th
ro

ug
hp

ut
) (

op
er

at
io

ns
 p

er
 s

ec
on

d)

O�ered load (concurrent operations)

Vuze (Not active)
0 instructions

10K instructions
100K instructions

1M instructions

(a) Single-Node Throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 100 1000 10000 100000 1e+06

M
e

m
o

ry
 c

o
n

s
u

p
ti
o

n
 i
n

 M
B

Log(Number of values stored)

Comet - Null values
Vuze - Null values

(b) Memory Footprint.

Figure 4.2: Microbenchmark Results.

shows the cost of the Comet/Lua execution environment. Previous measurements [194] show that

the typical DHT load on Vuze clients in the wild is at most a few hundred operations per second,

which makes the additional Comet overhead relatively insignificant in this context. As we increase

the computational complexity of the average ASO (1K to 1M instructions per handler), the through-

put decreases, but still remains well above the maximum current Vuze workload.

Operation Latency. At the 90th percentile, with maximum throughput (8 concurrent operations in

our experiments), a request involving 100 Lua instructions has a latency of about 300 microseconds.

For handlers with 1M instructions (two orders of magnitude more than our most compute-intensive

handlers), it is 13 milliseconds. The latency for a Vuze DHT lookup is on the order of seconds,

therefore the latency imposed by even extremely computationally intensive ASOs is not significant.

Memory Footprint. In this experiment, we store increasing numbers of values in the nodes. For the

Vuze nodes, the string “hello world” is stored at different keys, while for Comet nodes we store an

equivalent Lua ASO which returns the same string upon a get request. Figure 4.2(b) compares the

memory footprint of the Vuze and Comet nodes as we increase the number of stored objects. Again

using the median number of values stored per Vuze node (around 400), the difference in memory

consumption at this level is negligible (about 36MB for both Comet and Vuze). Long lived DHT

nodes can store 10,000s of values, and the highest observed is around 30,000 values [194]. In these

116

rare cases, our overhead relative to Vuze is about 27%, but even then the total memory footprint is

still reasonable.

We next consider a workload where Comet object sizes are exponentially distributed with an

average size of 10KB. In this case, a node with 500MB can store on average 50,000 values. If we

assume an order of magnitude more values per node than in Vuze (4,000 instead of 400), and an

order of magnitude larger values (10KB instead of 1KB limit imposed by Vuze), the median node

would consume about 80MB (40MB of startup memory costs and another 40MB for the ASOs) in

memory.4

4.5.3 Application Experience

We now report on our experiences in prototyping and deploying some of the applications described

in Section 4.4.

Measuring Node Lifetimes

We revisit the experiment performed by Falkner et al. [67] to measure the lifetimes of nodes in

the Vuze DHT. This experiment was done by performing random get operations from several Vuze

clients in order to gather approximately 300K IPs participating in the DHT. The collection of nodes

was then pinged every 2.5 minutes to check for liveness. The authors observed that nearly half the

nodes were immediately unavailable after first being detected. One weakness of the methodology

employed is that the clients could not differentiate nodes that are unreachable because of NATs from

those that have left the DHT. Using measurement nodes that have active communication channels

with NATed DHT nodes would help minimize measurement bias, but would require the measure-

ment to be performed by nodes that are within the DHT.

Comet enables researchers to deploy experiments using measurement ASOs executed on nodes

that are part of the DHT. To demonstrate the feasibility of this approach, we deployed Comet on 190

geographically dispersed PlanetLab nodes and integrated them into the production Vuze DHT. The

measurement ASOs are stored on the Comet nodes, and they gather information about unmodified

Vuze nodes that are adjacent (in the DHT) to the Comet nodes. We stored a lifetime measurement

4Vuze and Comet consume about 40MB without storing any values.

117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Duration in DHT since first observation

External Measurement

Internal Measurement

Figure 4.3: Node Lifetimes in Vuze.

ASO (a variant of the code shown in Listing 4.6) at each of the Comet nodes, allowed the nodes

to perform measurements for several days, and then collected and analyzed the data from these

nodes.5 Figure 4.3 plots the measurement data obtained from our experiments and compared to

the lifetime data obtained by measurement nodes that are not integrated into the DHT (as in [67]).

We observe that the measurements performed from within the DHT provide higher estimates for

node lifetimes. The reason is that DHT-internal measurement nodes are able to traverse NATs in

communicating with their neighbors. The difference is significant; we measured the median node

lifetime as 3.1 hours, as opposed to an estimate of 0.5 hours obtained through conventional external

measurements. Measurement ASOs are thus valuable tools in characterizing DHTs and provide

more accurate data for tuning parameters such as replication factor, routing parallelism, etc.

Smart Rendezvous

In Section 4.4, we proposed a way to employ intelligent peer tracking for distributed P2P trackers

using ASOs. We evaluate the usefulness of this application by deploying a distributed tracker built

with Comet ASOs. As with traditional distributed trackers, clients participating in a P2P swarm

(such as a BitTorrent download) register their participation by storing their IP addresses under the

5As Comet is not currently deployed by Vuze, the measurement ASOs are stored only on the nodes that we control. A
more extensive deployment would allow us to obtain more samples quickly.

118

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Latency between paired nodes (ms)

Vivaldi
Random

Figure 4.4: Proximity of BitTorrent Peers.

appropriate DHT key. In addition, clients also store their network coordinates (computed using

Vivaldi [50]) along with their IP information. When clients contact the distributed tracker to obtain

peer lists, the tracker ASO estimates the network latency between pairs of nodes using the supplied

network coordinates and returns peers that are likely to be close to the requesting node. To evaluate

this approach in practice, we deployed a tracker ASO on a Comet node in PlanetLab, while 190

PlanetLab nodes acted as peers in the swarm reporting their Vivaldi coordinates to the tracker and

requesting good peers with which to communicate. Figure 4.4 depicts the effectiveness of this

strategy compared to the default strategy of returning a random subset of peers to the requesting

node. The graph shows a CDF of the measured latencies between peers under the two different

matching schemes. The median value for the ASO-implemented Vivaldi intelligent peer matching

is 47ms compared to a median of 72ms for the default scheme, a 35% latency improvement.

Vanish

Comet grew in part out of our experience specializing the Vuze DHT for Vanish [81], a self-

destructing data system. Vanish used Vuze for key storage, however, Wolchock et al. [226] showed

that the Vuze system was extremely open to a Sybil data harvesting attack that is able to scan the

DHT for values. The attack worked in part because of Vuze’s overly zealous replication policy – a

high replication factor, coupled with a policy to replicate to new nodes immediately. In response,

119

we set out to deploy new replication mechanisms and other anti-Sybil defenses in Vuze, as de-

scribed in Section 3.6. While these mechanisms were straightforward, deploying them required the

co-operation of Vuze’s designer and was an arduous and imperfect process. While many iterations

would have been necessary to fully test and optimize policies, we often had only one shot to catch

the two-month release cycle.6 For the same reason we were unable to test individual changes in

isolation as they had to be shipped in bundles in order to make progress in reasonable time.

We have used Comet to re-implement several of the changes that we deployed in Vuze. Those

changes include the customizable replication scheme described in Section 4.4 (particularly a scheme

that replicates only when the number of replicas falls below a threshold) and variable object life-

times. As we showed in Section 4.4, both of these changes are trivial to program as Comet ASOs.

Perhaps even more important, testing and re-deployment in Comet is significantly easier, as it does

not require a redistribution of the entire DHT code base. Instead, new mechanisms can be deployed

by overwriting the handler code for existing objects and using the updated bytecode for subse-

quently created objects, without requiring the involvement of the DHT administrators.7 Had Comet

existed at the time we deployed Vanish, it would have been possible to customize the DHT for the

security requirements of the application from the start, and to optimize those policies to Vanish’s

requirements.

4.6 Security Analysis

The classic security goals for DHTs include resilience to attacks that: violate the system’s abil-

ity to robustly store data [188], disrupt routing [188, 35], identify the participating nodes in the

DHT [200, 196], and harvest copies of data stored within the DHT [226]. There are numerous well-

known techniques aimed at violating these goals, including Sybil attacks [62], Eclipse attacks [186],

and many others [207]. And there are also many known mechanisms for protecting against such

attacks, including the use of strong identities minted by a logically centralized authority, compu-

tational puzzles and bandwidth contributions proofs [28, 53, 55, 231], and architectures built upon

6It takes a week or more from release until 80% of the nodes in Vuze adopt changes. This is in addition to a typical
release cycle Vuze employs, which spans about a month.

7In general, updating the handler code for existing objects would require the application to keep track of its ASOs. In
the case of applications such as Vanish, where objects are transient and have timeouts in the order of a few hours, we
can also let existing objects just expire without explicitly updating them.

120

social network structures [114, 231]. A production DHT with ASO support must consider such

classic security goals, and can leverage known countermeasures for the corresponding threats. (Al-

though, as exemplified by Vuze and other popular DHTs, a DHT for ASOs may decide that the risks

associated with these threats are minimal, and hence not deploy the known defenses.)

The security concerns of DHTs with signed ASOs are roughly those of conventional DHTs

without ASOs (since the signed ASOs can be viewed as “vetted” parts of the DHT system itself);

we therefore do not consider signed ASOs further. Empowering DHTs with unsigned ASOs does,

however, create a new potential attack vector not present in conventional DHTs – namely, attacks

via malicious ASOs. We seek to ensure that a malicious ASO cannot: infer private information

about or damage its Comet hosting node; infer information about or affect the properties of other

ASOs stored within Comet; or infer private information about or affect the properties of other Comet

nodes and arbitrary computers on the Internet. To place these goals in context, we stress that while

an attacker could always use her own custom software to communicate with Comet in arbitrary

ways, including putting to or getting from arbitrary ASO keys and communicating with the broader

Internet in arbitrary ways, our goals – if attained – imply that ASOs cannot be used to amplify

the attacker’s resources or capabilities. For example, an attacker should not be able to create an

ASO “worm” that spreads virally, mounting a DDoS attack against a victim ASO or device on the

Internet.

We find that it is possible to meet these goals using three architectural features: (1) restricting

system access, (2) restricting resource consumption, and (3) restricting within-Comet communica-

tion. We consider each in turn.

Restricting system access. We designed the ASO API to be highly restrictive. The API explicitly

restricts an ASO’s ability to infer private information about its host or to affect the host’s state. The

API similarly restricts an ASO’s ability to interact with arbitrary devices on the Internet. For exam-

ple, the API limits an ASO’s IO capabilities to explicitly defined DHT operations; arbitrary disk,

network, and other IO operations are prohibited. The API also prevents an ASO from introspecting

its host; e.g., although we allow the ASO to learn its host’s external IP, we explicitly prevent the

ASO from learning its host’s internal IP. Without these restrictions, an ASO could potentially read

private files on the host’s disk, write sensitive files, attempt to DoS an arbitrary remote node, map

121

the network topology of internal IP networks, and so on. The Lua sandbox provides a simple mech-

anism for achieving this isolation. Namely, we removed the IO system call interface and exposed

one containing only the restricted DHT operations instead.

Despite these restrictions, it may be possible for an ASO to infer (minimal) information about

the hosting node via side-channels. For example, the time it takes an ASO to perform a computation

could leak information to the ASO about the speed of the hosting processor. At the extreme, it may

be feasible to infer modest information about other applications running on the hosting node [167].

We believe that such attacks are low risk in the Comet environment and do not consider them here.

Restricting resource consumption. Comet also significantly limits an ASO’s ability to consume

resources on its hosting node. Our prototype limits both the memory and CPU consumption of

ASOs.

Memory. The Comet active runtime keeps a running sum of the memory footprint of an ASO.

Hard limits can be set on the total memory consumption of an object; ASOs which exceed this limit

are evicted. Our current prototype limits ASOs to 100kB.

CPU. The Comet runtime similarly keeps a running count of bytecode operations performed.

We envision multiple policies for constraining CPU use. The naive policy limits each ASO to

at most a limited number of instructions per handler invocation. Since not all Lua operations are

equally costly, a more sophisticated policy would assign different weights to different Lua operations

(e.g., more cost for a table lookup than an addition). The limit could also be enforced over a fixed

duration of time (such as 30 minutes) rather than upon each handler invocation (which might occur

much more frequently). Our current prototype implements the naive restriction and allows 100K

instructions per handler invocation.

Comet provides support for exception handling in order to help debug faulty ASOs that exceed

the system-imposed resource limits. Handlers can catch resource exhaustion exceptions and store

the relevant handler state as part of the ASO. The developer can then retrieve this stored state and

inspect it to determine why the handler exceeded the resource limits. Further, operations that return

values, e.g., gets, provide the stack trace as a return value in the case of an exception. We found

these features to be useful in debugging many of the applications that we prototyped using Comet.

122

Restricting within-Comet communications. We must consider two classes of communications:

communications between one ASO and another, and callback communications to a caller.

Communications between ASOs. Allowing arbitrary between-ASO communications in Comet

could lead to abuse. For example, suppose a malicious ASO stored under one key copies itself to a

large number of other keys slowly over time, and then simultaneously all ASOs initiate connections

to a victim ASO stored under some target key. Such an attack allows an attacker to amplify her

resources: the attacker invests minimal effort to seed the original malicious ASO, yet the ultimate

attack DDoSes nodes hosting the target key. Comet takes a Draconian approach toward protecting

against such attacks: the ASO API only allows ASOs to communicate if they are stored under the

same key, whether co-located on the same Comet node or on another node within the DHT. Our

system further rate-limits communications performed by a particular ASO. Each Comet node allots

a limited number of network communications per time period for every ASO it hosts. Though

we have not experimentally ascertained appropriate rate-limiting parameters, the applications we

present could all work with approximately the same number of network operations as is required for

a value in the current Vuze DHT - about 20 every timer interval.

