
This paper appears at the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2012).

Detecting and Defending Against Third-Party Tracking on the Web
Franziska Roesner, Tadayoshi Kohno, and David Wetherall

University of Washington

Abstract
While third-party tracking on the web has garnered much
attention, its workings remain poorly understood. Our
goal is to dissect how mainstream web tracking occurs in
the wild. We develop a client-side method for detecting
and classifying five kinds of third-party trackers based
on how they manipulate browser state. We run our
detection system while browsing the web and observe
a rich ecosystem, with over 500 unique trackers in our
measurements alone. We find that most commercial
pages are tracked by multiple parties, trackers vary widely
in their coverage with a small number being widely
deployed, and many trackers exhibit a combination of
tracking behaviors. Based on web search traces taken
from AOL data, we estimate that several trackers can each
capture more than 20% of a user’s browsing behavior. We
further assess the impact of defenses on tracking and find
that no existing browser mechanisms prevent tracking by
social media sites via widgets while still allowing those
widgets to achieve their utility goals, which leads us to
develop a new defense. To the best of our knowledge, our
work is the most complete study of web tracking to date.

1 Introduction
Web tracking, the practice by which websites identify,
and collect information about users — generally in the
form of some subset of web browsing history — has
become a topic of increased public debate. To date,
however, the research community’s knowledge of web
tracking is piecemeal. There are many specific ways that
identifying information might be gleaned (e.g., browser
fingerprinting [4], ETags [2], and Flash cookies [21]) but
little assessment of how tracking is integrated with web
browsing in practice. Further complicating the situation is
that the capabilities of different trackers depend strongly
on their implementation. For instance, it is common for
trackers like Google Analytics and Doubleclick to be
mentioned in the same context (e.g., [14]) even though
the former is implemented so that it cannot use unique
identifiers to track users across sites while the latter can.

As the tracking arms race continues, the design of fu-
ture web systems must be informed by an understanding
of how web trackers retask browser mechanisms for track-
ing purposes. Our goal is thus to provide a comprehensive
assessment of third-party tracking on the web today,
where a third-party tracker is defined as a website (like
doubleclick.net) that has its tracking code included

or embedded in another site (like cnn.com). We focus
on third-party tracking because of its potential concern to
users, who may be surprised that a party with which they
may or may not have chosen to interact is recording their
online behavior in unexpected ways. We also explicitly
focus on mainstream web tracking that uses cookies and
other conventional local storage mechanisms (HTML5,
Flash cookies) to compile records of users and user
behavior. This is the most prevalent form of tracking
today. More esoteric forms of tracking do exist — such
as tracking with Etags [2], visited link coloring [10], and
via the cache — and would threaten privacy if widely
deployed, but they are not commonly used today. We
similarly exclude inference-based browser and machine
fingerprinting techniques, commonly used for online
fraud detection [22, 24], in favor of explicit tracking that
pinpoints users with browser state.

Our approach is to detect tracking as it is observed by
clients; we achieve this goal by integrating web tracking
detection directly into the browser. We began by looking
at how real tracker code interacts with browsers, and
from there distill five distinct behavior types. In our
system, we are able to distinguish these different sets of
behaviors, for example classifying Google Analytics and
Doubleclick as distinct.

We then developed a Firefox browser extension to
measure the prevalence of different web trackers and
tracking behaviors. We aimed our tool at the 500 most
popular and 500 less popular websites according to the
Alexa rankings, as well as real user workloads as approx-
imated with web traces generated from publicly available
AOL search logs. Our measurements reveal extensive
tracking. Pages are commonly watched by more than one
of the over 500 unique trackers we found. These trackers
exhibit a variety of nondeterministic behaviors, including
hierarchies in which one tracker hands off to another.
Several trackers have sufficient penetration that they may
capture a large fraction of a user’s browsing activity.

Our method also allowed us to assess how today’s
defenses reduce web tracking. We found that popup
blocking, third-party cookie blocking and the Do Not
Track header thwarted a large portion of cookie-based
tracking without impacting functionality in most
browsers, with the exception of tracking by social media
widgets. Disabling JavaScript is more effective but can
significantly impact the browsing experience. Tracking by
social media widgets (e.g., Facebook) has rapidly grown

1

doubleclick.net
cnn.com


in coverage and highlights how unanticipated combina-
tions of browser mechanisms can have unexpected effects.
Informed by our understanding of this kind of tracking, as
well as the inadequacy of existing solutions, we developed
the ShareMeNot extension to successfully defend against
it while still allowing users to interact with the widgets.

To summarize, we make several contributions. Our
classification of tracking behaviors is new, and goes
beyond simple notions of first- and third-party tracking.
Our measurements of deployed web trackers and how
much they track users give the most detailed account
of which we are aware to date of tracking in the wild,
as well as an assessment of the efficacy of common
defenses. Finally, our ShareMeNot extension provides
a new defense against a practical threat. We now turn to
additional background information in Section 2.

2 Background
Third-party web tracking refers to the practice by
which an entity (the tracker), other than the website
directly visited by the user (the site), tracks or assists
in tracking the user’s visit to the site. For instance,
if a user visits cnn.com, a third-party tracker like
doubleclick.net— embedded by cnn.com to provide,
for example, targeted advertising — can log the user’s
visit to cnn.com. For most types of third-party tracking,
the tracker will be able to link the user’s visit to cnn.com
with the user’s visit to other sites on which the tracker
is also embedded. We refer to the resulting set of sites as
the tracker’s browsing profile for that user. Before diving
into the mechanisms of third-party tracking, we briefly
review necessary web-related background.

2.1 Web-Related Background

Page Fetching. When a page is fetched by the browser,
an HTTP request is made to the site for a URL in a new
top-level execution context for that site (that corresponds
to a user-visible window with a site title). The HTTP
response contains resources of several kinds (HTML,
scripts, images, stylesheets, and others) that are processed
for display and which may trigger HTTP requests for
additional resources. This process continues recursively
until loading is complete.
Execution Context. A website can embed content
from another domain in two ways. The first is the inclu-
sion of an iframe, which delegates a portion of the screen
to the domain from which the iframe is sourced — this is
considered the third-party domain. The same-origin pol-
icy ensures that content from the two domains is isolated:
any scripts running in the iframe run in the context of the
third-party domain. By contrast, when a page includes a
script from another domain (using <script src=...>),
that script runs in the domain of the embedding page (the
first-party domain), not in that of the script’s source.

Client-Side Storage. Web tracking relies fundamen-
tally on a website’s ability to store state on the user’s ma-
chine — as do most functions of today’s web. Client-side
state may take many forms, most commonly traditional
browser cookies. A cookie is a triple (domain, key, value)
that is stored in the browser across page visits, where
domain is a web site, and key and value are opaque iden-
tifiers. Cookies that are set by the domain that the user
visits directly (the domain displayed in the browser’s ad-
dress bar) are known as first-party cookies; cookies that
are set by some other domain embedded in the top-level
page are third-party cookies.

Cookies are set either by scripts running in the page
using an API call, or by HTTP responses that include a
Set-Cookie header. The browser automatically attaches
cookies for a domain to outgoing HTTP requests to that
domain, using Cookie headers. Cookies may also be re-
trieved using an API call by scripts running in the page
and then sent via any channel, such as part of an HTTP
request (e.g., as part of the URL). The same-origin policy
ensures that cookies (and other client-side state) set by one
domain cannot be directly accessed by another domain.

Users may choose to block cookies via their browser’s
settings menu. Blocking all cookies is uncommon1, as it
makes today’s web almost unusable (e.g., the user cannot
log into any account), but blocking third-party cookies is
commonly recommended as a first line of defense against
third-party tracking.

In addition to traditional cookies, HTML5 introduced
new client-side storage mechanisms for browsers. In
particular, LocalStorage provides a persistent storage
area that sites can access with API calls, isolated by
the same-origin policy. Plugins like Flash are another
mechanism by which websites can store data on the
user’s machine. In the case of Flash, websites can set
Local Storage Objects (LSOs, also referred to as “Flash
cookies”) on the user’s file system.

2.2 Background on Tracking
Web tracking is highly prevalent on the web today. From
the perspective of website owners and of trackers, it
provides desirable functionality, including personaliza-
tion, site analytics, and targeted advertising. A recent
study [6] claims that the negative economic impact of
preventing targeted advertising — or the underlying
tracking mechanisms that enable it — is significant. From
the perspective of a tracker, the larger a browsing profile
it can gather about a user, the better service it can provide
to its customers (the embedding websites) and to the user
herself (e.g., in the form of personalization).

1On October 3, 2011, the Gibson Research Corporation cookie
statistics page (http://www.grc.com/cookies/stats.htm) showed
that almost 100% of 70,834 unique visitors in the previous week had
first-party cookies enabled.

2

http://www.grc.com/cookies/stats.htm


From the perspective of users, however, larger
browsing profiles spell greater loss of privacy. A user
may not, for instance, wish to link the articles he or she
views on a news site with the type of adult sites he or she
visits, much less reveal this information to an unknown
third party. Even if the user is not worried about the
particular third party, this data may later be revealed to
unanticipated parties through court orders or subpoenas.

Despite the prevalence of tracking and the resulting
public and media outcry — primarily in the United States
and in Europe — there is a lack of clarity about how track-
ing works, how widespread the practice is, and the scope
of the browsing profiles that trackers can collect about
users. Tracking is often invisible; tools like the Ghostery
Firefox add-on2 aim to provide users with insight into the
trackers they encounter on the web. What these tools do
not consider, however, are the differences between types
of trackers, their capabilities, and the resulting scope of
the browsing profiles they can compile. For example,
Google Analytics is commonly considered to be one of
the most prominent trackers. However, it does not have
the ability to create cross-site browsing profiles using the
unique identifiers in its cookies. Thus, its prevalence is not
correlated with the size of the browsing profiles it creates.

Storage and Communication. Our study focuses on
explicit tracking mechanisms — tracking mechanisms that
use assigned, unique identifiers per user — rather than in-
ferred tracking based on browser and machine fingerprint-
ing. Other work [25] has studied the use of fingerprinting
to pinpoint a host with high accuracy. More specifically,
all trackers we consider have two key capabilities:
1. The ability to store a pseudonym (unique identifier)

on the user’s machine.
2. The ability to communicate that pseudonym, as well

as visited sites, back to the tracker’s domain.
The pseudonym may be stored using any of the client-side
storage mechanisms described in Section 2.1 — in a con-
ventional browser cookie, in HTML5 LocalStorage, and
in Flash LSOs, as well as in more exotic locations such as
in ETags. There are multiple ways in which the browser
may communicate information about the visited site to
the tracker, e.g., implicitly via the HTTP Referrer header
or explicitly via tracker-provided JavaScript code that
directly transmits the results of an document.referrer
API call. In some cases, a script running within a page
might even communicate the visited page information in
the GET or POST parameters of a request to a tracker’s
domain. For example, a tracker embedded on a site might
access its own cookie and the referring page, and then
pass this information on to another tracker with a URL
of the form http://tracker2.com/track?cookie_
value=123&site=site.com.

2http://www.ghostery.com

Different Scales of Tracking. Depending on the be-
haviors exhibited and mechanisms used by a tracker, the
browsing profiles it compiles can be within-site or cross-
site. Within-site browsing profiles link the user’s brows-
ing activity on one site with his or her other activity only
on that site, including repeat visits and how the website
is traversed, but not to visits to any other site. Cross-site
browsing profiles link visits to multiple different websites
to a given user (identified by a unique identifier or linked
by another technique [16, 25]).

Behavioral Methodology. In this paper, we consider
tracking behavior that is observable from the client, that
is, from the user’s browser. Thus, we do not distinguish
between “can track” and “does track” — that is, we ana-
lyze trackers according to the capabilities granted by the
behaviors we observe and not, for example, the privacy
policies of the tracking sites.

From the background that we have introduced in this
section, we step back and consider, via archetypical
examples, the set of properties exhibited by trackers
(Section 3.1); from these properties we formulate a
classification of tracking behavior in Section 3.2.

3 Classifying Web Tracking Behavior
All web trackers that use unique identifiers are often bun-
dled into the same category. However, in actuality di-
verse mechanisms are used by trackers, resulting in fun-
damentally different tracking capabilities. Our observa-
tions, based both on manual investigations and automated
measurements, lead us to believe that it is incorrect to
bundle together different classes of trackers — for exam-
ple, Google Analytics is a within-site tracker, while Dou-
bleclick is a cross-site tracker. To rigorously evaluate the
tracking ecosystem, we need a framework for differentiat-
ing different tracker types. We develop such a framework
here (Section 3.2). To inform this framework, we first
dive deeply into an investigatory analysis of how track-
ing occurs today (Section 3.1), where we identify differ-
ent properties of different trackers. We use our resulting
framework as the basis for our measurements in Section 4.

3.1 Investigating Tracking Properties
In order to understand patterns of tracking behavior, we
must first understand the properties of different trackers.
We present several archetypal tracking examples here
and, from each, extract a set of core properties.

Throughout this discussion, we will refer to cookies set
under a tracker’s domain as tracker-owned cookies. We
introduce this term rather than using “third-party cookies”
because a given cookie can be considered a first-party or
a third-party cookie depending on the current browsing
context. (For example, Facebook’s cookie is a first-party
cookie when the user visits facebook.com, but it is a
third-party cookie when a Facebook “Like” button is

3

http://www.ghostery.com


Figure 1: Case Study: Third-Party Analytics. Websites
commonly use third-party analytics engines like Google
Analytics (GA) to track visitors. This process involves
(1) the website embedding the GA script, which, after (2)
loading in the user’s browser, (3) sets a site-owned cookie.
This cookie is (4) communicated back to GA along with
other tracking information.

embedded on another webpage.) Similarly, a cookie set
under the domain of the website embedding a tracker is
a site-owned cookie.

3.1.1 Third-Party Analytics

For websites that wish to analyze traffic, it has become
common to use a third-party analytics engine such as
Google Analytics (GA) in lieu of collecting the data
and performing the analysis themselves. The webpage
directly visited by the user includes a library (in the form
of a script) provided by the analytics engine on pages on
which it wishes to track users (see Figure 1).

To track repeat visitors, the GA script sets a cookie on
the user’s browser that contains a unique identifier. Since
the script runs in the page’s own context, the resulting
cookie is site-owned, not tracker-owned. The GA script
transfers this identifier to google-analytics.com by
making explicit requests that include custom parameters
in the URL containing information like the embedding
site, the user identifier (from the cookie), and system
information (operating system, browser, screen resolution,
geographic information, etc.).

Because the identifying cookie is site-owned, identi-
fiers set by Google Analytics across different sites are
different. Thus, the user will be associated with a different
pseudonym on the two sites, limiting Google Analytics’s
ability to create a cross-site browsing profile for that user.

Tracker Properties. We extract the following set of
properties defining trackers like Google Analytics:
1. The tracker’s script, running in the context of the site,

sets a site-owned cookie.
2. The tracker’s script explicitly leaks the site-owned

cookie in the parameters of a request to the tracker’s
domain, circumventing the same-origin policy.

3.1.2 Third-Party Advertising

The type of tracking most commonly understood under
“third-party tracking” is tracking for the purpose of tar-
geted advertising. As an example of this type of tracking

Figure 2: Case Study: Third-Party Advertising. When
a website (1) includes a third-party ad from an entity
like Doubleclick, Doubleclick (2-3) sets a tracker-owned
cookie on the user’s browser. Subsequent requests to
Doubleclick from any website will include that cookie,
allowing it to track the user across those sites.

scenario, we consider Google’s advertising network,
Doubleclick. Figure 2 shows an overview of this scenario.

When a page like site1.com is rendered on the user’s
browser, Doubleclick’s code will choose an ad to display
on the page, e.g., as an image or as an iframe. This ad is
hosted by doubleclick.net, not by the embedding page
(site1.com). Thus, the cookie that is set as the result of
this interaction (again containing a unique identifier for
the user) is tracker-owned. As a result, the same unique
identifier is associated with the user whenever any site
embeds a Doubleclick ad, allowing Doubleclick to create
a cross-site browsing profile for that user.

Tracker Properties. We extract the following proper-
ties defining trackers like Doubleclick:
1. The tracker sets a tracker-owned cookie, which is

then automatically included with any requests to the
tracker’s domain.

2. The tracker-owned cookie is set by the tracker in a
third-party position — that is, the user never visits the
tracker’s domain directly.

3.1.3 Third-Party Advertising with Popups

A commonly recommended first line of defense against
third-party tracking like that done by Doubleclick is
third-party cookie blocking. However, in most browsers,
third-party cookie blocking applies only to the setting,
not to the sending, of cookies (in Firefox, it applies to
both). Thus, if a tracker is able to maneuver itself into a
position from which it can set a first-party cookie, it can
avoid the third-party cookie blocking defense entirely.

We observed this behavior from a number of trackers,
such as insightexpressai.com, which opens a popup
window when users visit weather.com. While popup
windows have other benefits for advertising (e.g., better
capturing a user’s attention), they also put the tracker
into a first-party position without the user’s consent.
From there, the tracker sets and reads first-party cookies,
remaining unaffected by third-party cookie blocking.

Tracker Properties. We extract the following proper-
ties defining trackers like Insight Express:

4

doubleclick.net


Figure 3: Case Study: Advertising Networks. As in the or-
dinary third-party advertising case, a website (1-2) embeds
an ad from Admeld, which (3) sets a tracker-owned cookie.
Admeld then (4) makes a request to another third-party
advertiser, Turn, and passes its own tracker-owned cookie
value and other tracking information to it. This allows Turn
to track the user across sites on which Admeld makes this
request, without needed to set its own tracker-owned state.

1. The tracker forces the user to visit its domain directly,
e.g., with a popup or a redirect, allowing it to set its
tracker-owned cookie from a first-party position.

2. The tracker sets a tracker-owned cookie, which is
then automatically included with any requests to the
tracker’s domain when allowed by the browser.

3.1.4 Third-Party Advertising Networks
While, from our perspective, we have limited insights into
the business models of third-party advertisers and other
trackers, we can observe the effects of complex business
relationships in the requests to third-parties made by the
browser. In particular, trackers often cooperate, and it is
insufficient to simply consider trackers in isolation.

As depicted in Figure 3, a website may embed one
third-party tracker, which in turn serves as an aggregator
for a number of other third-party trackers. We observed
this behavior to be common among advertising networks.
For example, admeld.com is often embedded by websites,
and it makes further requests to trackers like turn.com
and invitemedia.com. In these requests, admeld.com
includes the information necessary to track the user,
including the top-level page and the pseudonym from
admeld.com’s own tracker-owned cookie. This means
that turn.com does not need to set its own client-side
state, but rather can rely entirely on admeld.com.
Tracker Properties. We extract the following proper-
ties defining trackers of this type:
1. The tracker is not embedded by the first-party website

directly, but referred to by another tracker on that site.
2. The tracker relies on information passed to it in a

request by the cooperating tracker.