4.7 Related Work

The concept of extensible systems has been widely explored in the past in several domains. Exten-

sible operating systems have been proposed that support application-specific needs [20, 180, 106].

Active networks allow code to be downloaded along with network data and executed within the

network infrastructure (e.g., on routers) to extend network services [221, 204]. Active messages

execute a small amount of user code with each message reception [213]. Click explored the design

of an extensible router [110]. Database triggers allow applications to define procedural code that is

executed in response to database operations [137].

In the context of storage systems, Watchdogs [21] extends the Unix file system, allowing a user-

mode process to interpose on file operations for specific files to change access semantics. Several

projects have proposed the integration of CPUs and disks to create intelligent disk storage systems

that can provide on-board application-specific functions, e.g., for decision support systems, data

mining, and image processing [107, 165, 1].

123

DHTs are increasingly used to support a variety of distributed applications, such as file-sharing,

distributed resource tracking, end-system multicast, publish-subscribe systems, distributed search

engines, and even data-center applications. Some of these systems (e.g., as CFS [51], i3 [197],

and PAST [172]) can be implemented using the traditional put/get interface, but many others (e.g.,

Mercury [23], CoralCDN [71], Scribe [173], and Bayeux [233]) require customized interfaces and

are implemented by altering the underlying DHT mechanisms in significant ways. Our work pro-

vides the ability to extend a DHT without requiring a substantial investment of effort to modify its

implementation.

Deployed DHTs don’t currently offer good semantics and security. However, people do know

how to make them consistent [118, 136] and harden then against attacks [35, 53, 188, 93, 218]. The

reason DHTs do not currently implement these techniques is that there has not yet been a deployed

application that truly needed strong semantics and security. For example, the Vuze design perceived

many threats as irrelevant [76] and deployed few defenses against them. However, after the new,

more demanding Vanish application was proposed [81], the Vuze DHT responded by embracing a

variety of effective security measures. In addition to enabling new applications atop DHTs, we hope

to drive the design of these systems towards well-understood, yet unadopted levels of security and

consistency.

4.8 Summary

Key-value stores serve as scalable distributed storage clouds for many of today’s Web services

and peer-to-peer applications. Despite their popularity, constructing powerful applications on top

of today’s key-value stores is challenging, due to their inflexibility and lack of control over how

the data is managed in the store. This chapter described Comet, an extensible, active, distributed

key-value store. Comet enables clients to customize a distributed storage system in application-

specific ways using Comet’s active storage objects. By supporting ASOs, Comet allows multiple

applications with diverse requirements to share a common storage system. We implemented Comet

on the Vuze DHT using a severely restricted Lua language sandbox for handler programming. Our

measurements and experience demonstrate that a broad range of behaviors and customizations are

possible in a safe, but active, storage environment.

124

While our Comet design has focused on peer-to-peer DHTs, the broad concept of extensible

distributed storage systems is applicable to centralized distributed storage services, such as Amazon

S3, Mozy, and DropBox, themselves inflexible clouds. We believe that the design of extensible

datacenter-based storage services is an exciting avenue for future research, which is described in

Chapter 6.

125

Chapter 5

MENAGERIE: A FRAMEWORK FOR ORGANIZING AND SHARING
DISTRIBUTED WEB DATA

We now turn to the third problem investigated in this dissertation: the personal data manage-

ment challenges created by data dispersal. The migration from desktop applications to Web-based

services is scattering personal data across a myriad of Web sites, such as Google, Flickr, YouTube,

and Amazon S3. This dispersal poses new data management challenges for users, making it more

difficult for them to: (1) organize, search, and archive their data, much of which is now hosted by

Web sites; (2) create heterogeneous, multi-Web-service object collections and share them in a pro-

tected way; and (3) manipulate their data with standard applications or scripts. This chapter presents

Menagerie, a system that creates a unified view over the user’s Web scattered data by imposing a

unified naming, protection, and access system atop supportive (or proxied) Web services. Menagerie

was initially introduced in a 2008 paper [77]. We begin by describing Menagerie’s motivation and

high-level overview.

5.1 Motivation and Overview

While Web-based services offer undeniable advantages over traditional desktop software, desktop

systems have compelling advantages of their own, many of which arise from the functions provided

by the desktop operating system and file system. The OS supports a set of common, beneficial ser-

vices that we take for granted. Users can name, organize, and access all of their files within a single

hierarchical namespace, irrespective of which applications natively operate on them (Figure 5.1a).

Similarly, applications written by different software vendors can interact with each other through

the protected sharing interfaces exposed by the OS, providing users with new composite functions.

As desktop-based applications, such as office productivity software, desktop email clients, and

local storage are replaced by Web-based counterparts, we risk losing the advantages enjoyed by

126

photos

trip

/

work

HR

Flickr

NetsuiteGoogle
Docs

YouTubeHotmail

(a) data integrated into the
 desktop file system

(b) data isolated across separate
Web services

Figure 5.1: PCs vs. Web Services. In the desktop-centric world, users can organize and share their

application data through the file system. In today’s Web, data is increasingly trapped inside its Web

service.

desktop systems. Users’ personal data and objects are scattered across the different Web services

that they use (Figure 5.1b). Consequently, users and services face a set of significant new challenges:

1. Data organization and management. On the desktop, a user can create a folder to hold related

files and objects. On the Web, users’ data is scattered across the Internet, where it is housed

by a myriad of independent Web services. Given this, how can she organize, manage, archive,

or search her Web objects and files as a unit?

2. Protected data sharing. While publishing is greatly simplified in the Web service environ-

ment, protected sharing, particularly at a fine grain, becomes more difficult. For example,

how should one user share a specific subset of her objects with another user? Does the other

user need to create accounts on all relevant Web services, and if so, do all of these services

support the restricted sharing of only a select object subset?

3. Data manipulation and processing. Web services restrict the operations that can be performed

on their objects: they typically export a limited API and expose only a small set of user

commands through the browser. In contrast, the power of a system such as Unix derives, in

part, from its simple data-processing commands (cat, grep, etc.) that can be composed

together or extended to manipulate data in new ways. How should we balance the need for

Web services to retain ownership over the data and functions they provide, with the benefits

that would be gained by allowing third parties to extend services?

127

This paper examines these challenges. First, we discuss the principles and requirements that

must underlie any solution. Next, we discuss the design and implementation of Menagerie, a proof-

of-concept system that embodies our solution principles. Menagerie consists of two primary compo-

nents: (1) the Menagerie Service Interface (MSI), an API that facilitates inter-Web-service commu-

nication and access control, and (2) the Menagerie File System (MFS), a software layer that allows

“composite Web services” to integrate remote Web objects into a local file system namespace, re-

ducing the engineering effort required to access and manipulate remote data.

To demonstrate the value of our approach, we have prototyped several new Web applications on

top of Menagerie. Our experience shows that it is possible to combine the ease of use, publishing,

and ubiquitous access advantages of Web services with the organizational, protected sharing, and

data processing advantages of desktop systems.

In this section, extend the simple motivating scenario introduced in Section 1.2.1 to expose some

of the shortcomings of the Web from a data management perspective. From this scenario we derive

a set of required properties that a solution must have to overcome these limitations.

5.1.1 Example Scenario

Figure 5.2 illustrates our extended scenario, where Ann, the manager for a small company, has

moved from a desktop environment to Web services for both her personal and business data and

information processing needs. Specifically, Ann uses Flickr to manage her photo albums, Google

Docs for spreadsheets and word processing files, Hotmail to communicate with colleagues and

family, and Netsuite to process her and maintain her personal financial information.

Ann likes to keep her data well organized. In the past, she used her PC’s desktop manager to

create folders in which her related files were stored or linked. Since many of her documents are

now Web-based, she would like to create virtual Web folders that are populated with links to the

appropriate Web objects and collections. For example, she would like to collect all of her product

marketing resources into a single folder, in spite of their spreading across many Web services.

Ann also wishes to securely share some of her virtual folders with her colleagues, granting them

access to view and edit the folders’ contents. However, she does not want her colleagues to have

128

product folder

product
photos

Flickr albums

family
trip

land-
scapes

Google docs

salary
.xls

market
.xls

glossy
.doc

product
reviews

Hotmail folders

my
mail

Netsuite

financial
data

Figure 5.2: Motivating Scenario. Ann would like to create a new folder that links to some of her

Flickr, Hotmail, Google Docs, and Netsuite objects. As well, she wants to share the folder and its

contents with her colleagues, who do not have accounts on all of these services.

access to all of her business files or to her personal files. In addition, not all of her colleagues have

accounts on the same Web services as Ann.

Finally, Ann is extremely careful with her valuable data and wants to prevent against accidental

deletion or an operational Web service failure. She would therefore like to use a third-party archival

service to maintain historical versions of all of her Web objects and virtual folders.

5.1.2 Challenges

Given the limitations of today’s Web, it is extremely difficult for Ann to accomplish her goals or for

third-party Web services to help her. Ann faces three classes of obstacles:

Naming. The Web services in our example provide users with the abstraction of objects that can be

manipulated in various ways. Unfortunately, not all of the services expose objects with a predictable,

stable URL; instead, some objects are externally presented by the Web service as a diffuse collection

of HTML elements, images, frames, and JavaScript, whose URLs might be dynamically generated.

Accordingly, users and third-party services have no easy way to name each of the objects that Ann

wishes to collect into her virtual folders.

Protection. Ann needs to share some of her objects with her colleagues and with the third-party

archival service, but she faces several protection-related impediments. Each Web service has imple-

129

mented its own particular authentication, authorization, and sharing scheme. Thus, Ann’s colleagues

may need to create accounts on all services to fully access her shared objects.

Even if single-sign-on accounts existed across the Web, many services fail to offer flexible and

fine-grained protection. In some cases, sharing is all-or-nothing. For such services, allowing Ann’s

colleagues access to her professional objects may also reveal her personal data. Sharing also may be

limited in some ways; for example, some Web services do not allow the sharing of different subsets

of objects with different subsets of users. Finally, some services provide secure URLs that the user

can hand out to grant object access, but many of these services do not support the selective granting

of write access or the revocation of rights.

Ann wants to grant her associates access to a single virtual folder, implicitly giving them access

to all of the objects within it. Unfortunately, those objects are scattered across many different ser-

vices, each with its own authorization scheme. Short of Ann giving a third-party aggregation service

her Web credentials and trusting that service with her objects, such sharing cannot be achieved.

Externalization and embedded rendering. Most Web services do not expose object data directly

to users and third party services. Instead, they graphically present objects and interaction controls

as embedded elements within Web pages. In contrast, on desktop systems, the filesystem permits

many programs, including file managers, file sharing applications, editors, archivers, and security

scanners, to process the same data objects.

To realize our scenario, Web services must provide additional functions that most of them lack

today. In particular, they must export externalized representations of their objects to allow third-

party services, such as archival or indexing services, to operate on that data. For simple third-

party services, the structure and semantics of the externalized representation does not matter: the

object can be exported as an opaque set of bytes. For richer services, a standardized or well-known

representation, such as MIME for email, would be more valuable.

Finally, Ann and her colleagues rely on a third-party service to create and access virtual folders,

and to browse the files within them. To support this, origin Web services should provide useful

metadata and facilitate composite graphical interfaces that would allow the objects to be rendered

and operated on within arbitrary Web pages. Flash movies exported by sites such as YouTube are

good examples of this.

130

5.2 Goals and Requirements

In the PC-centric world, the operating system provides abstractions, system call interfaces, and

utilities to help applications and users overcome the challenges we describe above. In the Web, there

is no single trusted layer that users, browsers, and services can rely on. We therefore believe that

a new service interface must be defined and adopted to provide the interoperability and integration

needed to realize even our simple motivating scenario.

This service interface could be defined via conventions on top of the HTTP protocol (e.g.,

REST[68]), or new special-purpose protocols could be designed for this purpose. Regardless, the

challenges we described motivate three clear requirements that the service interface must support:

1. Uniform object namespace. To address the naming challenge described above requires a

single global namespace in which all personal data objects are embedded. That is, all of the

objects and object collections that users manipulate should have a permanent, globally unique

name within this namespace, allowing the Web service, its users, and third-party composite

services to discover and depend upon these names.

2. Fine-grained protection. To support data sharing and composite services, a Web service must

provide fine-grained protection of objects and collections. It should be possible for the user

to share only a portion of her objects from a service, while keeping the other objects private.

It should also be simple to aggregate and share collections of distributed objects.

3. Unified minimal object access. The combination of a global, hierarchical namespace and fine-

grained, protected sharing of personal data allows users and services to find and share objects

with each other. To be useful, however, the objects must support some standard set of access

functions. As we argued above, the minimal set must include the ability for objects to be

embedded and rendered within an arbitrary Web page, and for object data to be externalizable.

The next section presents the architecture and implementation of Menagerie, a proof-of-concept

prototype we have developed to meet the challenges we have described. Menagerie allows us to

experiment with new Web applications that support the organization and sharing of collections of

heterogeneous Web service objects. We will describe those applications in Section 5.4.