3.1.5 Third-Party Social Widgets
An additional class of trackers doubles as sites that users
otherwise visit intentionally, and often have an account
with. Many of these sites, primarily social networking
sites, expose social widgets like the Facebook “Like” but-
ton, the Twitter “tweet” button, the Google “+1” button

Figure 4: Case Study: Social Widgets. Social sites like
Facebook, which users visit directly in other circum-
stances — allowing them to (1) set a cookie identifying
the user — expose social widgets such as the “Like”
button. When another website embeds such a button, the
request to Facebook to render the button (2-3) includes
Facebook’s tracker-owned cookie. This allows Facebook
to track the user across any site that embeds such a button.

and others. These widgets can be included by websites
to allow users logged in to these social networking sites
to like, tweet, or +1 the embedding webpage.

Figure 4 overviews the interaction between Facebook,
a site embedding a “Like” button, and the user’s browser.
The requests made to facebook.com to render this
button allow Facebook to track the user across sites just as
Doubleclick can — though note that unlike Doubleclick,
Facebook sets its tracker-owned cookie from a first-party
position when the user voluntarily visits facebook.com.

Tracker Properties. We extract the following set of
properties, where the important distinction to the Dou-
bleclick scenario is the second property:
1. The tracker makes use of a tracker-owned cookies.
2. The user voluntarily visits the tracker’s domain

directly, allowing it to set the tracker-owned cookie
from a first-party position.

3.2 A Classification Framework
We now present a classification framework for web track-
ers based on observable behaviors. This is in contrast to
past work that considered business relationships between
trackers and the embedding website rather than observ-
able behaviors [9] and past work that categorized track-
ers based on prevalence rather than user browsing profile
size, thereby commingling within-site and cross-site track-
ing [14]. In particular, from our manual investigations
we distilled five tracking behavior types; we summarize
these behaviors below and in Table 1. Table 2 captures
the key properties from Section 3.1 and their relation-
ships to these behavioral categories. In order to fall into
a particular behavior category, the tracker must exhibit (at
least) all of the properties indicated for that category in
Table 2. A single tracker may exhibit more than one of
these behaviors, as we discuss in more detail below.
1. Behavior A (Analytics): The tracker serves as a

third-party analytics engine for sites. It can only track
users within sites.

2. Behavior B (Vanilla): The tracker uses third-party
storage that it can get and set only from a third-party

5



Category Name Profile Scope Summary Example Visit Directly?

A Analytics Within-Site Serves as third-party analytics engine for sites. Google Analytics No
B Vanilla Cross-Site Uses third-party storage to track users across sites. Doubleclick No
C Forced Cross-Site Forces user to visit directly (e.g., via popup or redirect). InsightExpress Yes (forced)
D Referred Cross-Site Relies on a B, C, or E tracker to leak unique identifiers. Invite Media No
E Personal Cross-Site Visited directly by the user in other contexts. Facebook Yes

Table 1: Classification of Tracking Behavior. Trackers may exhibit multiple behaviors at once, with the exception of Behaviors
B and E, which depend fundamentally on a user’s browsing behavior: either the user visits the tracker’s site directly or not.

Behavior
Property A B C D E

Tracker sets site-owned (first-party) state. X
Request to tracker leaks site-owned state. X
Third-party request to tracker includes tracker-owned state. X X X
Tracker sets its state from third-party position; user never directly visits tracker. X
Tracker forces user to visit it directly. X
Relies on request from another B, C, or E tracker (not from the site itself). X
User voluntarily visits tracker directly. X

Table 2: Tracking Behavior by Mechanism. In order for a tracker to be classified as having a particular behavior (A, B, C, D, or
E), it must display the indicated property. Note that a particular tracker may exhibit more than one of these behaviors at once.

position to track users across sites.
3. Behavior C (Forced): The cross-site tracker forces

users to visit its domain directly (e.g., popup, redirect),
placing it in a first-party position.

4. Behavior D (Referred): The tracker relies on a B, C,
or E tracker to leak unique identifiers to it, rather than
on its own client-side state, to track users across sites.

5. Behavior E (Personal): The cross-site tracker is
visited by the user directly in other contexts.

This classification is based entirely on tracker behavior
that can be observed from the client side. Thus, it does
not capture backend tracking behavior, such as correlating
a user’s browsing behavior using browser and machine
fingerprinting techniques, or the backend exchange of
data among trackers. Similarly, the effective type of a
tracker encountered by a user depends on the user’s own
browsing behavior. In particular, the distinction between
Behavior B and Behavior E depends on whether or not
the user ever directly visits the tracker’s domain.

Combining Behaviors. Most of these behaviors are
not mutually exclusive, with the exception of Behav-
ior B (Vanilla) and Behavior E (Personal) — either the
user directly visits the tracker’s domain at some point
or not. That is, a given tracker can exhibit different be-
haviors on different sites or multiple behaviors on the
same site. For example, a number of trackers — such as
quantserve.com— act as both Behavior A (Analytics)
and Behavior B (Vanilla) trackers. Thus, they provide site
analytics to the embedding sites in addition to gathering
cross-site browsing profiles (for the purposes of targeted
advertising or additional analytics).

Through our analysis, we identified what was to us
a surprising combination of behaviors — Behavior A
(Analytics) and Behavior D (Referred) — by which
a within-site tracker unintentionally gains cross-site

Figure 5: Combining Behavior A and Behavior D.
When a Behavior A tracker like Google Analytics is
embedded by another third-party tracker, rather than
by the visited website itself, Behavior D emerges. The
site-owned cookie that GA sets on tracker.com becomes
a tracker-owned cookie when tracker.com is embedded
on site1.com. The tracker then passes this identifier to
Google Analytics, which gains the ability to track the user
across all sites on which tracker.com is embedded.

tracking capabilities. We discovered this combination
during our measurement study. For example, recall that
Google Analytics is a within-site, not a cross-site, tracker
(Behavior A). However, suppose that tracker.com uses
Google Analytics for its own on-site analytics, thus
receiving a site-owned cookie with a unique identifier.
If tracker.com is further embedded on another site, this
same cookie becomes a tracker-owned cookie, which
is the same across all sites on which tracker.com is
embedded. Now, when the usual request is made to
google-analytics.com from tracker.com when it
is embedded, Google Analytics becomes a Behavior D
tracker — a cross-site tracker. Figure 5 shows an overview
of this scenario. Note that we did not observe many
instances of this in practice, but it is interesting to observe
that within-site trackers can become cross-site trackers
when different parties interact in complex ways. This

6



observation is further evidence of the fact that the tracking
ecosystem is complicated and that it is thus difficult to
create simple, sweeping technical or policy solutions.

Robustness. We stress that this classification is ag-
nostic of the practical manifestation of the mechanisms
described above — that is, client-side storage may be done
via cookies or any other mechanism, and information may
be communicated back to the tracker in any way. This
separation of semantics from mechanism makes the clas-
sification robust in the face of the evolution of specific
client-side storage techniques used by trackers.

4 Detecting Trackers
Based on this classification framework, we created a
tool — TrackingTracker — that automatically classifies
trackers according to behavior observed on the client-side.
TrackingTracker runs as a Firefox add-on, interposes
on all HTTP(S) requests, and examines conventional
cookies, HTML5 Local Storage, and Flash LSOs to detect
and categorize trackers. It has support for crawling a list
of websites to an arbitrary link depth and for performing a
series of search engine keyword searches and visiting the
top hit of the returned search results. We used this tool
to perform a series of analyses between September and
October of 2011; unless otherwise noted, our discussion
reflects only behaviors observed during that time.

In presenting the results of these measurements,
we make a distinction between pages and domains.
Two pages may belong to the same domain (e.g.,
www.cnn.com/article1 and www.cnn.com/article2).
Which we use depends on whether we are interested in
the characteristics of websites (domains) or in specific
instances of tracking behavior (pages).

Note that the tracking behavior that we observe in our
measurements is a lower bound, for several reasons. First,
we do not log into any sites or click any ads or social
widgets, which we have observed in small case studies
to occasionally trigger additional tracking behavior.
Second, we have observed that tracking behavior can be
nondeterministic, largely due to the interplay of Behavior
B (Vanilla) and Behavior D (Referred) trackers; we
generally visit pages only twice (see below), which may
not trigger all trackers embedded by a given website.

Finally, the mere presence of a cookie (or other storage
item) does not by itself give a tracker the ability to create a
browsing profile — the storage item must contain a unique
identifier. It is difficult or impossible to identify unique
identifiers with complete certainty (we do not reverse-
engineer cookie strings), but we identify and remove any
suspected trackers whose cookies or other storage contain
identical values across multiple measurements that started
with a clean browser. We also remove trackers that only
use session cookies, though we note that these can equally
be used for tracking as long as the browser remains open.

Figure 6: Prevalence of Trackers on Top 500 Domains.
Trackers are counted on domains, i.e., if a particular tracker
appears on two pages of a domain, it is counted once.

4.1 Tracking on Popular Sites
We collected a data set using the top 500 websites (inter-
national) from Alexa as published on September 19, 2011.
We also visited four random links on each of the 500 sites
that stayed within that site’s domain. We visited and an-
alyzed a total of 2098 unique pages for this data set; we
did not visit a full 2500 unique pages because some web-
sites do not have four within-domain links, some links are
broken or redirect to other domains or to the same page,
etc. This process was repeated twice: once starting with a
clean browser, and once more after priming the cache and
cookie database (i.e., without first clearing browser state).
This experimental design aims to ensure that trackers that
may only set but not read state the first time they are en-
countered are properly accounted for by TrackingTracker
on the second run. The results we report include tracking
behavior measured only on the second run.

Most of the 2098 pages (500 domains) embed trackers,
often several. Indeed, the average number of trackers on
the 1655 pages (457 domains) that embed at least one
tracker is over 4.5 (over 7). Of these, 1469 pages (445
domains) include at least one cross-site tracker.

Overall, we found a total of 524 unique trackers
appearing a cumulative 7264 times. Figure 6 shows the
twenty top trackers across the 500 top domains. This
graph considers websites as domains — that is, if a given
tracker was encountered on two pages of a domain, it
is only counted once in this graph. The most prevalent
tracker is Google Analytics, appearing on almost 300 of
the 500 domains — recall that it is a within-site tracker,
meaning that it cannot link users’ visits across these
pages using cookies. The most popular cross-site tracker
that users don’t otherwise visit directly is Doubleclick
(also owned by Google), which can track users across
almost 40% of the 500 most popular sites. The most
popular Behavior E tracker (domains that are themselves
in the top 500) is Facebook, followed closely by Google,
both of which are found on almost 30% of the top sites.

7



Top 500 Sites Non-Top 500 Sites Popups Blocked Cookies Blocked No JavaScript DNT Enabled
Tracker Instances Instances Instances Instances Instances Instances

Type # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max)
A 17 49 (1, 9) 10 34 (1, 18) 17 34 (1, 10) 40 158 (1, 38) – – 10 39 (1, 9)

A B 18 152 (1, 21) 11 104 (1, 37) 20 338 (1, 123) – – – – 14 105 (1, 17)
A B D 1 317 (317, 317) 1 155 (155, 155) 1 319 (319, 319) – – – – 1 274 (274, 274)

A E 8 47 (1, 17) 2 25 (5, 20) 8 51 (1, 20) 10* 95 (1, 23) – – 6 33 (1, 17)
A E D 1 21 (21, 21) – – 1 19 (19, 19) – – – – 1 18 (18, 18)

A D 3 902 (1, 896) 2 908 (55, 853) 2 906 (10, 896) 1 844 (844, 844) – – 2 900 (81, 819)
B 357 3322 (1, 375) 299 3734 (1, 777) 336 2859 (1, 382) 1 15 (15, 15) 161 1697 (1, 263) 320 2613 (1, 305)

B C 3 79 (6, 64) – – 3 29 (3, 22) 5* 48 (2, 21) – – 6 47 (2, 15)
B D 8 703 (1, 489) 7 60 (1, 25) 22 1235 (1, 494) – – 2 23 (10,13) 13 1299 (3, 551)

E 101 1564 (1, 397) 41 1569 (1, 446) 101 1625 (1, 405) 96* 1509 (1, 383) 49 707 (1, 195) 100 1412 (1, 338)
E C 1 34 (34, 34) 1 23 (23, 23) – – – – – – 1 31 (31, 31)
E D 1 1 (1, 1) 1 417 (417, 417) 1 5 (5, 5) 1* 1 (1, 1) – – 1 4 (4, 4)

C 4 4 (1, 1) 4 4 (1, 1) – – 5 8 (1, 4) – – 7 13 (1, 4)
D 1 (69, 69) 3 60 (1, 57) 2 80 (1, 79) 1* 71 (71, 71) – – 1 42 (42, 42)

Total 524 7264 (1, 896) 382 7093 (1, 853) 514 7505 (1, 896) 160 2749 (1, 844) 212 2427 483 6830 (1, 819)

Table 3: Measurement Results for Defenses. All measurements were run with the Alexa Top 500 sites. This table is structures
like Table ??. Values with asterisks would be zero (or shifted to another type) for Firefox users, due to that browser’s stricter
third-party cookie blocking policy.

Top 500 Sites Non-Top 500 Sites Popups Blocked Cookies Blocked No JavaScript DNT Enabled
Tracker Instances Instances Instances Instances Instances

Type # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max)
A 17 49 (1, 9) 10 34 (1, 18) 17 34 (1, 10) 40 158 (1, 38) – – 10 39 (1, 9)

A B 18 152 (1, 21) 11 104 (1, 37) 20 338 (1, 123) – – – – 14 105 (1, 17)
A B D 1 317 (317, 317) 1 155 (155, 155) 1 319 (319, 319) – – – – 1 274 (274, 274)

A E 8 47 (1, 17) 2 25 (5, 20) 8 51 (1, 20) 10* 95 (1, 23) – – 6 33 (1, 17)
A E D 1 21 (21, 21) – – 1 19 (19, 19) – – – – 1 18 (18, 18)

A D 3 902 (1, 896) 2 908 (55, 853) 2 906 (10, 896) 1 844 (844, 844) – – 2 900 (81, 819)
B 357 3322 (1, 375) 299 3734 (1, 777) 336 2859 (1, 382) 1 15 (15, 15) 161 1697 (1, 263) 320 2613 (1, 305)

B C 3 79 (6, 64) – – 3 29 (3, 22) 5* 48 (2, 21) – – 6 47 (2, 15)
B D 8 703 (1, 489) 7 60 (1, 25) 22 1235 (1, 494) – – 2 23 (10,13) 13 1299 (3, 551)

E 101 1564 (1, 397) 41 1569 (1, 446) 101 1625 (1, 405) 96* 1509 (1, 383) 49 707 (1, 195) 100 1412 (1, 338)
E C 1 34 (34, 34) 1 23 (23, 23) – – – – – – 1 31 (31, 31)
E D 1 1 (1, 1) 1 417 (417, 417) 1 5 (5, 5) 1* 1 (1, 1) – – 1 4 (4, 4)

C 4 4 (1, 1) 4 4 (1, 1) – – 5 8 (1, 4) – – 7 13 (1, 4)
D 1 (69, 69) 3 60 (1, 57) 2 80 (1, 79) 1* 71 (71, 71) – – 1 42 (42, 42)

Total 524 7264 (1, 896) 382 7093 (1, 853) 514 7505 (1, 896) 160 2749 (1, 844) 212 2427 483 6830 (1, 819)

Table 3: Measurement Results for Defenses. All measurements were run with the Alexa Top 500 sites. This table is structures
like Table ??. Values with asterisks would be zero (or shifted to another type) for Firefox users, due to that browser’s stricter
third-party cookie blocking policy.

Top 500 Sites Non-Top 500 Sites Popups Blocked Cookies Blocked No JavaScript DNT Enabled
Tracker Instances Instances Instances Instances Instances

Type # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max) # (Min, Max)
A 17 49 (1, 9) 10 34 (1, 18) 17 34 (1, 10) 40 158 (1, 38) – – 10 39 (1, 9)

A B 18 152 (1, 21) 11 104 (1, 37) 20 338 (1, 123) – – – – 14 105 (1, 17)
A B D 1 317 (317, 317) 1 155 (155, 155) 1 319 (319, 319) – – – – 1 274 (274, 274)

A E 8 47 (1, 17) 2 25 (5, 20) 8 51 (1, 20) 10* 95 (1, 23) – – 6 33 (1, 17)
A E D 1 21 (21, 21) – – 1 19 (19, 19) – – – – 1 18 (18, 18)

A D 3 902 (1, 896) 2 908 (55, 853) 2 906 (10, 896) 1 844 (844, 844) – – 2 900 (81, 819)
B 357 3322 (1, 375) 299 3734 (1, 777) 336 2859 (1, 382) 1 15 (15, 15) 161 1697 (1, 263) 320 2613 (1, 305)

B C 3 79 (6, 64) – – 3 29 (3, 22) 5* 48 (2, 21) – – 6 47 (2, 15)
B D 8 703 (1, 489) 7 60 (1, 25) 22 1235 (1, 494) – – 2 23 (10,13) 13 1299 (3, 551)

E 101 1564 (1, 397) 41 1569 (1, 446) 101 1625 (1, 405) 96* 1509 (1, 383) 49 707 (1, 195) 100 1412 (1, 338)
E C 1 34 (34, 34) 1 23 (23, 23) – – – – – – 1 31 (31, 31)
E D 1 1 (1, 1) 1 417 (417, 417) 1 5 (5, 5) 1* 1 (1, 1) – – 1 4 (4, 4)

C 4 4 (1, 1) 4 4 (1, 1) – – 5 8 (1, 4) – – 7 13 (1, 4)
D 1 (69, 69) 3 60 (1, 57) 2 80 (1, 79) 1* 71 (71, 71) – – 1 42 (42, 42)

Total 524 7264 (1, 896) 382 7093 (1, 853) 514 7505 (1, 896) 160 2749 (1, 844) 212 2427 483 6830 (1, 819)

Table 3: Measurement Results for Defenses. All measurements were run with the Alexa Top 500 sites. This table is structures
like Table ??. Values with asterisks would be zero (or shifted to another type) for Firefox users, due to that browser’s stricter
third-party cookie blocking policy.

Figure 6: blah. blah

Figure 7: Prevalence of Trackers on Top 500 Domains.
Trackers are counted on domains, that is, if a particular
tracker appears on two pages of a domain, it is counted
once.

that taboolasyndication.com and krxd.net set
site-owned LocalStorage instead of browser cookies for
Behavior A purposes.

Of the five trackers that set unique identifiers in
LocalStorage, all duplicated these values in cookies.
When the same identifier is stored in multiple locations,
the possibility of respawning is raised: if one storage
location is cleared, the tracker can repopulate it with the
same value from the other storage location. This has been

Figure 8: Type Breakdown of Top 200 Trackers on Top
500 Domains. Trackers are counted by occurrences, that
is, if a particular tracker appears on two pages of a domain,
it is counted twice, as it may exhibit different behavior
across different occurrences.

observed several times in the wild [2, 16] as a way to
subvert a user’s intention not to be tracked.