131

Application

MSI

C1 C2

Ann’s data
Service 1

MSI

Ann’s data
Service 2

MSI

MFS

Other
applications

FS
calls

Figure 5.3: The Menagerie Prototype. The figure shows two Web services that export Ann’s

objects, a composite Web application built using the MFS layer, and the MSI capabilities (c1 and

c2) that the application uses to access the objects.

5.3 The Menagerie Prototype

This section describes the structure and implementation of our Menagerie prototype. It consists of

two principle elements: the Menagerie Service Interface and the Menagerie File System. We briefly

introduce these elements here and then describe them in more depth in the remainder of this section.

The Menagerie Service Interface (MSI) is an inter-Web-service communications API that is

comprised of object naming, protection, and access operations. MSI defines a uniform, hierarchical

name space into which Web services export the names of their objects. MSI supports fine-grained

sharing of Web objects through the use of hybrid capabilities. This protection scheme allows users

without service accounts to name and access objects, while also giving services the ability to limit

the actions of such users. MSI also specifies a standard set of object-independent access functions

for Web services. These functions support object reading and writing, rendering, and metadata

export. While our goal is to design an interface that Web services can easily adopt, our prototype

implementation also shows that Menagerie is deployable even without Web service support.

The Menagerie File System (MFS) simplifies the development of new, composite Web applica-

tions. MFS mounts remote MSI object hierarchies into a local file system name space, allowing an

132

Namespace functions

list(capa, object ID) returns list of object names and IDs

mkdir(capa, parent ID, name)

getattr(capa, object ID) returns object attributes

Protection functions

create capa(capa, object ID, rights) returns new capa

revoke capa(object capa, revoke capa)

Content and Metadata functions

read(capa, object ID) returns byte[]

write(capa, object ID, name, content)

get summary(capa, object ID) returns string

get URL(capa, object ID) returns string

Figure 5.4: The MSI Interface. This table shows the parameters and return types of each function.

MSI services must support the naming and protection-related functions, and may optionally support

the others.

application to access remote Web objects through a standard file system interface. Figure 5.3 depicts

a composite Web application that uses MFS to access the Web objects exported by two MSI-capable

Web services.

The remainder of this section describes MSI’s naming, protection, and content operations. Fig-

ure 5.4 shows the functions we have implemented to date. This small set was sufficient to build our

example applications; as we gain more experience, we expect the interface to evolve and grow.

5.3.1 Object Naming

We designed naming in Menagerie with two goals in mind. First, users must be provided with

meaningful object names that correspond to the way users name objects inside of a Web service.

Second, composite applications must be provided with global, unique identifiers for the objects they

access, even though those objects are scattered across heterogeneous Web services.

133

In Menagerie, each Web service exports an object name hierarchy for each of its users. This

hierarchy contains the user-readable names of all objects that each user can access. The struc-

ture of this hierarchy and the granularity of each object within it are left entirely up to the ser-

vice, but it typically imitates the logical structure that the service exposes to its users. For exam-

ple, Flickr offers its users abstractions associated with sets of objects (photo albums) and objects

within each set (photos); therefore, Flickr could choose to export a three-level name hierarchy (e.g.,

Ann/Disneyland-album/Mickey-photo).

Each object in Menagerie is identified using a service-local ObjectID, which is unique within the

service and independent of the object’s location in the hierarchy. Using the service-local ObjectIDs,

Menagerie mints globally unique object identifiers by combining the service-local ObjectIDs with

services’ DNS names. By making ObjectIDs unique on each service (as opposed to globally unique),

we give services the liberty to create and name new objects independently. By making an object’s

ID independent of the object’s location within the service’s hierarchy, we ensure that caching and

other optimization opportunities are preserved even if the object can be reached via multiple paths.

Three functions in MSI support name hierarchy operations: list, getattr, and mkdir.

Given the unique ID of a collection node in a hierarchy, list returns the names of all the children

of that node, as well as their unique IDs. Getattr returns the attributes of the object with the

given ID, including the type of object, a capability for the object (see Section 5.3.2), the size of the

object in bytes, and various additional metadata. Mkdir adds a collection object to the hierarchy.

Individual objects are created using the MSI write function, as we will see in Section 5.3.3.

5.3.2 Protection

While designing Menagerie’s protection model, we considered the two fundamental access control

mechanisms: capabilities and access control lists (ACLs). These mechanisms generally lie at oppo-

site ends of a spectrum. Capabilities simplify sharing, while ACLs enable tight access control and

user access tracking. While our goal is to simplify fine-grained, distributed object sharing, we must

also provide services with the ability to control and track access to their data.

Menagerie therefore adopts a hybrid capability-based protection system, which combines the

benefits of both mechanisms. A Menagerie capability is an unforgeable token that contains the

globally unique ID for an object and a set of access rights. Possession of a capability gives the

134

Root Node
global ID Password Open­access

Rights
Closed­access

Rights

CapTable – stored at the service

Root Node
global ID Password

Capability – token given out by the service
64 bits 128 bits

...

Capability
validation

Figure 5.5: Hybrid Capability Protection. A capability provides access to objects within a sub-

hierarchy rooted in the object identified by Root Note ID. Open-access rights allow direct object

access, while closed-access operations also require user authentication.

holder the right to access the object in the specified ways. Capabilities support sharing because they

are easy to pass from user to user: Menagerie’s capabilities are encoded in URLs that can be emailed

or embedded in Web pages.

However, a Menagerie capability is also subject to control by the Web service whose object it

names. A service can divide its object rights into two types: open-access rights and closed-access

rights. An open-access right gives the holder of the capability direct access to the specified operation

without further authentication; e.g., if the right allows the user to read the object, then the service

will return the object’s contents when presented with a capability with the read bit set. Since a

capability is not associated with any principal, an “open-access” operation cannot be attributed to a

particular user.

A closed-access right, however, requires additional authentication. To perform an operation

associated with a closed-access right, a capability with that right enabled is necessary but not suffi-

cient: the user must also authenticate himself before the service will perform the operation. In most

cases, this will require an account on that service. By “closing access” to an operation, the service

can track the user that invokes the operation, or enhance the user’s experience with personalized

functions.

To implement capabilities, we use the password-capability model [36, 202]. The structure of a

Menagerie capability is shown in Figure 5.5. The capability specifies a globally unique ID of a node

135

in a service’s hierarchy and it authorizes access to the entire sub-hierarchy rooted in that node. The

capability also contains a long “password” – a random field chosen from an astronomically large

number space. The password is generated by the service at capability creation time and ensures that

the capability cannot be guessed. A service stores information about all capabilities it creates in a

table called CapTable, whose structure is also shown in Figure 5.5. Because the service stores the

capability rights, they cannot be forged by users.

As seen in Figure 5.4, every MSI method call passes at least two parameters: a capability token

for an ancestor of the accessed object within the service’s hierarchy and the object’s ObjectID. Upon

an MSI invocation, the service checks that the ancestor relationship holds and that a corresponding

(root node ID, password) pair can be found in its CapTable. If not, the capability is invalid

and the operation fails.

MSI provides functions for creating and revoking capabilities: create capa and revoke capa.

When a user requests a capability from a service (using create capa), the service returns a URL

that embeds the new capability. In this way, capability sharing is similar to URL sharing in the

Web. Revocation of a capability simply zeroes the rights fields in the capability’s CapTable entry.

To prevent arbitrary users from revoking capabilities, revocation requires a valid capability to the

same object with the REVOCATION right enabled.

Several current Web services already use slight variations of a hybrid-capability protection

model, which confirms the applicability of our approach. As one example, Flickr and other Ya-

hoo! services provide “browser-based authentication [230],” which is essentially a capability-based

scheme; it allows users to obtain a “token” for an object, specify a set of rights enabled by that to-

ken, and pass the token to an application. As another example, Google Calendar offers users “secret

URLs” to their calendars, which they can give to friends. These URLs are a type of capability that

can be used to view, but not modify, the user’s calendar. To share a calendar with update rights, the

user must add the sharee to the service’s ACL.

5.3.3 The Object Content Access Interface

MSI provides composite Web applications with two different ways to access objects. First, for

mashup-style applications, Menagerie permits a composite application to embed an object from a

136

remote service within a Web page. The remote service is responsible for the presentation and inter-

action controls of that embedded object, similar to how YouTube provides embeddable, interactive

objects for displaying video.

To support building expressive composite GUIs, MSI defines a set of metadata access functions,

including get summary and get URL. The get summary function returns an HTML snippet

that describes the object visually. For example, get summary returns an tag for a Flickr

photo’s thumbnail, an <object> tag for a YouTube video, and a summary for a Gmail email. The

Menagerie Web Object Manager application in Section 5.4.1 uses this function to present distributed

collections in a visual manner.

Similarly, get URL provides the link to the object’s URL within the parent service. Just as

today’s desktop file manager applications use a file-application binding database in systems like

Windows to launch the appropriate application when the user double-clicks on a file, our Menagerie

Web Object Manager uses URLs to redirect the user back to the parent service when a user clicks

on a particular object.

Second, for composite applications that need to directly manipulate object contents, MSI pro-

vides a small, standard set of object-independent access functions. These functions, which include

read, write, and delete, allow an application to download, manipulate, and upload the objects

directly from Web services. MSI does not mandate any particular object representation or format:

how a service chooses to externalize an object is entirely its own choice. Some composite appli-

cations, such as the archival service we described in Section 5.1.1, do not need to understand an

object’s format. Others, such as an indexing, image editing, or video distillation service, will need

knowledge of the object’s format. Over time, we expect services will gravitate towards standard

object types and formats.

5.3.4 Implementation

Figure 5.6 shows the structure of our prototype Menagerie implementation. We chose to define

MSI as an XML-RPC [225] layer on top of HTTP, so that services can make use of standard Web

programming toolkits and frameworks to define, access, and export MSI functions. As well, by

137

non-MSI
Web service

MSI proxy

MSI native
Web service

squid cache Web
application

code

VFS

FUSE ext3

MFS + libfuse

Web
browser

user

HTTP

MSI over
XML-RPC

MSI over
XML-RPC

HTTP

composite Web application

u
s
e
r

s
p
a
c
e

k
e
rn

e
l

s
p
a
c
e

Figure 5.6: Prototype implementation. Our prototype system uses proxies to bridge legacy Web

services to MSI. Composite Web applications can make use of MFS, which is implemented using

the FUSE user-level file system framework. We have implemented MSI using XML-RPC, which is

itself layered on HTTP.

using XML-RPC, we could take advantage of existing Web caching components (such as Squid)

within our composite applications to improve their performance.

To experiment with composite Menagerie applications, we needed to access Web services that

support MSI. As an incremental deployment strategy, we have built MSI proxies for existing (non-

MSI) services. An MSI proxy implements the MSI functions and Menagerie protection model on

behalf of a service, making it MSI compliant without needing to modify the service itself. To date,

we have implemented proxies for five popular Web services: Gmail, Yahoo! Mail, Flickr, YouTube,

and Google spreadsheets.

For services that provide developer APIs, we found it easy to implement proxies, as we could

simply bridge between the services’ REST or SOAP functions and our associated MSI functions.

For services that do not provide developer APIs, building proxies was more challenging, as we had

to use awkward and unstable Web scraping techniques to access the appropriate service functions

and objects. Overall, however, proxies are a more secure and practical incremental deployment path

than requiring each composite service to perform Web service scraping in its own way.

138

The Menagerie File System

The Menagerie File System (MFS) is a user-level file system based on FUSE [75] that simplifies

building composite applications. MFS lets a composite application mount the MSI name hierarchies

exported by Web services into its local file system. As a result, an application can access remote

MSI objects using standard file system operations and user-level programs.

To mount a service hierarchy, the composite application must receive a capability for that hier-

archy from the user and then provide the capability to MFS. Once mounted, the service can then

use standard file system commands and tools, such as cp and tar, to operate on the objects. These

tools issue system calls such as getattr, readdir, read, and write. The calls get passed

via VFS [109] to MFS, and then translated into the corresponding MSI calls on the remote Web

services. As well, metadata functions in MSI are exposed as extended file system attributes through

MFS.

To boost MFS’s performance, we provide composite services with two caches. MFS has an inter-

nal metadata cache for rapid retrieval of short-lived file system metadata, and it uses the Squid [69]

cache to store data returned by MSI read and get summary functions.

5.3.5 Summary

In this section, we described the architecture and implementation of our prototype Menagerie sys-

tem. Through the use of Web service proxies and the MFS support layer, we made it possible for

both existing and new Web services to communicate with each other through our Menagerie service

interface. In the next section of the paper, we demonstrate the practicality and usefulness of our

approach by building a set of powerful, easy to construct, composite Web applications.

5.4 Applications

As the trend towards Web-based applications continues, we believe that applications that support

organizing, sharing, and manipulating distributed Web service objects will become increasingly

important. This section presents several applications that we built using our Menagerie prototype.

Our goal is to demonstrate the types of applications that Menagerie enables, and to show how

Menagerie simplifies their implementation.