We manually checked for respawning behavior in these
five cases and found that one tracker — tanx.com— in-
deed repopulates the browser cookies from LocalStorage
when cleared. We also noticed that while twitter.com,
which sets a uniquely identifying “guest id” on the ma-
chines of users that are not logged in, does not repopulate

DRAFT 9 12:30 Tuesday 4th October, 2011

Table 4: blah. Each set of columns reports the results for the specified measurement, each run with the Alexa Top 500 sites
except the Non-Top dataset. The lefthand column for each set of data reports the number of unique trackers of each type
observed; the righthand column reports the number of occurrences of that type of tracker. A value of X (Y, Z) in that column
means that X occurrences of trackers of this type were observed; the minimum number of occurrences of any unique tracker
was Y and the maximum Z. Values with asterisks would be zero (or shifted to another type) for Firefox users, due to that
browser’s stricter third-party cookie blocking policy.

fusing. It might be helpful to discuss more clarifying
examples.]

4.1.1 Other Storage Mechanisms

LocalStorage. Contrary to the expectation that track-
ers are moving away from cookies to other types of
storage mechanisms, we found remarkably little use of
HTML5 LocalStorage by trackers (though sites them-
selves may still use it for self-administered analytics). Of
the 559[number] unique trackers we encountered whenxxx
studying the Alexa Top 500 sites, only eight of these track-
ers set any LocalStorage at all. Five contained unique
identifiers, two contained timestamps, and one stores a
user’s unsubmitted comments in case of accidental navi-
gation away from the page.

We observed both Behavior A and Behavior B
behavior using LocalStorage. Notably, we discovered
that taboolasyndication.com and krxd.net set
site-owned LocalStorage instead of browser cookies for
Behavior A purposes.

Of the five trackers that set unique identifiers in
LocalStorage, all duplicated these values in cookies.
When the same identifier is stored in multiple locations,
the possibility of respawning is raised: if one storage
location is cleared, the tracker can repopulate it with the
same value from the other storage location. This has been
observed several times in the wild [2, 16] as a way to
subvert a user’s intention not to be tracked.

We manually checked for respawning behavior in these
five cases and found that one tracker — tanx.com— in-
deed repopulates the browser cookies from LocalStorage
when cleared. We also noticed that while twitter.com,
which sets a uniquely identifying “guest id” on the ma-
chines of users that are not logged in, does not repopulate
the cookie value, it does store in LocalStorage the entire
history of guest ids. That is, when the user clears the
guest id cookie, it remains in LocalStorage along with
the new guest id, so the user’s multiple guest ids can be
linked together. This may not be intentional on Twitter’s
part, but the capability for tracking in this way exists.

We also observed reverse respawning, that is, repop-

DRAFT 9 12:45 Tuesday 4th October, 2011

Table 4: Measurement Results. Each set of columns reports the results for the specified measurement, each run with the Alexa
Top 500 sites except the Non-Top dataset. The lefthand column for each set of data reports the number of unique trackers
of each type observed; the righthand column reports the number of occurrences of that type of tracker. A value of X (Y, Z)
in that column means that X occurrences of trackers of this type were observed; the minimum number of occurrences of any
unique tracker was Y and the maximum Z. Values with asterisks would be zero (or shifted to another type) for Firefox users,
due to that browser’s stricter third-party cookie blocking policy. Some variation in numbers across runs due to randomness.

Recall that a tracker may exhibit different behavior
across different occurrences, often due to varying
business and embedding relationships. We thus consider
tracking occurrences in addition to unique trackers; this
data is summarized in the first set of columns in Table 4.
In this table, a tracker classified as, for instance, type
A B D, may exhibit different combinations of the three
behaviors at different times.

We find that most trackers behave uniformly across
occurrences. For example, the most common tracking
behaviors are Behavior B and Behavior E, which these
trackers exhibit uniformly. Some trackers, however,
exhibit nonuniform behavior. For instance, sites may
choose whether or not to use Quantserve for on-site
analytics (Behavior A) in addition to including it as
a Behavior B (cross-site) tracker. Thus, Quantserve
may sometimes appear as Behavior A, sometimes as
Behavior B, and sometimes as both. When other trackers
include Quantserve, it can also exhibit Behavior D
behavior. Similarly, Google Analytics generally exhibits
Behavior A behavior, setting site-owned state on a site

for which it provides third-party analytics. However,
when a third-party tracker uses Google Analytics itself,
as described in Section 3.2, Google Analytics is put into
the position of a Behavior D (cross-site) tracker.

4.1.1 Other Storage Mechanisms

LocalStorage. Contrary to the expectation that track-
ers are moving away from cookies to other types of
storage mechanisms, we found remarkably little use of
HTML5 LocalStorage by trackers (though sites them-
selves may still use it for self-administered analytics). Of
the 524 unique trackers we encountered when studying
the Alexa Top 500 sites, only eight of these trackers set
any LocalStorage at all. Five contained unique identifiers,
two contained timestamps, and one stores a user’s unsub-
mitted comments in case of accidental navigation away
from the page.

We observed both Behavior A and Behavior B
behavior using LocalStorage. Notably, we discovered
that taboolasyndication.com and krxd.net set

8

Table 3: Measurement Results. Each set of columns reports the results for the specified measurement, each run with the Alexa
top 500 sites except the Non-Top dataset. The lefthand column for each set reports the number of unique trackers of each type ob-
served; the righthand column reports the number of occurrences of that tracker type. A value of X (Y, Z) in that column means
that X occurrences of trackers of this type were observed; the minimum number of occurrences of any unique tracker was Y and
the maximum Z. Values with asterisks would be zero (or shifted to another type) for Firefox users, due to that browser’s stricter
third-party cookie blocking policy. Some of the variation in counts across runs is due to the nondeterminism of tracking behavior.

Recall that a tracker may exhibit different behavior
across different occurrences, often due to varying business
and embedding relationships. We thus consider occur-
rences in addition to unique trackers; this data is reported
in the first set of columns in Table 3. In this table, a tracker
classified as, for instance, type A B D, may exhibit differ-
ent combinations of the three behaviors at different times.

We find that most trackers behave uniformly across
occurrences. For example, the most common tracking
behaviors are Behavior B (Vanilla) and Behavior E
(Personal), which these trackers exhibit uniformly. Some
trackers, however, exhibit nonuniform behavior. For in-
stance, sites may choose whether or not to use Quantserve
for on-site analytics (Behavior A) in addition to including
it as a Behavior B (cross-site) tracker. Thus, Quantserve
may sometimes appear as Behavior A, sometimes as
Behavior B, and sometimes as both. When other trackers
include Quantserve, it can also exhibit Behavior D (Re-
ferred) behavior. Similarly, Google Analytics generally
exhibits Behavior A behavior, setting site-owned state on
a site for which it provides third-party analytics. However,
when a third-party tracker uses Google Analytics itself,
as described in Section 3.2, Google Analytics is put into
the position of a Behavior D (cross-site) tracker.

4.1.1 Other Storage Mechanisms

LocalStorage. Contrary to expectations that trackers
are moving away from cookies to other storage mecha-
nisms, we found remarkably little use of HTML5 Local-
Storage by trackers (though sites themselves may still
use it for self-administered analytics). Of the 524 unique
trackers we encountered on the Alexa top 500 sites, only
eight of these trackers set any LocalStorage at all. Five
contained unique identifiers, two contained timestamps,
and one stored a user’s unsubmitted comments in case of
accidental navigation away from the page.

We observed both Behavior A and Behavior B
behavior using LocalStorage. Notably, we discovered
that taboolasyndication.com and krxd.net set
site-owned LocalStorage instead of browser cookies for
Behavior A purposes.

Of the five trackers that set unique identifiers in
LocalStorage, all duplicated these values in cookies.
When the same identifier is stored in multiple locations,
the possibility of respawning is raised: if one storage
location is cleared, the tracker can repopulate it with the
same value from the other storage location. Respawning
has been observed several times in the wild [2, 21] as a
way to subvert a user’s intention not to be tracked and
is exemplified by the proof-of-concept evercookie3.

We manually checked for respawning behavior in these
five cases and found that one tracker — tanx.com— in-
deed repopulated the browser cookies from LocalStorage
when cleared. We also noticed that twitter.com, which
set a uniquely identifying “guest id” on the machines
of users that are not logged in, did not repopulate the
cookie value — however, it did store in LocalStorage the
entire history of guest ids, allowing the user’s new guest
id to be linked to the old one. This may not be intentional
on Twitter’s part, but the capability for tracking in this
way — equivalent to respawning — exists.

We also observed reverse respawning, that is, repop-
ulating LocalStorage from cookies when cleared. We
observed this in three of the five cases, and note that it
may not be intentional respawning but rather a function
of when LocalStorage is populated (generally after
checking if a cookie is set and/or setting a cookie).

Flash Storage. Flash LSOs, or “cookies”, on the other
hand, are more commonly used to store unique tracking
identifiers. Nevertheless, despite media buzz about iden-

3http://samy.pl/evercookie/

8



tifier respawning from Flash cookies, we find that most
unique identifiers in Flash cookies do not serve as back-
ups to traditional cookies; only nine of the 35 trackers
with unique identifiers in Flash cookies duplicate these
identifiers across Flash cookies and traditional cookies.

For these nine trackers, we tested manually for
respawning behavior as described above. We ob-
served Flash-to-cookie respawning in six cases and
cookie-to-Flash respawning in seven.

In one interesting case, we found that while the Flash
cookie for sodahead.com does not appear to match
the browser cookie, it is named enc_data and may
be an encrypted version of the cookie value. Indeed,
sodahead.com respawned the browser cookie from the
Flash cookie. Furthermore, the respawned cookie was a
session cookie that would ordinarily expire automatically
when the browser is closed. This example demonstrates
that it is not sufficient to inspect stored values but that
respawning must be determined behaviorally.

4.1.2 Cookie Leaks, Countries, and More

Throughout our study, we made a number of interesting
non-quantitative observations; we describe these here.

Frequent cookie leaks. We observed a large number
of cookie leaks, i.e., cookies belonging to one domain
that are included in the parameters of a request to another
domain, thereby circumventing the same-origin policy.
Fundamentally, cookie leaking enables an additional party
to gain tracking capabilities that it would not otherwise
have. In addition to Behavior A leaks (the leaking of
site-owned state set by the tracker’s code to the tracker as
a third-party) and Behavior D leaks (to enable additional
trackers), we observed cookie leaks indicative of business
relationships between two (or few) parties.

For example, msn.com and bing.com, both owned by
Microsoft, use cookie leaking mechanisms within the
browser to share cookies with each other, even when
the user does not visit both sites as part of a contiguous
browsing session. This enables Microsoft to track a
unique user across both MSN and Bing, as well as across
any site that may embed one of the two.

As another example, we noticed that when a website
includes both Google AdSense (a product that allows
the average website owner to embed ads without a full-
fledged Doubleclick contract) as well as Google Analytics,
the AdSense script makes requests to Doubleclick to fetch
ads. These requests include uniquely identifying values
from the site’s Google Analytics cookies. This practice
gives Google the capability to directly link the unique
identifier used by Doubleclick to track the user across sites
with the unique Google Analytics identifier used to track
the user’s visits to this particular site. While this does not
increase the size of the browsing profile that Doubleclick

can create, it allows Google to relink the two profiles if the
user ever clears client-side state for one but not the other.

Origin countries. In exploring the use of LocalStor-
age and Flash cookies, we found that trackers from dif-
ferent regions appear to exhibit different behaviors. The
only tracker to respawn cookies from LocalStorage comes
from a Chinese domain, and of the eight trackers involved
in respawning to or from Flash cookies, four are US, two
are Chinese, and two are Russian. The Chinese and Rus-
sian trackers seem to be overrepresented compared to
their fraction in the complete set of observed trackers.

Tracker clustering. While many of the top trackers
are found across sites of a variety of categories and origins,
we observed some trackers to cluster around related sites.
For example, in the Alexa top 500, traffichaus.com
and exoclick.com are found only on adult sites (on five
and six of about twenty, respectively). Similarly, some
trackers are only found on sites of the same geographic
origin — e.g., adriver.ru is found only on Russian sites
and wrating.com only on Chinese sites.

Trackers interact with two types of users. We ob-
served that Behavior B (Vanilla) and Behavior C (Forced)
trackers sometimes do not set tracking cookies when
their websites are visited directly — unlike Behavior E
tracker like Facebook, which by definition set state when
they are visited. In other words, for example, turn.com
sets a third-party tracking cookie when it is embed-
ded on another website, but not when the user visits
turn.com directly. Some trackers, in fact, use differ-
ent domains for their own homepages than for their track-
ing domains (e.g., visiting doubleclick.net redirects to
google.com/doubleclick). Trackers that exhibit these
behaviors can never be Behavior E trackers, even if the
users directly visits their sites. We can only speculate
about the reasons for these behaviors, but we observe that
trackers interact with two types of users: users whom they
track from a third-party position, and users who are their
customers and who visit their website directly.

4.2 Comparison to Less Popular Sites
The measurements presented thus far give us an intuition
about the prevalence and behavior of trackers on popular
sites. Since it is possible that different trackers with
different behavior are found on less popular sites, we
collected data for non-top sites as well. In particular, we
visited 500 sites from the Alexa top million sites, starting
with site #501 and at intervals of 100. As in the top 500
case, we visited 4 random links on each page, resulting
in a total of 1959 unique pages visited.

In this measurement, we observed 7093 instances of
tracking across 382 unique trackers, summarized in the
second set of columns in Table 3. Figure 7 shows the top
20 trackers (counted by domains) for this measurement.

9



Figure 7: Tracker Prevalence on Non-Top 500 Domains.
Trackers are counted on domains, i.e., if a particular tracker
appears on two pages of a domain, it is counted once.

Figure 8: Browsing Profiles for 35 AOL Users. We report
the measured profile size for each user for the 20 top
trackers from the top 500, using 300 unique queries (an
average of 253 unique pages visited) per user.

The numbers below each bar indicate the rank for
the tracker in the top 500 domains. Note that Google
Analytics and Doubleclick are no longer ranked as high,
but in absolute numbers appear a similar number of times.
ScorecardResearch and SpecificClick appear to be highly
prevalent among among these less popular sites.

Among the non-top 500 sites, we observed less
LocalStorage use — only one of the eight users of Lo-
calStorage in the top 500 sites reappeared (disqus.com,
which stored comment drafts); we saw one additional
instance of LocalStorage, contextweb.com, which
stored a unique value but does not duplicate it in the
browser cookie. We also observed fewer Flash cookies
set (68 total across all sites and trackers, compared to
110 in the top 500 measurement), finding one additional
tracker — heias.com— that respawns its browser cookie
value from the Flash cookie.

4.3 Real Users: Using the AOL Search Logs
In order to better approximate a real user’s browsing his-
tory, we collected data using the 2006 AOL search query

logs [20]. We selected 35 random users (about 1%) from
the 3447 users with at least 300 unique queries (not neces-
sarily clickthroughs). For each of these randomly selected
users, we submitted to a search engine the first 300 of their
unique queries and visited the top search result for each.
This resulted in an average of 253 unique pages per user.

For the AOL users, we are interested in the size of the
browsing profiles that trackers can create. Here we must
consider exactly how we define “profile”. In particular,
a tracker receives information about the domains a user
visits, the pages a user visits, and the individual visits
a user makes (i.e., returning to the same page at a later
time). A user may be concerned about the privacy of
any of these sets of information; in the context of this
study, we consider unique pages. That is, we consider
the size of a browsing profile compiled by a given tracker
to be the number of unique pages on which the user
encountered that tracker. The reason for using pages
instead of visits is that using search logs to approximate
real browsing behavior involves making multiple visits
to pages that a real user might not make — e.g., multiple
unique queries may result in the same top search hit,
which TrackingTracker will visit but a real user may not,
depending on why a similar query was repeated. Though
TrackingTracker may thus visit multiple pages more than
once, giving more trackers the opportunity to load on that
page, this is balanced by the fact that we, as before, visit
each page once before recording measurements in order
to prime the cache and the cookie database.

In order to compare AOL users, we focus on the top 20
cross-site trackers from the Alexa top 500 measurement.
That is, we take all 19 cross-site trackers from Figure 6
as well as serving-sys.com, the next-highest ranked
cross-site tracker. Figure 8 shows the size of the profile
compiled by each tracker for each of the 35 users.

We find that Doubleclick can track a user across (on
average) 39% of the pages he or she visited in these
browsing traces — and a maximum of 66% of the pages
visited by one user. The magnitude of these percentages
may be cause for concern by privacy-conscious users.
Facebook and Google can track users across an average
of 23% and 21% of these browsing traces (45% and 61%
in the maximum case), respectively. As many users have
and are logged into Facebook and Google accounts, this
tracking is likely not to be anonymous.

Two data points of note are the large profile sizes for
google.com and quantserve.com for one of the users.
These spikes occur because that user visited a large
number of pages on the same domain (city-data.com),
which embeds Google Maps and Quantserve.

From this data, we observe that, in general, the ranking
of the trackers in the top 500 corresponds with how
much real users may encounter them. In particular,
doubleclick.net remains the top cross-site tracker; the

10



prominence of scorecardresearch.com in the non-top
500 is not reflected here, perhaps because top search hits
are likely biased towards more popular sites.

5 Defenses
In this section, we explore existing defenses against
tracking in the context of our classification. We then
present measurement results collected using the Alexa top
500 with standard defenses enabled. Finally, we propose
an additional defense — implemented in the form of our
Firefox add-on ShareMeNot — that aims to protect users
from Behavior E tracking. Again, unless otherwise noted,
we refer to observations in September/October 2011.

5.1 Initial Analysis of Defenses
Third-party cookie blocking. A standard defense
against third-party web tracking is to block third-party
cookies. This defense is insufficient for a number
of reasons. First, different browsers implement third-
party cookie blocking with different degrees of strictness.
While Firefox blocks third-party cookies both from be-
ing set as well as from being sent, most other browsers
(including Chrome, Safari, and Internet Explorer) only
block the setting of third-party cookies. So, for example,
Facebook can set a first-party cookie when the user vis-
its facebook.com; in browsers other than Firefox, this
cookie, once set, is available to Facebook from a third-
party position (when embedded on another page).

Thus, in most browsers, third-party cookie blocking
protects users only from trackers that are never visited di-
rectly — that is, it is effective against Behavior B (Vanilla)
trackers but not against Behavior C (Forced) or Behavior
E (Personal) trackers. Firefox’s strict policy provides
better protection, but at the expense of functionality like
social widgets and buttons, some instantiations of OAuth
or federated login, and other legitimate cross-domain
behavior (thus prompting Mozilla to opt against making
this setting the default [19]).
Do Not Track. The recently proposed Do Not Track
header and legislation aim to give users a standardized
way to opt out of web tracking. A browser setting (already
implemented natively in Firefox, IE, and Safari) appends
a DNT=1 header to outgoing requests, informing the re-
ceiving website that the user wishes to opt out of tracking.
As of February 2012, Do Not Track is merely a policy
technique that requires tracker compliance, providing no
technical backing or enforcement. A major sticking point
is the debate over the definition of tracking, as the conclu-
sion of this debate determines to which parties the Do Not
Track legislation will apply. As evidenced by the papers
submitted to the W3C Workshop on Web Tracking and
User Privacy4, many of the parties involved in tracking ar-
gue that their behaviors should not be considered tracking

4http://www.w3.org/2011/track-privacy/

for the purposes of DNT. It is our hope that the tracking
classification framework that we have developed and pro-
posed in this paper can be used to further the discussion
of what should be considered tracking in the policy realm,
and that a tool like TrackingTracker can be used in the
browser to enforce and detect violations of Do Not Track.