139

(a) Menagerie Web Object Manager (WOM) (b) Menagerie Group Sharing Service

(MGS)

Figure 5.7: Screenshots of Two Menagerie-based Web Applications. (a) This figure shows how

Ann organizes her product-related Web objects using WOM. The right half shows the thumbnails

of Ann’s product photos on Flickr. The left half shows one of Ann’s organizational folders, which

already contains some objects. Ann is now dragging a product photo onto her new folder. (b) This

figure shows how Ann and her colleagues Bob and Carol, all users of the MGS service and members

of the Computer Store group, share objects with their group. Ann has shared some of a Flickr

product photo, a YouTube video, and an email, Bob has added two Flickr photos and a Google

spreadsheet of product prices, and Carol has put one Gmail email and one Flickr photo.

5.4.1 The Menagerie Web Object Manager

The Menagerie Web Object Manager (WOM) is a composite Web application that lets users organize

and share their distributed Web objects. With WOM, users can create new virtual folders, populate

those folders with collections of distributed Web objects, and share the folders with other users or

services. WOM is a generic desktop, similar to file managers like Nautilus or Windows Explorer,

but for Web objects. A WOM user can access and manipulate all of her Web service objects using

the WOM Web interface; behind the scenes, WOM mounts and operates on the object hierarchies

exported by the user’s services.

140

The screenshot in Figure 5.7(a) shows how Ann organizes the Web resources for her business.

When Ann first created her WOM environment, she mounted her Web service hierarchies (Flickr,

Gmail, Google Docs, and YouTube) by pasting capabilities for those hierarchies into a Web form.

WOM retains those capabilities and remounts the hierarchies using MFS whenever she logs in.

The WOM Web page is split in half. On the right, the user can navigate through her objects

and mounted hierarchies. The expandable tree on top lists Ann’s currently mounted hierarchies. In

Figure 5.7(a), Ann has opened her Flickr Product Photos album.

The left side presents the user’s virtual Web object folders. Users can create directory hier-

archies and populate them by simply dragging-and-dropping objects from the right side of the

interface to the left. In the figure, Ann has created a Computer Store directory, containing

sub-directories for Computer Accessories and Printers. Ann is currently populating her

Computer Accessories folder; that directory includes two instructional YouTube videos, two

customer emails from Gmail, and a folder with financial Google spreadsheets. The figure shows

that Ann is dragging a Flickr product photo onto her Computer Accessories directory.

WOM is only organizational; objects remain stored and managed by their respective Web ser-

vices. Clicking on a object leads back to its origin Web service. For example, clicking on a Google

spreadsheet in Ann’s virtual folder causes Google Docs to popup a browser with that spreadsheet

opened. Although the Web objects are only linked to the virtual folder, WOM can still render thumb-

nails of the objects. To retrieve the HTML code that displays the thumbnail for a specific object,

WOM reads the object’s SUMMARY extended attribute from MFS, which causes MFS to issue a

get summary call to the appropriate service.

Our WOM implementation exports MSI, which allows users to further export their new organi-

zational structures. For example, a user can request a capability for a WOM virtual folder hierarchy

and share that folder with other people and services by passing them that capability. Because WOM

is a native MSI service, it requires no proxy.

WOM provides useful organization and sharing features, yet it was easy to build on top of our

Menagerie prototype. One developer implemented WOM in roughly 3 days. The WOM codebase

contains 275 lines of code: 131 lines of PHP code containing the application logic, and the remain-

der to perform HTML formatting.

141

5.4.2 The Menagerie Group Sharing Service

The Menagerie Group Sharing Service (MGS) is a Web application that lets users form groups and

share collections of Web objects from their Web services. MGS is similar to MySpace, but it is

targeted at groups rather than individuals. That is, while WOM lets a single user create and share

virtual object organizations, MGS lets several users share a single virtual desktop.

We implemented MGS by modifying Gallery 1 [128], a popular Web-based photo sharing appli-

cation. Hence, MGS borrows its GUI from Gallery. We enhanced Gallery to run on Menagerie, to

display any type of resource (not just photos), and to support user groups. Figure 5.7(b) presents a

screenshot of MGS, in which Ann, Bob, and Carol have created a group called Computer Store

Group to share business information amongst themselves and with other colleagues. Ann has

shared a photo, a video, and an email on the group page; she does not want to share her entire WOM

Computer Store directory with the colleagues because it contains confidential financial data.

Bob has added two Flickr photos and a spreadsheet with product prices, and Carol has added an

email and a photo. All resources are displayed in the group’s Web page on MGS. Adding resources

to the page is similar to adding resources in WOM; the user pastes a capability into a form to give

MGS access to an object or hierarchy.

Modifying Gallery to build MGS took a single day for one developer. The conversion required

only 73 new lines of code (32 related to HTML formatting), modification of 3 lines, and removal of

91 lines from Gallery.

5.4.3 MFS-based Applications

The WOM and MGS examples show how new Web-object management services can leverage the

global naming, protection, and unified access functions that Menagerie provides. As well, the

Menagerie File System lets any application treat Web objects as abstract files. As a result, ser-

vices can apply existing file-based programs or scripting languages to remote Web objects or to the

kinds of Web-object collections that Menagerie enables. Below, we give several examples of the

power of this “backwards compatibility” provided by MFS.

Backup and Restore Service. Today’s users have backup tools for safely archiving their desktop

142

data. However, for user data stored by Web services, users must trust the service to maintain their

data, perhaps forever, as no generic Web object backup-and-restore application exists.

Using Menagerie, a backup-restore service that operates on distributed Web object collections

can be built with a simple set of existing applications or commands, such as tar and untar in

UNIX. For example, suppose that Ann wants to back up her distributed WOM Computer Store

folder. Ann provides the capability to that folder to the backup-restore service, which uses the

capability to mount Ann’s object hierarchy. To the service, Ann’s distributed Web objects look like

a local UNIX file tree. Therefore, the backup-restore service can archive Ann’s objects with the

following commands:

cd /mfs/Ann/WOM

tar -czf /backups/Ann/Computer_Store.tgz \

Computer_Store

This creates a tar archive in the /backups folder on one of the backup-and-restore Web service’s

machines. Provided that all capabilities involved have the READ right enabled, the tar causes

backup-restore’s MFS to read the contents of each object recursively, first from WOM and then

from the appropriate hosting service. The resulting archive will contain the entire Computer Accessories

folder hierarchy and the contents of all the distributed objects in it. Similarly, the service can use

untar to restore those objects at a later time.

Changing email providers. Users may wish to migrate from one Internet mail system to another,

or to consolidate multiple accounts. While some email services support interchange, this is not a

general feature. Menagerie can simplify the task of email migration. For example, a new third-

party Web application for migrating from one mail account (e.g., Yahoo!Mail) to another (e.g.,

Gmail) could be built on Menagerie through MFS using the following, perhaps surprisingly simple,

command:

cp /mfs/Ann/Yahoo/*/*/msg /mfs/Ann/Gmail

This command processes all of the folders and message directories in the user’s Yahoo!Mail, copy-

ing each msg, which contains the contents of an individual email, to the Gmail account. The com-

mand assumes that the new changing-email-providers application has mounted Ann’s Gmail and

143

Yahoo!Mail hierarchies. The result is to send each Yahoo message to the user’s Gmail account,

where it will appear in her Inbox folder.

This example needs further explanation. First, this email exchange is facilitated by the fact

that our Menagerie proxies for Gmail and Yahoo!Mail implement a common XML-based schema

for emails. If the services did not export the same email format, the new application would need

to perform a schema mapping for each email. Second, the copy command does not recreate the

same folder structure; a simple loop that first creates the folders (labels) easily solves this problem.

Finally, our implementation places attachments and message content in separate files, which makes

copying an email with attachments more difficult; a 10-line script (omitted here) deals with this by

combining the attachment and message into a single file before copying it to Gmail.

While the full explanation of this process is more complex than the single-line cp command

above, the example shows the power of providing UNIX file access to object hierarchies.

Synchronizing email contacts. Although some email services let users import contacts from other

services, they do it in an ad-hoc manner in which each Web service knows how to fetch contacts

only from the most popular other services.

With Menagerie, multi-email contact synchronization is easier because the distribution is trans-

parent. In particular, the application need only understand contact formats and how to unify them.

Since our proxies for Yahoo!Mail and Gmail export the same contact formats, as noted above, we

can leverage existing file synchronization tools such as Unison. For example, a Web application for

synchronizing the contacts between Gmail and Yahoo!Mail accounts can be done as follows:

cp /mfs/Ann/Yahoo/contacts/* /tmp/Y

cp /mfs/Ann/Gmail/contacts/* /tmp/G

unison /tmp/Y /tmp/G

cp /tmp/Y/* /mfs/Ann/Yahoo/contacts

cp /tmp/G/* /mfs/Ann/Gmail/contacts

In this example, the new contact synchronizer application copies the user’s contacts into a local tem-

porary file prior to running Unison because Unison creates its own temporary files in the directories

it synchronizes. In Menagerie, executing Unison directly on the Web service files would result in

the creation and then removal of new contacts on the Web service. To avoid this overhead, we first

144

download the contacts locally, run Unison on them, and then upload the unified contact set. Note

that we rely on the user to resolve conflicts, since neither Gmail nor Yahoo!Mail reports the time of

the last contact modification.

The MFS Desktop Bridge. MFS was designed to simplify building composite Web services, but it

is also valuable as a desktop operating system component. By running MFS on a desktop, the user

can mount and access her Web objects as files within the file system. As a result, the user can take

advantage of desktop applications to operate on Web data: MFS acts as a bridge between the user’s

desktop and Web environments. For example, using MFS, we have used Adobe Photoshop to edit

Flickr photos, Microsoft Excel to operate on a spreadsheet stored within Google Docs, and Nautilus

to navigate through Web objects, all without changing the applications themselves.

5.4.4 Summary

In this section we presented example applications built using Menagerie. We showed how Menagerie

lets services access Web objects through existing desktop applications and command languages. Our

examples are not meant to be complete, but instead to stimulate the imagination of what is possi-

ble given the features that Menagerie provides. Overall, our examples demonstrate two key points.

First, a common set of naming, protection, and access operations for Web services greatly simplifies

the creation of new organization and sharing services for heterogeneous Web objects. Second, a

file-access facility for Web objects provides a powerful path to leverage legacy command languages

and applications in the new world of software as a service.

5.5 Evaluation

In this section we evaluate Menagerie, focusing on three questions. First, what additional latency

does the Menagerie layer add to Web service data accesses, compared to direct access without

Menagerie? Second, which internal components of Menagerie are most responsible for overhead?

Third, how does the performance of the MFS Desktop Bridge compare to other methods for editing

personal data?

We have not spent effort to optimize or tune Menagerie; rather, our goal was to build a straight-

forward and extensible framework for experimentation. Nonetheless, our results demonstrate that

145

Service Oper. Menagerie Total Menagerie

(ms) (ms) percent

Gmail
ls 37 250 14.0%

read 128 1,549 8.2%

Ymail
ls 35 955 3.6%

read 121 3,943 3.0%

Flickr
ls 35 364 9.6%

read 74 1,624 4.5%

GDocs
ls 41 348 11.7%

read 122 3,194 3.8%

Table 5.1: Menagerie’s Latency. Latency compared to total latency for directory listing (ls) and

remote data read (rd) on several services. Menagerie is a small fraction of the total latency for

existing Web services.

performance of our current prototype is competitive with other remote access Web technologies and

is fast enough to be usable in practice.

For our measurements we created a Menagerie measurement service that ran Menagerie (includ-

ing MFS, FUSE, and the Squid cache) and the measurement applications on an Intel P4 3.2 GHz

CPU with 2GB of memory. We ran the MSI proxies for existing services on a separate machine

with a similar configuration. Both machines ran Fedora Core 5, Squid 2.6, and Firefox 1.5. The two

machines were connected via a 100Mbps switch.

5.5.1 Menagerie Overhead

For our first question – the additional cost of Menagerie in accessing Web service data – we mea-

sured the latency for two simple operations performed on Web services through Menagerie. Ta-

ble 5.1 shows the latency for a directory listing and a remote data read invoked through Menagerie/MFS

to Gmail, Yahoo Mail, Flickr, and Google Docs. The data is read by an application performing a cat

of a 4.7MB file. The table shows that Menagerie represents only a small fraction of the total latency

(less than 15%) for these operations. Not surprisingly, network latency and service time dominate.

146

0%

20%

40%

60%

80%

100%

ls rd ls rd ls rd ls rd

Proxy
Protection
Squid time
XML-RPC
MFS

Gmail Ymail Flickr GDocs

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)

Local
MFS - cache hit
MFS - cache miss
Firefox

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)

Local
MFS - cache hit
MFS - cache miss
Firefox

Figure 5.8: Breakdown of Latency by Menagerie component for Directory and Read Oper-

ations on Four Web Services. The Python-based XML-RPC library dominates the Menagerie

latency; MFS is the next largest factor.

For example, the Flickr directory listing takes 364 ms to complete, of which 35 ms (9.6%) are spent

in Menagerie components (MFS, MSI, and the proxy).

To answer our second question – where the time goes inside of Menagerie – we exclude the

network and Web service times and account for the time spent in the various Menagerie compo-

nents. For this measurement, we logged messages at key places, such as just before MFS issues an

XML-RPC request to a proxy, or when the corresponding RPC function is called in the proxy, and

computed the time spent in different components by subtracting the timestamps of the appropriate

messages.

Factored into the Menagerie latency is the time spent in five of its components: (1) the Menagerie

File System (MFS), which has both user-mode and kernel-mode components, (2) XML-RPC, (3) the

Squid cache, (4) the Menagerie protection manager, including capability validation and credential

translation, and (5) the Web service MSI proxy, which includes parsing and building requests to the

existing Web services.