Clearing client-side state. There has been some con-
cern [26] that pervasive opt-out of tracking will create a
tiered or divided web, in which visitors who opt out of
tracking (via the DNT header or other methods) will not
be provided with the same content as other visitors. One
possible solution (also identified in [9]) to avoid track-
ing in the face of this concern is to constantly clear the
browser’s client-side state, regularly receiving new identi-
fiers from trackers. This may be a sufficient solution for
Behavior B, Behavior C, and Behavior D trackers, but it
cannot protect users against Behavior E trackers to which
they have identified themselves as a particular account
holder (and thus logging back in will re-identify the same
user). It is also hard to implement against Behavior A
trackers, as they set first-party state on the websites that
embed them, and it is difficult to distinguish in a robust
manner the first-party state needed by the website from
the state used by the Behavior A tracker. Other work [25]
shows furthermore that fingerprinting techniques can re-
identify a large fraction of hosts with fresh cookies.

Blocking popups. Most browsers today block popups
by default, potentially making it more difficult for Be-
havior C trackers to maneuver themselves into first-party
positions. However, websites can still open popups in
response to user clicks. Furthermore, popups are only one
way that Behavior C trackers can force a user to visit their
site directly (and the easiest of these to detect and block).
Other methods include redirecting the user’s browser to
the tracker’s domain and back using javascript, or busi-
ness relationships between the tracker and the embedding
site that involve the site redirecting directly to a full-page
interstitial ad controlled by the tracker’s domain. These
behaviors are hard or impossible to block as they are used
throughout the web for other legitimate purposes.

Recent findings (February 2012) [18] furthermore
revealed programmatic form submission as a new
technique for Behavior C tracking in Safari, which treats
form submissions as first-party interactions.

Private browsing mode. Private browsing mode, as
explored in depth in [1], does not primarily address the
threat model of web tracking. Instead, private browsing
mode aims to protect browser state from adversaries with
physical access to the machine. While the clearing of
cookies when exiting private browsing mode can help
increase a user’s privacy in the face of tracking, private
browsing mode does not aim to keep a user’s browsing
history private from remote servers.

11

http://www.w3.org/2011/track-privacy/


Figure 9: Prevalence of Trackers on Top 500 Domains
with Third-Party Cookies Blocked. Trackers are counted
on domains, that is, if a particular tracker appears on two
pages of a domain, it is counted once.

5.2 Empirical Analysis of Defenses
As a part of our measurement study, we empirically
analyzed the effectiveness of popup blocking and
third-party cookie blocking to prevent tracking. The
results of these measurements (run using the Alexa Top
500 domains, with 4 random links chosen from each) are
summarized on the righthand side of Table 3. Overall, we
find that existing defenses protect against a large portion
of tracking, with the notable exception of Behavior E. We
dive into the effects of each measured defense in turn.

With popups blocked, we did not observe significant
differences in the tracking capabilities of most trackers.
As expected, we observe fewer trackers exhibiting Behav-
ior C (Forced) — however, Behavior C using redirects re-
mains, leaving three trackers exhibiting such behavior. We
find most Behavior C trackers exhibit this type of behavior
only occasionally, acting as Behavior B (Vanilla) the rest
of the time. Thus, with third-party cookies enabled, popup
blocking does not affect the capabilities of most trackers.
Indeed, we suspect that most popups are used to better
capture the user’s attention rather than to maneuver the
tracker domain into a first-party position. Nevertheless,
this technique is sometimes used for this purpose5.

Third-party cookie blocking is, as expected, a better
defense against tracking. However, recall that in most
browsers other than Firefox, third-party cookie blocking
only blocks the setting, not the sending, of cookies.
Thus, if a tracker can ever set a cookie (via Behavior
C or Behavior E), this cookie is available from that
point forward. In Table 3, we distinguish the results for
Firefox’s strict cookie blocking policy: any type with
an asterisk in the “Cookies Blocked” column disappears
in Firefox (trackers that exhibit both Behavior A and
E reduce to only A; the others disappear). Note the
presence of one Behavior B tracker: this is meebo.com,

5http://stackoverflow.com/questions/465662/

Figure 10: Example Social Widgets. Behavior E trackers
expose social widgets that can be used to track users
across all the sites on which these widgets are embedded.

which sets unique identifiers in LocalStorage in addition
to browser cookies, leaving it unaffected by cookie
blocking. Figure 9 shows the top 20 trackers for this
measurement (compare to Figure 6), in which it is evident
that most cross-site trackers have disappeared from the
top 20, leaving the prominence of Behavior E trackers
like Facebook, Twitter, YouTube, and others.

We also measured the effectiveness of disabling
JavaScript, the most blunt defense against tracking. We
find that it is extremely effective at preventing tracking
behaviors that require API access to cookies to leak them,
as is the case for Behavior A (Analytics) and Behavior
D (Referred). However, trackers can still set cookies via
HTTP headers and Behavior C trackers can use HTML
redirects. Any tracking that requires only that content be
requested from a tracker is not impacted — thus, while the
scripts of Behavior E and other trackers cannot run (e.g.,
to render a social widget), they can be requested, thereby
enabling tracking. Some trackers simply use <noscript>
tags to fetch single-pixel images (“beacons”) when
more complex scripting techniques are not available.
Despite being the most effective single defense, disabling
JavaScript renders much of today’s web unusable, making
it an unworkable option for most users.

The Do Not Track header does not yet appear to have
a significant effect on tracking, as evidenced by the sus-
tained prevalence of most trackers in Table 3. Note that,
as in all the results we report, we did exclude any trackers
that set only non-unique and/or session cookies, as some
trackers may respond to the DNT header by setting an
opt-out cookie. We did notice that a few fairly prevalent
trackers appeared to respond to the header, including
gemius.pl, serving-sys.com, media6degrees.com
and bluekai.com. These results are consistent with a
recent set of case studies of DNT compliance [17].

Finally, we note that we did not observe any trackers
actively changing behavior in an attempt to circumvent
the tested defenses — that is, we did not observe more
LocalStorage or more Flash cookies. Though we have not
verified whether or not these trackers instead use more
exotic storage mechanisms like cache Etags, we hypoth-
esize that enough users do not enable these defenses to
mobilize trackers to substantially change their behavior,
and hence fall outside our common case explorations.

5.3 A New Defense: ShareMeNot
From these measurements, we conclude that a combi-
nation of defenses can be employed to protect against a
large set of trackers. However, Behavior E trackers like

12

http://stackoverflow.com/questions/465662/


Tracker Without ShareMeNot With ShareMeNot

Facebook 154 9
Google 149 15
Twitter 93 0
AddThis 34 0
YouTube 30 0
LinkedIn 22 0
Digg 8 0
Stumbleupon 6 0

Table 4: Effectiveness of ShareMeNot. ShareMeNot
drastically reduces the occurrences of tracking behavior
by the supported set of Behavior E trackers.

Facebook, Google, and Twitter remain largely unaffected.
Recall that these trackers can track logged-in users
non-anonymously across any sites that embed so-called
“social widgets” exposed by the tracker. For example,
Facebook allows other websites to embed a "Like" button,
Google exposes a "+1" button, and so on (see Figure 10
for a number of examples). These buttons present a
privacy risk for users because they track users even when
they choose not to click on any of the buttons.

When users can protect themselves from tracking in
this fashion, it comes at the expense of the functionality
of the button. In Firefox, the stricter third-party cookie
blocking policy renders the buttons unusable. Other
existing defenses, including the popular Disconnect
browser extension6, work by simply blocking the
tracker’s scripts and their associated buttons from being
loaded by the browser at all, thereby effectively removing
the buttons from the user’s web experience entirely.

We introduce ShareMeNot, a Firefox add-on that
aims to find a middle ground between allowing the
buttons to track users wherever they appear and retaining
the functionality of the buttons when users explicitly
choose to interact with them. It does this by stripping
cookies from third-party requests to any of the supported
Behavior E trackers under ordinary circumstances (as
well as from any other blacklisted requests that are made
in the context of loading such a button); when it detects
that a user has clicked on a button, it allows the cookies to
be included with the request, thereby allowing the button
click to function as normal, transparently to the user.

The use of ShareMeNot shrinks the profile that the sup-
ported Behavior E trackers can create to only those sites
on which the user explicitly clicks on one of the buttons —
at which point the button provider must necessarily know
the user’s identity and the identity of the site on which
the button was found in order to link the “like” or the “+1”
action to the user’s profile. No other existing approach
can both shrink the profile a Behavior E tracker can
create while also retaining the functionality of the buttons,
though concurrent work on the Priv3 Firefox add-on [3]
adopts the same basic approach; as of February 2012,

6http://disconnect.me

Priv3 supports fewer widgets and, to our knowledge, was
not iteratively refined through measurement.