Figure 5.8 breaks down the latency for these five components. In most cases, the dominating

latency is caused by the Python-based XML-RPC, which represents about half of the total latency

on average. The time spent in MFS represents from 20% to 38%, due primarily to our user-level

file system code; this could be reduced in an all-kernel-level implementation. The use of Web-

147
0%

20%

40%

60%

80%

100%

ls rd ls rd ls rd ls rd

Proxy
Protection
Squid time
XML-RPC
MFS

Gmail Ymail Flickr GDocs

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)

Local
MFS - cache hit
MFS - cache miss
Firefox

2.4 0.93.0

13.511.9 13.5

52.1

34.9

0

10

20

30

40

50

60

Read Save

Ti
m

e
(s

)

Local
MFS - cache hit
MFS - cache miss
Firefox

Figure 5.9: Performance Comparison of Four Spreadsheet-handling Scenarios. A compari-

son of opening and saving a spreadsheet in four cases: OpenOffice access to a local spreadsheet;

OpenOffice access to a remote Google spreadsheet via the MFS bridge, shown for both a cache hit

and cache miss; and Firefox browser access to a remote Google spreadsheet.

service proxies has a smaller impact on total latency, on average about 15.2%. The cost of the

protection system is negligible in all cases. Overall, then, the greatest potential for improvement

lies in the XML-RPC system. Given the small cost of Menagerie compared to network latency and

Web service time, however, it is not clear that such optimization is warranted.

5.5.2 MFS Desktop Bridge Performance

Consider the task of opening, modifying, and saving a spreadsheet. Traditionally, users invoked

desktop applications such as OpenOffice to perform this task. With the advent of rich Ajax-based in-

terfaces for online document editing, such as Google Spreadsheets, users can now perform the same

task via their browsers. The Menagerie Desktop Bridge presents a third alternative; for example,

users can operate on a remote Google spreadsheet using local PC-based spreadsheet applications.

We compare these three scenarios in Figure 5.9, which shows the performance seen by the user

when opening an identical spreadsheet, modifying 2 cells, and saving the file. For the MFS bridge

scenario, we report the performance for two cases: OpenOffice hitting in the MFS squid cache, and

missing in the cache. We used Firefox to access a remote Google spreadsheet in our third scenario.

For cache hits, the MFS solution performs nearly as well as accessing a local file. Surprisingly,

saving the spreadsheet with MFS is 2.3 times faster than saving it through the browser. The slow

speed of the browser solution is due mostly to the Ajax application and its required rendering and

148

server communication in dealing with our 200KB spreadsheet. This may be addressed in the future

with more optimized Ajax engines.

Overall, Menagerie supports new functions on Web objects, as witnessed by applications in Sec-

tion 5.4, and it also enables the use of existing applications to handle Web objects in a performance-

competitive way.

5.6 Related Work

Menagerie builds upon many earlier efforts in Web technologies, protection system, and extensibil-

ity. The Semantic Web [19] effort, languages for describing Web service interfaces [44], and service

communication protocols [68, 215, 225] enable applications to find and integrate Web service con-

tent. In this work, we identify the key components that any Web service interface must provide in

order to enable a particular set of applications: generic applications for organizing, sharing, and

processing Web data objects within user Web accounts.

Recently, the problems caused by the dispersal of users’ data on the Web have received in-

creasing attention from Web service providers. Web-data aggregation sites (e.g., iGoogle [85],

Facebook [66], SecondBrain [179]), and Web-data processing applications [155] allow users to ag-

gregate their Web objects from a set of supported locations, share them, or process them. Each

of these applications must face the challenges of Web-account data integration (Section 5.2) on its

own: it needs to devise its own naming for Web objects, often request full control from the user

on his remote Web accounts, and write code to retrieve data from each service. Solving such chal-

lenges for each application is inefficient. Thus, we propose a new common service interface, which,

if adopted, would facilitate the building of applications, including some of the ones enumerated

above [155, 179].

Many individual Web services expose programmatic interfaces. Some social applications have

agreed to support OpenSocial, a common set of JavaScript and Google Data APIs for accessing

social information [86]. Menagerie and OpenSocial have very similar goals. However, Menagerie is

more general, as it is not restricted to social applications, while OpenSocial’s API has the benefit of

being tuned towards the needs of social application programmers. This tradeoff between generality

and specificy is common to many systems [65].

149

The need to decouple user-account data from Web services and expose it to third-party applica-

tions has been recently formulated in the W5 project [112]. While some of their concepts overlap

with Menagerie’s, including fine-grained protection and data access, our contribution consists of a

concrete instantiation of the required common interface, a working implementation, and experience

with building useful applications to validate our approach.

The idea of using operating system concepts and abstractions to address problems on the Web

has been used previously. WebOS [209] provides OS abstractions for building large-scale applica-

tions over the wide-area, including global naming and authentication. Menagerie provides functions

typically fulfilled by the OS on the desktop to Web applications operating on the user’s Web data.

Similarly, Web file systems [5, 210, 222] enable the integration of Web resources with the local

file system. Unlike Menagerie, these systems do not offer any support for sharing heterogeneous

collections of objects. Specific Web services provide file system interfaces that let users access their

Web objects and run desktop applications on them [100, 101]. None of these supports the integra-

tion of resources from multiple Web services or the sharing of heterogeneous Web objects. Yahoo!

pipes [229] allows users to integrate RSS feeds and mashup Web site data using a visual, UNIX

pipe-like editor. Unlike Menagerie, Yahoo! pipes does not facilitate the fine-grained, protected

sharing of personal Web objects.

Capability-based protection [116] has been used in many operating systems and distributed sys-

tems [36, 183, 202, 227]. Our hybrid capability mechanism resembles the authorized/unauthorized

pointer model first used in the IBM System/38 [22], which merges capabilities with ACL-based

authentication. Menagerie capabilities give Web services the choice of automatically authenticated

access via capabilities or controlled access that combines capabilities and user authentication.

Single sign-on systems have been proposed to allow users to login to many services with a

single account [131]. While single sign-on simplifies user account management, it does not address

fine-grained sharing and support for heterogeneous collections of Web-service objects.

Some projects have looked at improving the security of mashups within the current browsers [216,

99]. Most of these provide protection mechanisms for sharing of resources within the browser, while

Menagerie’s protection mechanism provides controlled sharing of objects within a Web service with

a third-party application.

While Menagerie is closely related to these previous systems, it is unique in its integration of:

150

(1) global naming and fine-grained protection for user-personal Web service objects, (2) transparent

access to those objects using standard applications, and (3) extended functions supporting needed

Web operations, such as embedded rendering.

5.7 Summary

The move from desktop-centric to Web-based computing and data storage poses new challenges

for users and applications. This paper described the organizational, sharing, and data-processing

problems faced by users and creators of modern Web services. We presented Menagerie, a software

framework that supports uniform naming, protection, and access for personal objects stored by Web

services. We designed and implemented a Menagerie prototype and integrated a set of existing Web

services: Gmail, Google Docs, Flickr, YouTube and Yahoo!Mail. Using Menagerie, we built orga-

nization and sharing services for personal objects, including the Menagerie Web Object Manager

and the Menagerie Group Sharing Service. Our experience with Menagerie and its applications un-

derscores the power of this approach and its potential for enabling and simplifying the construction

of new composite Web services. Our measurements show that a Menagerie-like service interface

can provide performance commensurate with existing Web-object access techniques.

151

Chapter 6

FUTURE DIRECTIONS

We now describe several interesting future research directions in increasing users’ control over

data privacy, ownership, and management properties. As shown in Section 1.2.3, modern tech-

nologies cause many forms of data control loss, of which this dissertation has only dealt with four

challenges. Recovering each of the other properties included in Table 1.1, along with other potential

challenges, represent an interesting research direction. Other promising directions include:

The Mobile Device Operating System. The operating system on today’s mobile devices requires

significant re-design for security. While many mobile device providers and researchers are striving

to create more secure high-level application frameworks, the underlying software stack has remained

largely the same as for traditional desktop computers. For example, laptops run unmodified desk-

top operating systems and applications, and phones run stripped-down versions of these systems

(e.g., Android OS is largely Linux and its browser is based on Chrome). Unfortunately, today’s

operating systems and applications were not designed to cope with the pervasive threat of theft that

mobile devices face. Current mobile operating systems leave data residues everywhere, exposing

sensitive data to thieves. For example, the operating system maintains gigabytes of cached data in

unencrypted memory, the file system accumulates historical information on disks by not overwriting

deleted blocks, and applications mismanage their sensitive data such as passwords and cookies by

storing them on disk or in swappable memory. As noted earlier, encrypted file systems help but are

not enough.

We believe that new operating system abstractions are required to cope with the serious threat of

theft on today’s mobile devices. These abstractions should allow applications to manage sensitive

data rigorously and maintain a clean environment at all times in the expectation of device theft.

While a list of required abstractions is open, some immediate ones include: encrypted and audited

memory, assured-delete and self-destructing files, and secure audit logs of what code/application-

s/extensions have been installed. These are challenging abstractions to support and evaluate. What

152

does memory auditing mean and what would it cost? How do we measure the security of our new

OS and what are appropriate user and theft workloads for mobile devices? Addressing these and

further questions are exciting avenues for future research.

Extensible Cloud Storage. Comet (Chapter 4) introduced extensibility in a particular type of stor-

age cloud: peer-to-peer DHTs. The concept of extensible clouds is, however, applicable to – and

perhaps even more urgent in – the broad spectrum of Web services. As outline in Chapter 1, the in-

flexibility and lack of control over how the data is managed in today’s clouds, such as Amazon S3,

Facebook, Google Docs, and Hotmail, causes data security, privacy, and management challenges

for the users and impedes innovation. For example, a user cannot prohibit a sensitive document

on Google Docs from being stored on servers outside the US, request a log of all accesses to her

profile or photos on Facebook, restrict accesses to data to people from the US or people with similar

professional qualifications.

To empower users with control over their data, Web services should add such levels of cus-

tomization by exposing extensible programmatic interfaces to data management functions. For

example, a service should allow the insertion of extensions that limit the placement of data replicas

in the world, provide hints on where and how many replicas to store for improved availability, im-

pose the logging of all accesses to sensitive data, and constrain their access controls in user-defined

ways. The design of an extensible Web service is likely to be informed by, though very different

from, Comet. Specifically, Comet’s lightweight extension model, coupled with its security-driven

tight sandbox limits, imposes severe limitations on extensibility. For example, Comet allows only

very lightweight handler computation and disables all network accesses. Such restrictions are rea-

sonable for a system designed to run on limited-resource user machines, but may be unnecessarily

restrictive for large server farms. Exploring the extensibility interfaces, flexible and dynamic sand-

boxing mechanisms, and extension interaction resolution are interesting avenues for future research.

The Cloud Operating System. Web services are transitioning from privately managed data centers

to public clouds, such as Amazon’s AWS, Google’s AppEngine, and Microsoft’s Azure. While many

researchers are looking into the security, privacy, and isolation challenges raised by this transition,

an interesting additional avenue for future research is its untapped opportunities. Public clouds are

unique environments where many of the world’s Web services share the same computing, storage,

153

and networking infrastructure. In fact, the entire Web might eventually be served from a small

number of such clouds. This giant-scale integration offers myriad opportunities to solve some of

the most complex challenges in today’s Web. In the future, it may be possible to identify these

opportunities and equip public clouds with the appropriate mechanisms to take full advantage of

them. Following are two initial examples of untapped opportunities.

First, the public cloud could provide a set of common data controls and mechanisms that all

resident Web services would inherit, thereby addressing the current Web’s data scattering problem.

As noted previously, Menagerie and Vanish constructed common controls on data protection, access,

and deletion atop disparate Web services. These goals are important yet difficult to achieve in today’s

Web, which lacks a common infrastructure. Public clouds could provide these and other unified data

controls “for free” as functions of a cloud operating system. Such a cloud OS could offer a variety of

unified, Web-wide data controls, including assured data deletion, uniform data protection, full data-

access logs, and the ability to control the data’s geographical location. The critical design questions

for the cloud OS are: (1) what controls should the cloud OS provide, (2) how can users trust it to

enforce them, and (3) how can the OS support users’ future, unpredictable data control needs?

Second, the cloud could simplify the Webs programming model dramatically. Building scalable

Web services is hard today, because it requires each service to implement its own software stack;

e.g., Flickr builds its own storage, protection, and photo indexing infrastructures. In public clouds,

however, millions of Web services are connected via high-bandwidth intra-datacenter networks.

Imagine a cloud OS that supports efficient, scalable, fine-grained, and secure compositions between

mutually distrustful services, allowing new services to be easily built atop one another. Then Flickr

might be constructed by invoking components from Photobucket, Picasa, or other co-located ser-

vices, for example. Just like Map/Reduce revolutionized the large-scale batch data processing, new

composition-based programming models in public clouds could revolutionize the construction of

scalable Web services. Naturally, open research questions exist: (1) what should the Webs pro-

gramming model be in public clouds, (2) what composition mechanisms and abstractions should

the cloud OS offer, and (3) how can the OS guarantee isolation between mutually distrustful Web

services that build upon one another?

154

Chapter 7

CONCLUSIONS

Computing technology is undergoing important transitions and the changes are creating serious

data security, privacy, and management challenges. In the past, users stored and processed their data

on one single machine – the desktop computer – that the user fully trusted and controlled. With

the advent of mobile devices and cloud computing, this simple world is transforming into a more

complex world where the data is scattered across many services and devices that the user neither

trusts nor controls. This transition makes it challenging for users to organize their data meaningfully,

to ensure various properties of their data, such as data lifetime or replication factors, and to preserve

their data’s privacy in face of malicious Web services and mobile device thieves.

This dissertation proposed a set of novel techniques to address specific data security, privacy,

and management challenges raised by the adoption of new cloud and mobile technologies. The

overarching goal of these techniques was to increase users’ control over various aspects of their data

in the cloud and on mobile devices. Keypad provides remote access auditing and control over data

stored on stolen mobile devices; Vanish offers data lifetime control on the Web; Comet allows users

to customize various data management properties in a storage cloud; and Menagerie allows users to

regain a unified organizational view over their scattered Web data. These systems show that, with

carefully crafted abstractions and mechanisms, users can regain control over various aspects of their

data without losing the new technologies’ advantages.

An approach common to most of this work is the introduction of new self-managing data ab-

stractions, in which the control properties are built into the data object itself. In Vanish, we defined

a self-destructing data object abstraction, which disappears on its own after a pre-specified time.

In Comet, we proposed an active storage object abstraction, which controls the way the data is

managed in the storage cloud. And in Keypad, we effectively defined an audited data abstraction,

which weaves fine-grained data access auditing into the files using encryption and remote key man-

agement. Our experience shows that self-managing data abstractions are an effective approach for

dealing with uncontrolled mobile and cloud environments.

155

BIBLIOGRAPHY

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: Programming model, algorithms and
evalaution. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 1998.

[2] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. Douceur, J. Howell, J. Lorch,
M. Theimer, and R. Wattenhofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[3] F. Ahmed and M. Y. Siyal. A novel approach for regenerating a private key using password,
fingerprint and smart card. Information Management and Computer Security, 13(1), 2005.

[4] C. Alexander and I. Goldberg. Improved user authentication in off-the-record messaging. In
Proceedings of the ACM Workshop on Privacy in an Electronic Society (WEPS), 2007.

[5] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. UFO: A personal global file system
based on user-level extensions to the operating system. ACM Transactions on Computer
Systems (TOCS), 16(3), 1998.

[6] Amazon S3. http://aws.amazon.com/s3/.

[7] R. Anderson and M. Kuhn. Tamper resistance: A cautionary note. In Proceedings of the
USENIX Workshop on Electronics Commerce, 1996.

[8] R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. In Proceedings of
the International Workshop on Security Protocols, 1997.

[9] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet impasse through
virtualization. IEEE Computer, 38(4), 2005.

[10] Apache Cassandra. http://cassandra.apache.org/.

[11] Apple MobileMe. Find your iPhone or iPad. http://www.apple.com/mobileme/
features/find-my-iphone.html.

[12] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4033: DNS Security Intro-
duction and Requirements. The Internet Society, 2005.

http://aws.amazon.com/s3/
http://cassandra.apache.org/
http://www.apple.com/mobileme/features/find-my-iphone.html
http://www.apple.com/mobileme/features/find-my-iphone.html

156

[13] M. Arrington. Google App Engine goes down and stays down. http://techcrunch.
com/2008/06/17/google-app-engine-goes-down-and-stays-down/,
2008.

[14] B. Awerbuch and C. Scheideler. Towards a Scalable and Robust DHT. In Proceedings of the
ACM Symposium on Parallelism in Algorithms and Architectures, 2006.

[15] R. A. Bazzi and G. Konjevod. On the Establishment of Distinct Identities in Overlay Net-
works. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), 2005.

[16] M. Bellare and A. Palacio. Protecting against key exposure: Strongly key-insulated encryp-
tion with optimal threshold. Applicable Algebra in Engineering, Communication and Com-
puting, (200), 2006.

[17] M. Bellare and B. Yee. Forward security in private key cryptography. In Proceedings of the
Cryptographers’ Track at the RSA Conference (CT-RSA), 2003.

[18] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP – a system for secure multi-party com-
putation. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2008.

[19] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 2001.

[20] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski, C. Chambers, and
S. Eggers. Extensible, safety and performance in the SPIN operating system. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), 1995.

[21] B. N. Bershad and C. B. Pinkerton. Watchdogs – extending the UNIX file system. Computer
Systems, 1988.

[22] V. Berstis. Security and protection in the IBM System/38. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 1980.

[23] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-attribute
range queries. In Proceedings of the ACM Symposium on Communications Architectures and
Protocols (SIGCOMM), 2004.

[24] M. Blaze. A cryptographic file system for UNIX. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 1993.

[25] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. In Proceedings of the IEEE Symposium on Foundations of Computer Science
(FOCS), 1982.

http://techcrunch.com/2008/06/17/google-app-engine-goes-down-and- stays-down/
http://techcrunch.com/2008/06/17/google-app-engine-goes-down-and- stays-down/

157

[26] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In Pro-
ceedings of the Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO), 2001.

[27] D. Boneh and R. Lipton. A revocable backup system. In Proceedings of the USENIX Security
Symposium, 1996.

[28] N. Borisov. Computational puzzles as Sybil defenses. In Proceedings of the IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P), 2006.

[29] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why not to use
PGP. In Proceedings of the ACM Workshop on Privacy in an Electronic Society (WEPS),
2004.

[30] K. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and integrity layer for cloud
storage. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2009.

[31] K. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. Rivest. How to tell if your cloud files are
vulnerable to drive crashes. IACR Cryptology ePrint Archive, 2010.

[32] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient functions
and all-or-nothing transforms. In Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques (Eurocrypt), 2000.

[33] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In Proceedings of the
Annual International Cryptology Conference on Advances in Cryptology (CRYPTO), 1997.

[34] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In Pro-
ceedings of the Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques (Eurocrypt), 2003.

[35] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure routing for struc-
tured peer-to-peer overlay networks. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

[36] J. Chase, H. Levy, M. Feeley, and E. Lazowska. Sharing and protection in a single-address-
space operating system. ACM Transactions on Computer Systems (TOCS), 12(4), 1994.

[37] B. Chen and V. Chandran. Biometric based cryptographic key generation from faces. In
Proceedings of the Biennial Conference of the Australian Pattern Recognition Society on
Digital Image Computing Techniques and Applications, 2007.

158

[38] J. Cheng. Are deleted photos really gone from Facebook? Not always.
http://arstechnica.com/web/news/2009/07/are-those-photos-\
really-deleted-from-facebook-think-twice.ars, 2009.

[39] D. R. Choffnes and F. E. Bustamante. Taming the Torrent: A practical approach to reducing
cross-ISP traffic in P2P systems. In Proceedings of the ACM Symposium on Communications
Architectures and Protocols (SIGCOMM), 2008.

[40] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords. Technical report,
Technion, 1997.

[41] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 1995.

[42] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding your garbage: Reducing data
lifetime through secure deallocation. In Proceedings of the USENIX Security Symposium,
2005.

[43] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina. Controlling
data in the cloud: Outsourcing computation without outsourcing control. In Proceedings of
the ACM Cloud Computing Security Workshop (CCSW), 2009.

[44] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web service definition lan-
guage (WSDL). W3C, 2001.

[45] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein, and P. Maniatis. Induced churn as
shelter from routing table poisoning. In Proceedings of the Annual Network and Distributed
System Security Symposium (NDSS), 2006.

[46] F. Cornelli, E. Damiani, and S. Samarati. Implementing a reputation-aware Gnutella servent.
In Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[47] M. D. Corner and B. D. Noble. Zero-interaction authentication. In Proceedings of the ACM
Annual International Conference on Mobile Computing and Networking, 2002.

[48] M. D. Corner and B. D. Noble. Protecting applications with transient authentication. In
Proceedings of the International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2003.

[49] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and B. Schneier. Defeating
encrypted and deniable file systems: TrueCrypt v5.1a and the case of the tattling OS and
applications. In Proceedings of the USENIX Workshop on Hot Topics in Security (HotSec),
2008.

http://arstechnica.com/web/news/2009/07/are-those-photos-\really-deleted-from-facebook-think-twice.ars
http://arstechnica.com/web/news/2009/07/are-those-photos-\really-deleted-from-facebook-think-twice.ars

159

[50] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordi-
nate system. In Proceedings of the ACM Symposium on Communications Architectures and
Protocols (SIGCOMM), 2004.

[51] F. Dabek, M. F. Kaashoek, D. Karger, R. MOrris, and I. Stoica. Wide-area cooperative storage
with CFS. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
2001.

[52] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing a dht for
low latency and high throughput. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2004.

[53] G. Danezis, C. Lesniewski-laas, M. F. Kaashoek, and R. Anderson. Sybil-resistant dht rout-
ing. In Proceedings of the European Symposium on Research in Computer Science (ES-
ORICS), 2005.

[54] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasub-
ramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2007.

[55] J. Dinger and H. Hartenstein. Defending the Sybil Attack in P2P Networks: Taxonomy, Chal-
lenges, and a Proposal for Self-Registration. In Proceedings of the International Conference.
on Availability, Reliability and Security, 2006.

[56] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In
Proceedings of the USENIX Security Symposium, 2004.

[57] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung. Intrusion-resilient public-
key encryption. In Proceedings of the Cryptographers’ Track at the RSA Conference (CT-
RSA) 2003, 2003.

[58] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung. A generic construction for
intrusion-resilient public-key encryption. In T. Okamoto, editor, Proceedings of the Cryptog-
raphers’ Track at the RSA Conference (CT-RSA) 2004, 2004.

[59] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems. In Advances
in Cryptology – EUROCRYPT 2002, 2002.

[60] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient
cryptography. In Proceedings of the Annual International Conference on the Theory and
Applications of Cryptographic Techniques (Eurocrypt), 2001.

[61] Y. Dodis and M. Yung. Exposure-resilience for free: The case of hierarchical ID-based
encryption. In Proceedings of the IEEE International Security in Storage Workshop (SISW),
2002.

160

[62] J. R. Douceur. The Sybil attack. In Proceedings of the International Workshop on Peer-to-
Peer Systems (IPTPS), 2002.

[63] EMC, Inc. Emc unveils software-as-a-service strategy and its first enterprise offering,
mozyenterprise. http://www.emc.com/about/news/press/2008/012208.
htm, 2008.

[64] EncFS. http://www.arg0.net/encfs.

[65] D. R. Engler and M. F. Kaashoek. Exterminate all operating system abstractions. In Proceed-
ings of the Workshop on Hot Topics in Operating Systems (HotOS), 1995.

[66] Facebook. http://www.facebook.com/, 2007.

[67] J. Falkner, M. Piatek, J. John, A. Krishnamurthy, and T. Anderson. Profiling a million user
DHT. In Proceedings of the ACM Internet Measurement Conference (IMC), 2007.

[68] R. T. Fielding. Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine, 2000.

[69] N. L. for Applied Network Research. The Squid Internet Object Cache. http://squid.
nlanr.net.

[70] T. Foundation. Truecrypt – free open-source on-the-fly encryption. http://www.
truecrypt.org/, 2007.

[71] M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing content publication with
Coral. In Proceedings of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2004.

[72] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica. Non-transitive connectivity
and DHTs. In Proceedings of the Conference on Real, Large Distributed Systens (WORLDS),
2005.

[73] M. J. Freedman and R. M. Tarzan. Tarzan: A peer-to-peer anonymizing network layer. In Pro-
ceedings of the ACM Conference on Computer and Communications Security (CCS), 2002.

[74] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and secure distributed read-only file system.
ACM Transactions on Computer Systems (TOCS), 20(1), 2002.

[75] FUSE: Filesystem in Userspace. http://fuse.sourceforge.net/.

[76] P. Gardner. personal communication, 2009.

http://www.emc.com/about/news/press/2008/012208.htm
http://www.emc.com/about/news/press/2008/012208.htm
http://www.facebook.com/
http://squid.nlanr.net
http://squid.nlanr.net
http://www.truecrypt.org/
http://www.truecrypt.org/
http://fuse.sourceforge.net/

161

[77] R. Geambasu, C. Cheung, A. Moshchuk, S. D. Gribble, and H. M. Levy. The organization
and sharing of web-service objects with menagerie. In Proceedings of the International World
Wide Web Conference (WWW), 2008.

[78] R. Geambasu, S. D. Gribble, and H. M. Levy. Cloudviews: Communal data sharing in public
clouds. In Proceedings of the Workshop on Hot Topics in Cloud Computing (HotCloud),
2009.

[79] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M. Levy. Keypad: An auditing file
system for theft-prone devices. Proceedings of the ACM European Conference on Computer
Systems (Eurosys), 2011.

[80] R. Geambasu, T. Kohno, A. Krishnamurthy, A. Levy, H. M. Levy, P. Gardner, and V. Moscar-
itolo. New directions for self-destructing data systems. Technical Report UW-CSE-11-08-01,
University of Washington, 2010.

[81] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish: Increasing data privacy with
self-destructing data. In Proceedings of the USENIX Security Symposium, 2009.

[82] R. Geambasu, A. Levy, T. Kohno, A. Krishnamurthy, and H. M. Levy. Comet: An active
distributed key/value store. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

[83] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 2009.