We experimentally verified the effectiveness of Share-
MeNot. As summarized in Table 4, ShareMeNot dramat-
ically reduces the presence of the Behavior E trackers it
supports to date. We chose to support these sites based in
part on our initial, pre-experimental perceptions of pop-
ular third-party trackers, and in part based on our experi-
mental discovery of the top trackers. ShareMeNot entirely
eliminates tracking by most of these, including Twitter,
AddThis, Youtube, Digg, and Stumbleupon. While it does
not entirely remove the presence of Facebook and Google,
it reduces their prevalence to 9 and 15 occurrences,
respectively. In the Facebook case, this is due to the
Facebook comments widget, which triggers additional
first-party requests (containing tracking information) not
blacklisted by ShareMeNot; the Google cases appear
mostly on other Google domains (e.g., google.ca).

The currently released ShareMeNot add-on does not
fully block requests to the trackers, thus exposing the
user’s IP address and other fingerprinting information, nor
does it block programmatic access to document.cookie.
A new version of ShareMeNot is under development that
aims to address these issues by replacing widgets entirely
with client-side buttons, making no requests to trackers
until these replacement buttons are clicked.

As of February 2012, we have seen over 20,000 down-
loads from our own servers7, in addition to over 7000
daily users as reported by the official Mozilla add-on site8.

6 Related Work
We expand our discussions of several related works and
consider additional related works not discussed above.

A number of studies have empirically examined
tracking on the web, most notably [14]. In that paper, the
authors present the results of a longitudinal measurement
study of web tracking, examining the prevalence of
third-party trackers on the web. The authors do not
distinguish between different types of trackers, grouping
together, for example, Google Analytics (a within-site
tracker) and Doubleclick (a cross-site tracker), though
they touch on aspects in prior work [15]. As discussed,
we believe that this distinction is fundamentally important
for understanding and responding to web tracking.

In their five-year study of modern web traffic, Ihm and
Pai [8] find that ad network traffic accounts for a growing
percentage of total requests (12% in 2010). They find
Google Analytics on up to 40% of the pages reflected in
their data, a number that has increased to over 50% in
our data. Another measurement study of web tracking
appeared in [12], in which the authors examined the
prevalence of cookie usage and P3P policies.

7http://sharemenot.cs.washington.edu/
8https://addons.mozilla.org/firefox/addon/sharemenot/

13

http://disconnect.me
http://sharemenot.cs.washington.edu/
https://addons.mozilla.org/firefox/addon/sharemenot/


From a slightly different threat model, the authors
of [11] examined privacy-violating information flows on
the web, though they don’t distinguish third-party trackers
from visited sites themselves. As in our study, they found
a number of instances of cookie leaking, as well as on-site
behavioral tracking and other privacy violations. In [13]
and [16], the authors examine the direct leakage of private
data from first-party websites to data aggregators, includ-
ing the potential linkage of user accounts on separate sites.

In [9], the authors classify trackers based on cooper-
ation between the embedding site and the trackers, which
in some ways overlaps with our classification. They do
not measure the prevalence of these tracker classes, and
miss Behavior E (Personal), which has only emerged in
popularity since the publication of that paper.

Further afield, a number of researchers [5, 7, 23]
have tackled the problem of privacy-preserving targeted
advertising and other personalized content, attempting
to find a middle ground that balances the values of users,
websites, and advertisers or other content providers.

Additionally, there have been significant online discus-
sions about tracking, e.g., [17]. Finally, entire workshops
on tracking have emerged, e.g., the 2011 Workshop on
Internet Tracking, Advertising, and Privacy and the 2011
W3C Workshop on Web Tracking and User Privacy.

7 Conclusion
In this paper we presented an in-depth empirical
investigation of third-party web tracking. Our empirical
investigation builds on the introduction of what we
believe to be the first comprehensive classification frame-
work for web tracking based on client-side observable
behaviors. We believe that this framework can serve as
a foundation for future technical and policy initiatives.
We additionally evaluated a set of common defenses on
a large scale and observed a gap — the ability to defend
against Behavior E tracking with social media widgets,
like the Facebook “Like” button, while still allowing
those widgets to be useful. In response, we developed
and evaluated ShareMeNot, which is designed to thwart
such tracking while still allowing the widgets to be used.

Acknowledgements
We thank our shepherd, Jon Crowcroft, and the anony-
mous NSDI reviewers for their feedback. We thank
Daniel Halperin, Arvind Narayanan, and Charlie Reis for
feedback on earlier drafts; Chris Rovillos for volunteering
to help maintain and extend ShareMeNot; and Brandon
Lucia for naming it. This work was supported in part
by NSF Awards CNS-0722000, CNS-0846065, and
CNS-0917341, an NSF Graduate Research Fellowship
under Grant No. DGE-0718124, an Alfred P. Sloan
Research Fellowship, and a gift from Google.

References
[1] G. Aggrawal, E. Bursztein, C. Jackson, and D. Boneh. An

analysis of private browsing modes in modern browsers. In
Usenix Security Symposium, 2010.

[2] M. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J.
Hoffnagle. Flash Cookies and Privacy II: Now with HTML5 and
ETag Respawning. Social Science Research Network Working
Paper Series, 2011.

[3] M. Dhawan, C. Kreibich, and N. Weaver. The Priv3 Firefox
Extension. http://priv3.icsi.berkeley.edu/.

[4] P. Eckersley. How unique is your web browser? In International
Conference on Privacy Enhancing Technologies, 2010.

[5] M. Fredrikson and B. Livshits. RePriv: Re-Envisioning In-
Browser Privacy. In IEEE Symp. on Security and Privacy, 2011.

[6] A. Goldfarb and C. E. Tucker. Privacy Regulation and Online
Advertising. Management Science, 57(1), Jan. 2011.

[7] S. Guha, B. Cheng, and P. Francis. Privad: Practical Privacy in
Online Advertising. In NSDI, 2011.

[8] S. Ihm and V. Pai. Towards understanding modern web trafÞc.
In IMC, 2011.

[9] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting
browser state from web privacy attacks. In WWW, 2006.

[10] A. Janc and L. Olejnik. Feasibility and real-world implications
of web browser history detection. In W2SP, 2010.

[11] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical
study of privacy-violating information flows in JavaScript web
applications. In CCS, 2010.

[12] C. Jensen, C. Sarkar, C. Jensen, and C. Potts. Tracking website
data-collection and privacy practices with the iWatch web crawler.
In SOUPS, 2007.

[13] B. Krishnamurthy and C. Wills. On the leakage of personally iden-
tifiable information via online social networks. In WOSN, 2009.

[14] B. Krishnamurthy and C. Wills. Privacy diffusion on the web: a
longitudinal perspective. In WWW, 2009.

[15] B. Krishnamurthy and C. E. Wills. Generating a privacy footprint
on the internet. In IMC, 2006.

[16] B. Krishnamurthy, K. Naryshkin, and C. Wills. Privacy leakage
vs. protection measures: the growing disconnect. In W2SP, 2011.

[17] J. Mayer. Tracking the Trackers: Early Results, 2011.
http://cyberlaw.stanford.edu/node/6694.

[18] J. Mayer. Safari tracking, Jan. 2012. http://webpolicy.org/
2012/02/17/safari-trackers/.

[19] Mozilla. Bug 417800 — Revert to not blocking third-party
cookies, 2008. https://bugzilla.mozilla.org/show_bug.
cgi?id=417800.

[20] G. Pass, A. Chowdhury, and C. Torgeson. A Picture of Search.
In Conf. on Scalable Information Systems, 2006.

[21] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle.
Flash Cookies and Privacy. Social Science Research Network
Working Paper Series, Aug. 2009.

[22] ThreatMetrix. Tech. overview. http://threatmetrix.com/
technology/technology-overview/.

[23] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas. Adnostic: Privacy Preserving Targeted Advertising.
In NDSS, 2010.

[24] R. Vamosi. Device Fingerprinting Aims To Stop Online
Fraud. PCWorld, Mar. 2009. http://www.pcworld.com/
businesscenter/article/161036/.

[25] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host fingerprint-
ing and tracking on the web: Privacy and security implications.
In NDSS, 2012.

[26] H. Yu. Do Not Track: Not as Simple as it Sounds, Aug. 2010.
https://freedom-to-tinker.com/blog/harlanyu/do-
not-track-not-simple-it-sounds.

14

http://priv3.icsi.berkeley.edu/
http://cyberlaw.stanford.edu/node/6694
http://webpolicy.org/2012/02/17/safari-trackers/
http://webpolicy.org/2012/02/17/safari-trackers/
https://bugzilla.mozilla.org/show_bug.cgi?id=417800
https://bugzilla.mozilla.org/show_bug.cgi?id=417800
http://threatmetrix.com/technology/technology-overview/
http://threatmetrix.com/technology/technology-overview/
http://www.pcworld.com/businesscenter/article/161036/
http://www.pcworld.com/businesscenter/article/161036/
https://freedom-to-tinker.com/blog/harlanyu/do-not-track-not-simple-it-sounds
https://freedom-to-tinker.com/blog/harlanyu/do-not-track-not-simple-it-sounds

	Introduction
	Background
	Web-Related Background
	Background on Tracking

	Classifying Web Tracking Behavior
	Investigating Tracking Properties
	Third-Party Analytics
	Third-Party Advertising
	Third-Party Advertising with Popups
	Third-Party Advertising Networks
	Third-Party Social Widgets

	A Classification Framework

	Detecting Trackers
	Tracking on Popular Sites
	Other Storage Mechanisms
	Cookie Leaks, Countries, and More

	Comparison to Less Popular Sites
	Real Users: Using the AOL Search Logs

	Defenses
	Initial Analysis of Defenses
	Empirical Analysis of Defenses
	A New Defense: ShareMeNot

	Related Work
	Conclusion