[84] D. Goodin. Your personal data just got permanently cached at the US border.
http://www.theregister.co.uk/2008/05/01/electronic_searches_
at_us_borders/, 2008.

[85] Google, Inc. iGoogle. http://google.com/ig, 2005.

[86] Google, Inc. OpenSocial. http://code.google.com/apis/opensocial/, 2007.

[87] J. Gordon. Reliability and the cloud – redundancy required. http://notes.kateva.
org/2011/05/reliability-and-cloud-redundancy.html, 2011.

[88] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan. Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP), 2003.

[89] P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In Proceedings
of the USENIX Security Symposium, 1996.

http://www.theregister.co.uk/2008/05/01/electronic_searches_at_us_borders/
http://www.theregister.co.uk/2008/05/01/electronic_searches_at_us_borders/
http://google.com/ig
http://code.google.com/apis/opensocial/
http://notes.kateva.org/2011/05/reliability-and-cloud-redundancy.html
http://notes.kateva.org/2011/05/reliability-and-cloud-redundancy.html

162

[90] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on encryp-
tion keys. In Proceedings of the USENIX Security Symposium, 2008.

[91] F. Hao, R. Anderson, and J. Daugman. Combining crypto with biometrics effectively. IEEE
Transactions on Computers, 2006.

[92] C. Harvesf and D. M. Blough. The Effect of Replica Placement on Routing Robustness in
Distributed Hash Tables. In Proceedings of the IEEE International Conference on Peer-to-
Peer Computing (P2P), 2006.

[93] K. Hildrum and J. Kubiatowicz. Asymptotically efficient approaches to fault-tolerance in
peer-to-peer networks. In Proceedings of the International Symposium on Distributed Com-
puting, 2004.

[94] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Side-
botham, and M. J. West. Scale and performance in a distributed file system. ACM Transac-
tions on Computer Systems (TOCS), 1988.

[95] IETF. RFC1991 - PGP Message Exchange Formats. http://www.ietf.org/rfc/
rfc1991.txt, 1996.

[96] Imperva. Consumer password worst practices. http://www.imperva.com/docs/
WP_Consumer_Password_Worst_Practices.pdf, 2010.

[97] Intel Corporation. Protect laptops and data with Intel Anti-Theft technol-
ogy. http://antitheft.intel.com/Libraries/Documents/Intel_
anti-theft_techbrief_final.sflb.ashx, 2011.

[98] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-preserving P2P data sharing
with OneSwarm. In Proceedings of the ACM Symposium on Communications Architectures
and Protocols (SIGCOMM), 2010.

[99] C. Jackson and H. Wang. Subspace: Secure cross-domain communication for Web mashups.
In Proceedings of the International World Wide Web Conference (WWW), 2007.

[100] M. R. Jain. FlickrFS. http://manishrjain.googlepages.com/flickrfs,
2005.

[101] R. Jones. GmailFS. http://richard.jones.name/google-hacks/
gmail-filesystem/gmail-filesystem.html, 2004.

[102] R. Joyce and G. Gupta. Identity authorisation based on keystroke latencies. Communications
of the ACM, 33(2), 1990.

http://www.ietf.org/rfc/rfc1991.txt
http://www.ietf.org/rfc/rfc1991.txt
http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
http://antitheft.intel.com/Libraries/Documents/Intel_anti-theft_techbrief_final.sflb.ashx
http://antitheft.intel.com/Libraries/Documents/Intel_anti-theft_techbrief_final.sflb.ashx
http://manishrjain.googlepages.com/flickrfs
http://richard.jones.name/google-hacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/google-hacks/gmail-filesystem/gmail-filesystem.html

163

[103] J. K. Juang. Practical implementation and analysis of hyper-encryption. Master’s thesis, MIT,
2009.

[104] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS), 2007.

[105] Jungle Tools LLC. JungleDisk – reliable online storage on Amazon S3. http://www.
jungledisk.com/, 2007.

[106] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceno, R. Hunt, D. Mazieres, T. Pinck-
ney, R. Grimm, J. Jannotti, , and K. Mackenzie. Application performance and flexibility in
exokernel systems. In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 1997.

[107] K. Keetong, D. Patterson, and J. Hellerstein. A case for intelligent disks (IDISKs). ACM
SIGMOD Record, 27(3), 1998.

[108] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 1991.

[109] S. Kleiman. Vnodes: An architecture for multiple file system types in Sun UNIX. In Pro-
ceedings of the Summer USENIX Conference, 1986.

[110] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular router. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 1999.

[111] F. Krautheim. Private virtual infrastructure for cloud computing. In Proceedings of the
Workshop on Hot Topics in Cloud Computing (HotCloud), 2009.

[112] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A world wide web without walls.
In Proceedings of the Workshop on Hot Topics in Networks (HotNets), 2007.

[113] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1996.

[114] C. Lesniewski-Lass and M. F. Kaashoek. Whanaungatanga: Sybil-proof distributed hash
table. In Proceedings of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2010.

[115] B. N. Levine, C. Shields, and N. B. Margolin. A survey of solutions to the Sybil attack.
Technical Report 2006-052, University of Massachusetts Amherst, 2006.

[116] H. Levy. Capability-Based Computer Systems. Digital Press, 1984.

http://www.jungledisk.com/
http://www.jungledisk.com/

164

[117] J. Lowensohn. Google Docs goes down, user data does not. http://news.cnet.com/
8301-17939_109-9985608-2.html, 2008.

[118] N. A. Lynch, D. Malkhi, and D. Ratajczak. Atomic data access in distributed hash tables. In
Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS), 2001.

[119] P. MacKenzie and M. K. Reiter. Delegation of cryptographic servers for capture-resilient
devices. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), 2003.

[120] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. iPlane: An information plane for distributed services. In Proceedings
of the USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[121] O. Malik. S3 outage highlights fragility of Web services. http://gigaom.com/2008/
07/20/amazon-s3-outage-july-2008/, 2008.

[122] V. Mayer-Schönberger. Delete: The Virtue of Forgetting in the Digital Age. Princeton Uni-
versity Press, 2009.

[123] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the
XOR metric. In Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS),
2002.

[124] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key management
from file system security. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 1999.

[125] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker. Shining light in dark places:
Understanding the Tor network. In Proceedings of the Privacy Enhancing Technologies Sym-
posium, 2008.

[126] D. McCullagh. Security guide to customs-proofing your laptop. http://www.news.
com/8301-13578_3-9892897-38.html, 2008.

[127] D. McCullagh. Dropbox confirms security glitch – no password required. http:
//news.cnet.com/8301-31921_3-20072755-281/dropbox-confirms-\
security-glitch-no-password-required/, 2011.

[128] B. Mediratta. Gallery: Your photos on Your Website. http://gallery.menalto.
com/, 2007.

[129] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

http://news.cnet.com/8301-17939_109-9985608-2.html
http://news.cnet.com/8301-17939_109-9985608-2.html
http://gigaom.com/2008/07/20/amazon-s3-outage-july-2008/
http://gigaom.com/2008/07/20/amazon-s3-outage-july-2008/
http://www.news.com/8301-13578_3-9892897-38.html
http://www.news.com/8301-13578_3-9892897-38.html
http://news.cnet.com/8301-31921_3-20072755-281/dropbox-confirms-\security-glitch-no-password-required/
http://news.cnet.com/8301-31921_3-20072755-281/dropbox-confirms-\security-glitch-no-password-required/
http://news.cnet.com/8301-31921_3-20072755-281/dropbox-confirms-\security-glitch-no-password-required/
http://gallery.menalto.com/
http://gallery.menalto.com/

165

[130] Microsoft BitLocker. Windows 7 BitLocker Executive Overview. http://technet.
microsoft.com/en-us/library/dd548341%28WS.10%29.aspx, 2009.

[131] Microsoft Corporation. Microsoft Passport. http://www.passport.com/, 2007.

[132] F. Monrose, M. Reiter, L. Qi, and S. Wetzel. Cryptographic key generation from voice. In
Proceedings of the USENIX Security Symposium, 2001.

[133] D. Mosberger and T. Jin. httperf: A tool for measuring web server performance. ACM
SIGMETRICS Performance Evaluation Review, 26(2), 1998.

[134] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting weak connectivity for mobile
file access. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
1995.

[135] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth network file system. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2001.

[136] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: A fault-tolerant algorithm for atomic
mutable DHT data. Technical Report MIT-LCS-TR-993, MIT, 2005.

[137] Mysql Database Triggers. http://dev.mysql.com/doc/refman/5.0/en/
triggers.html.

[138] S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A hybrid PKI-IBC based Ephemer-
izer system. In Proceedings of the International Information Security Conference, 2007.

[139] E. Nakashima. Clarity sought on electronic searches. http://www.washingtonpost.
com/wp-dyn/content/article/2008/02/06/AR2008020604763.html,
2008.

[140] New York Times. F.B.I. Gained Unauthorized Access to E-Mail. http://www.nytimes.
com/2008/02/17/washington/17fisa.html?_r=1&hp=&adxnnl=1&oref=
slogin&adxnnlx=1203255399-44ri626iqXg7QNmwzoeRkA, 2008.

[141] News 24. Think before you SMS. http://www.news24.com/News24/
Technology/News/0,,2-13-1443_1541201,00.html, 2004.

[142] A. Nusca. How to: Keep your laptop from being stolen. http://www.zdnet.com/,
2009.

[143] Office of Public Sector Information. Regulation of Investigatory Powers Act (RIPA), Part
III – Investigation of Electronic Data Protected by Encryption etc. http://www.opsi.
gov.uk/acts/acts2000/ukpga_20000023_en_8, 2000.

http://technet.microsoft.com/en-us/library/dd548341%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/dd548341%28WS.10%29.aspx
http://www.passport.com/
http://dev.mysql.com/doc/refman/5.0/en/triggers.html
http://dev.mysql.com/doc/refman/5.0/en/triggers.html
 http://www.washingtonpost.com/wp-dyn/content/article/2008/02/06/AR2008020604763.html
 http://www.washingtonpost.com/wp-dyn/content/article/2008/02/06/AR2008020604763.html
http://www.nytimes.com/2008/02/17/washington/17fisa.html?_r=1&hp=&adxnnl=1&oref=slogin&adxnnlx=1203255399-44ri626iqXg7QNmwzoeRkA
http://www.nytimes.com/2008/02/17/washington/17fisa.html?_r=1&hp=&adxnnl=1&oref=slogin&adxnnlx=1203255399-44ri626iqXg7QNmwzoeRkA
http://www.nytimes.com/2008/02/17/washington/17fisa.html?_r=1&hp=&adxnnl=1&oref=slogin&adxnnlx=1203255399-44ri626iqXg7QNmwzoeRkA
http://www.news24.com/News24/Technology/News/0,,2-13-1443_1541201,00.html
http://www.news24.com/News24/Technology/News/0,,2-13-1443_1541201,00.html
http://www.zdnet.com/
http://www.opsi.gov.uk/acts/acts2000/ukpga_20000023_en_8
http://www.opsi.gov.uk/acts/acts2000/ukpga_20000023_en_8

166

[144] P. Ohm. The Fourth Amendment right to delete. The Harvard Law Review, 2005.

[145] PBC. http://crypto.stanford.edu/pbc/.

[146] PC Magazine. Messages can be forever. http://www.pcmag.com/article2/0,
1759,1634544,00.asp, 2004.

[147] D. Peek and J. Flinn. Ensemblue: Integrating distributed storage and consumer electronics.
In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

[148] R. Perlman. The Ephemerizer: Making data disappear. Journal of Information System Secu-
rity, 1, 2005.

[149] R. Perlman. File system design with assured delete. In Proceedings of the IEEE International
Security in Storage Workshop (SISW), 2005.

[150] K. Peterson, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible update propaga-
tion for weakly consistent replication. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 1997.

[151] L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir. Experiences implementing PlanetLab. In
Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

[152] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding: A survey. Proceed-
ings of the IEEE, 1999.

[153] PGP Corporation. PGP whole disk encryption. http://www.pgp.com/products/
wholediskencryption/, 2008.

[154] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. Do incentives build robustness in
BitTorrent? In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2007.

[155] Picnik, Inc. http://www.picnik.com/, 2007.

[156] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based systems. In Pro-
ceedings of the ACM Conference on Computer and Communications Security (CCS), 2006.

[157] B. Poettering. ”ssss: Shamir’s Secret Sharing Scheme”. http://point-at\
-infinity.org/ssss/, 2006.

[158] Project Voldemort. http://project-voldemort.com/.

http://www.pcmag.com/article2/0,1759,1634544,00.asp
http://www.pcmag.com/article2/0,1759,1634544,00.asp
http://www.pgp.com/products/wholediskencryption/
http://www.pgp.com/products/wholediskencryption/
http://www.picnik.com/
http://point-at\-infinity.org/ssss/
http://point-at\-infinity.org/ssss/
http://project-voldemort.com/

167

[159] N. Provos. Encrypting virtual memory. In Proceedings of the USENIX Security Symposium,
2000.

[160] K. P. N. Puttaswamy, H. Zheng, and B. Y. Zhao. Securing structured overlays against identity
attacks. IEEE Transactions on Parallel and Distributed Systems (TPDS), 2008.

[161] M. O. Rabin. Provably unbreakable hyper-encryption in the limited access model. In Pro-
ceedings of the IEEE Information Theory Workshop on Theory and Practice in Information-
Theoretic Security, 2005.

[162] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for power-law
query distributions in peer-to-peer overlays. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2004.

[163] E. Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley Profes-
sional, 2000.

[164] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu.
OpenDHT: A public DHT service and its uses. In Proceedings of the ACM Symposium on
Communications Architectures and Protocols (SIGCOMM), 2005.

[165] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large-scale data mining and mul-
timedia. In Proceedings of the International Conference on Very Large Data Bases (VLDB),
1998.

[166] T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno. Privacy-preserving location
tracking of lost or stolen devices: Cryptographic techniques and replacing trusted third parties
with DHTs. In Proceedings of the USENIX Security Symposium, 2008.

[167] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my cloud: explor-
ing information leakage in third-party compute clouds. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS), 2009.

[168] W. C. F. Roberto Ierusalimschy, Luiz Henrique de Figueiredo. Lua – an extensible extension
language. Software: Practice and Experience, 1999.

[169] J. Robertson. Security chip that does encryption in PCs hacked.
http://www.usatoday.com/tech/news/computersecurity/
2010-02-08-security-chip-pc-hacked_N.htm, 2010.

[170] H. Rowaihy, W. Enck, P. McDaniel, and T. L. Porta. Limiting Sybil attacks in structured peer-
to-peer networks. In Proceedings of the IEEE Annual International Conference on Computer
Communications (INFOCOM), 2007.

http://www.usatoday.com/tech/news/computersecurity/2010-02-08-security-chip-pc-hacked_N.htm
http://www.usatoday.com/tech/news/computersecurity/2010-02-08-security-chip-pc-hacked_N.htm

168

[171] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Conference
on Distributed Systems, 2001.

[172] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2001.

[173] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The design of a
large-scale event notification infrastructure. In Proceedings of the International COST264
Workshop on Networked Group Communication, 2001.

[174] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation
of the Sun network file system. In Proceedings of the Summer USENIX Conference, 1985.

[175] N. Santos, K. Gummadi, and R. Rodrigues. Towards trusted cloud computing. In Proceedings
of the Workshop on Hot Topics in Cloud Computing (HotCloud), 2009.

[176] M. Savage. NHS ‘loses’ thousands of medical records.
http://www.independent.co.uk/news/uk/politics/
nhs-loses-thousands-of-medical-records-1690398.html, 2009.

[177] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel. Seeding clouds with
trust anchors. In Proceedings of the ACM Cloud Computing Security Workshop (CCSW),
2010.

[178] B. Schneier and J. Kelsey. Cryptographic support for secure logs and untrusted machines. In
Proceedings of the USENIX Security Symposium, 1998.

[179] SecondBrain. SecondBrain: All your Internet Content. http://www.secondbrain.
com/, 2007.

[180] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disaster: Surviving misbehaved
kernel extensions. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 1996.

[181] A. Shamir. How to share a secret. Communications of the ACM, 22(11), 1979.

[182] A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of the An-
nual International Cryptology Conference on Advances in Cryptology (CRYPTO), 1985.

[183] J. Shapiro, J. Smith, and D. Farber. EROS: A fast capability system. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP), 1999.

http://www.independent.co.uk/news/uk/politics/nhs-loses-thousands-of-medical-records-1690398.html
http://www.independent.co.uk/news/uk/politics/nhs-loses-thousands-of-medical-records-1690398.html
http://www.secondbrain.com/
http://www.secondbrain.com/

169

[184] R. Singel. Encrypted e-mail company Hushmail spills to feds. http://blog.wired.
com/27bstroke6/2007/11/encrypted-e-mai.html, 2007.

[185] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending against Eclipse attacks on
overlay networks. In Proceedings of the ACM SIGOPS European Workshop, 2004.

[186] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach. Eclipse attacks on overlay networks:
Threats and defenses. In Proceedings of the IEEE Annual International Conference on Com-
puter Communications (INFOCOM), 2006.

[187] R. Sion and B. Carbunar. On the computational practicality of private information retrieval.
In Proceedings of the Annual Network and Distributed System Security Symposium (NDSS),
2007.

[188] E. Sit and R. Morris. Security considerations for peer-to-peer distributed hash tables. In
Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[189] Slashdot. Facebook scrambles to contain ToS fallout. http://tech.slashdot.org/
article.pl?sid=09/02/17/2213251&tid=267, 2009.

[190] SmugMug, Inc. SmugMug – the ultimate in photo sharing. http://www.smugmug.
com/, 2005.

[191] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In
Proceedings of IEEE Symposium on Security and Privacy (Oakland), 2000.

[192] Sonian, Inc. Sonian email archiving service. http://www.sonian.com/, 2010.

[193] C. Sorrel. Brits send 4,500 USB sticks to the cleaners. http://www.wired.com/, 2010.

[194] M. Steiner and E. W. Biersack. Crawling Azureus. Technical Report RR-08-223, Institut
Eurecom, 2008.

[195] M. Steiner, E. W. Biersack, and T. En-Najjary. Actively monitoring peers in KAD. In Pro-
ceedings of the International Workshop on Peer-to-Peer Systems (IPTPS), 2007.

[196] M. Steiner, T. En-Najjary, and E. W. Biersack. A global view of KAD. In Proceedings of the
ACM Internet Measurement Conference (IMC), 2007.

[197] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastruc-
ture. In Proceedings of the ACM Symposium on Communications Architectures and Protocols
(SIGCOMM), 2002.

http://blog.wired.com/27bstroke6/2007/11/encrypted-e-mai.html
http://blog.wired.com/27bstroke6/2007/11/encrypted-e-mai.html
http://tech.slashdot.org/article.pl?sid=09/02/17/2213251&tid=267
http://tech.slashdot.org/article.pl?sid=09/02/17/2213251&tid=267
http://www.smugmug.com/
http://www.smugmug.com/
http://www.sonian.com/
http://www.wired.com/

170

[198] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the ACM Symposium
on Communications Architectures and Protocols (SIGCOMM), 2001.

[199] A. Studer and A. Perrig. Mobile user location-specific encryption (MULE): Using your office
as your password. In Proceedings of the ACM Conference on Wireless Network Security
(WiSec), 2010.

[200] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer Networks. In Proceedings
of the ACM Internet Measurement Conference (IMC), 2006.

[201] D. Stutzbach, R. Rejaie, and Y. Guo. Large-scale monitoring of DHT traffic. In Proceedings
of the International Workshop on Peer-to-Peer Systems (IPTPS), 2009.

[202] A. Tanenbaum, S. Mullender, and R. van Renesse. Using sparse capabilities in a distributed
operating system. In Proceedings of the International Conference on Distributed Computing
Systems (ICDCS), 1986.

[203] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman. FADE: Secure overlay cloud storage for
file assured deletion. In Proceedings of the International ICST Conference on Security and
Privacy in Communication Networks (SECURECOMM), 2010.

[204] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture. ACM SIG-
COMM Computer Communications Review, 37(5), 1996.

[205] A. Tereshkin. Evil maid goes after PGP whole disk encryption. In Proceedings of the Inter-
national Conference on Security of Information and Networks, 2010.

[206] The Google+ Project. About circles. http://www.google.com/support/+/bin/
static.py?hl=en&page=guide.cs&guide=1257347&rd=1, 2011.

[207] G. Urdaneta, G. Pierre, and M. V. Steen. A Survey of DHT Security Techniques. ACM
Computing Survey, 43(2), 2010.

[208] uTorrent. http://www.utorrent.com.

[209] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. Eastham, and C. Yoshikawa.
WebOS: Operating system services for wide area applications. In Proceedings of the Interna-
tional ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC),
1998.

[210] A. Vahdat, P. Eastham, and T. Anderson. WebFS: A global cache coherent filesystem. Tech-
nical report, UC Berkeley, 1996.

http://www.google.com/support/+/bin/static.py?hl=en&page=guide.cs&guide=1257347&rd=1
http://www.google.com/support/+/bin/static.py?hl=en&page=guide.cs&guide=1257347&rd=1
http://www.utorrent.com

171

[211] M. van Dijk and A. Juels. On the impossibility of cryptography alone for privacy-preserving
cloud computing. In Proceedings of the USENIX Workshop on Hot Topics in Security (Hot-
Sec), 2010.

[212] H. van Heerde, M. Fokkinga, and N. Anciaux. A framework to balance privacy and data
usability using data degradation. In Proceedings of the Conference on Computational Science
and Engineering, 2009.

[213] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: A mech-
anism for integrated communication and computation. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 1992.

[214] Vuze: the most powerful bittorrent app on earth. http://www.vuze.com/.

[215] W3C. SOAP. http://www.w3.org/TR/soap/, 2004.

[216] H. Wang, X. Fan, J. Howell, and C. Jackson. Protection and communication abstractions for
Web browsers in MashupOS. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2007.

[217] H. Wang, Y. Zhu, and Y. Hu. An efficient and secure peer-to-peer overlay network. In
Proceedings of the IEEE Conference on Local Computer Networks, 2005.

[218] P. Wang, I. Osipkov, N. Hopper, and Y. Kim. Myrmic: Secure and robust DHT routing.
Technical report, University of Minnesota, 2007.

[219] WebProNews. Email being used more in divorce cases.
http://www.webpronews.com/topnews/2008/02/11/
email-being-used-more-in-divorce-cases, 2008.

[220] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving SSH-style host au-
thentication with multi-path probing. In Proceedings of the USENIX Annual Technical Con-
ference (ATC), 2008.

[221] D. Wetherall. Active network vision and reality: Lessons from a capsule-based system. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 1999.

[222] E. J. Whitehead, Jr. and Y. Y. Goland. WebDAV: A network protocol for remote collaborative
authoring on the Web. In Proceedings of the European Conference on Computer Supported
Cooperative Work, 1999.

[223] L. Whitney. Amazon EC2 cloud service hit by botnet, outage. http://news.cnet.
com/8301-1009_3-10413951-83.html, 2009.

http://www.vuze.com/
http://www.w3.org/TR/soap/
http://www.webpronews.com/topnews/2008/02/11/email-being-used-more-in-divorce-cases
http://www.webpronews.com/topnews/2008/02/11/email-being-used-more-in-divorce-cases
http://news.cnet.com/8301-1009_3-10413951-83.html
http://news.cnet.com/8301-1009_3-10413951-83.html

172

[224] A. Whitten and J. Tygar. Why Johnny can’t encrypt: A usability evaluation of PGP 5.0. In
Proceedings of the USENIX Security Symposium, 1999.

[225] D. Winer. XML-RPC Specification. http://www.xmlrpc.com/spec, 1999.

[226] S. Wolchok, O. S. Hofmann, E. W. Felten, J. A. Halderman, C. J. Rossbach, B. Waters, and
E. Witchel. Defeating Vanish with low-cost Sybil attacks against large DHTs. In Proceedings
of the Annual Network and Distributed System Security Symposium (NDSS), 2010.

[227] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA: The
kernel of a multiprocessor operating system. Communications of the ACM, 17(6), 1974.

[228] H. Xie, R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz. P4P: Provider portal for P2P
applications. In Proceedings of the ACM Symposium on Communications Architectures and
Protocols (SIGCOMM), 2008.

[229] Yahoo!, Inc. pipes. http://pipes.yahoo.com/pipes/docs.

[230] Yahoo, Inc. Browser-Based Authentication (BBauth). http://developer.yahoo.
com/auth/, 2007.

[231] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. SybilGuard: Defending against
Sybil attacks via social networks. Proceedings of the ACM Symposium on Communications
Architectures and Protocols (SIGCOMM), 2006.

[232] K. Zetter. Tor researcher who exposed embassy e-mail passwords gets raided by
Swedish FBI and CIA. http://blog.wired.com/27bstroke6/2007/11/
swedish-researc.html, 2007.

[233] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemination. In Proceedings of
the Network and Operating System Support for Digital Audio and Video (NOSSDAV), 2001.

[234] P. Zimmermann and J. Callas. The Evolution of PGP’s Web of Trust. O’Reilly, 2009.

http://www.xmlrpc.com/spec
http://pipes.yahoo.com/pipes/docs
http://developer.yahoo.com/auth/
http://developer.yahoo.com/auth/
http://blog.wired.com/27bstroke6/2007/11/swedish-researc.html
http://blog.wired.com/27bstroke6/2007/11/swedish-researc.html

	List of Figures
	List of Tables
	Introduction
	Modern Technologies
	The Problem: Losing Data Control
	Contributions

	Keypad: Remote Access Control and Auditing for Theft-prone Devices
	Motivation and Overview
	Goals and Assumptions
	Keypad Architecture
	Prototype Implementation
	Evaluation
	Security Analysis
	Related Work
	Summary

	Vanish: Data Lifetime Control with Self-Destructing Data
	Motivation and Overview
	Candidate Approaches, Goals, and Threat Models
	Vanish Architecture
	Prototype, Applications, and Performance Evaluation
	Security Analysis
	Designing a Security-Sensitive DHT
	Architectural Extensions for Security
	Related Work
	Summary

	Comet: Data Management Control with Extensible Storage
	Motivation and Overview
	Goals and Assumptions
	Comet Architecture and Implementation
	Applications
	Evaluation
	Security Analysis
	Related Work
	Summary

	Menagerie: A Framework for Organizing and Sharing Distributed Web Data
	Motivation and Overview
	Goals and Requirements
	The Menagerie Prototype
	Applications
	Evaluation
	Related Work
	Summary

	Future Directions
	Conclusions
	Bibliography

