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Abstract

The output quality of large language models (LLMs) can be im-
proved via “reasoning”: generating segments of chain-of-thought
(CoT) content to further condition the model prior to producing
user-facing output. While these chains contain valuable informa-
tion, they are verbose and lack explicit organization, making them
tedious to review. Moreover, they lack opportunities for user feed-
back, such as to remove unwanted considerations, add desired ones,
or clarify unclear assumptions. We introduce Interactive Reasoning,
an interaction design that visualizes chain-of-thought outputs as
a hierarchy of topics and enables user review and modification.
We implement interactive reasoning in Hippo, a prototype for AI-
assisted decision making in the face of uncertain trade-offs. In a user
study with 16 participants, we find that interactive reasoning in
Hippo allows users to quickly identify and interrupt erroneous gen-
erations, efficiently steer the model towards customized responses,
and better understand both model reasoning and model outputs.
Our work contributes to a new paradigm that incorporates user
oversight into LLM reasoning processes.

CCS Concepts

• Human-centered computing → User interface design; Em-

pirical studies in HCI.
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1 Introduction

There has been a surge of interest in developing and studying the
reasoning capabilities of large language models (LLMs) [58, 92]. So-
called reasoning models, such as OpenAI’s o3 [24] and DeepSeek’s
R1 [16] models, include a “reasoning step” before generating their
response and can perform complex tasks, align with social values,
and adapt to user preferences [24, 66]. The reasoning step is often
referred to as test-time scaling [49, 83], where a model is allowed to
allocate significantly more computational resources during the in-
ference phase to improve reasoning ability. Due to recent advances
in LLMs, reasoning models have become more efficient and less
costly to develop and use [16, 49].

While these reasoning steps are seen as a positive development
for transparent LLMs [3], users have little control over the rea-
soning steps to shape the model’s reasoning process. In addition,
the reasoning step from test-time scaling is generally verbose and
unstructured, making it tedious for users to make sense of the
reasoning. For users, making sense of and having control over the
reasoning is especially important when seeking advice frommodels
in high-stake domains such as ethical, financial, medical decision-
making, where reasoning steps may be misaligned with a user’s
core beliefs, knowledge, and priorities [20]. For example, users’ val-
ues and perspectives should ideally inform the reasoning process in
a decision-making process [13]. When users identify misalignments
in LLM reasoning, they cannot provide targeted feedback when the
model makes incorrect assumptions. Users must work in a cycle
where they issue a new prompt, review the model output, review
reasoning steps, and manually refine their output.

In this paper, we introduce Interactive Reasoning to reimagine
how users engage with LLMs’ reasoning processes. Our work was
inspired by the longstanding challenge of balancing automation
and human control in AI systems [19, 64], as well as recent work on
sensemaking [25, 70] and appropriate AI reliance in the context of
generative AI [6, 32]. Our approach transforms complex reasoning
chains into interactive tree representations, which enables users to
visualize, directly edit reasoning steps, provide feedback, and shape
the model’s final output. By using an interactive tree representa-
tion, our approach uplifts and scaffolds the intermediate steps of a
reasoning model, shows (dis)connections to the model output, and
enables interactions with tree nodes to steer the model output.

We instantiate Interactive Reasoning in Hippo1, a prototype that
allows users directly interact with the reasoning process before the
model generates its final output. In a user study with 16 participants,
we used Hippo to compare with an editable baseline interface and
to answer three key research questions around (1) users’ control,
sense-making, and awareness when interacting with the reasoning
chains; (2) users’ perception over the final response after acting
with the reasoning chains; and (3) users’ interactions with the
interactive reasoning tree. We additionally demonstrate Hippo’s
use cases where users interact with reasoning chains in diverse

1We named our system after the 5th-century thinker Augustine of Hippo.
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tasks outside of our study context such as information seeking and
financial planning. To summarize, our work contributes:

(1) A novel interaction design with reasoning models, which we
instantiate through Hippo, a research prototype to visualize
the reasoning steps, allow direct human feedback, and show
(dis)connections between the reasoning steps and the model
output.

(2) Empirical findings from a controlled user study showing
that participants indicated significantly more control over,
sense-making, and awareness of assumptions in the reason-
ing when usingHippo compared to using a baseline interface.
Participants reported an increased confidence in making the
final decision with Hippo compared to the baseline. Qualita-
tive results showed that participants valued the transparency
of viewing the reasoning chains and the ability to repurpose
the model response after engaging with the reasoning chain.

2 Related Work

2.1 What is Reasoning?

Much of the definition of reasoning sprang out of Aristotle’s the-
ory of the syllogism, where he defined reasoning (syllogismos).
It generally refers to the making of assumptions called premises

and the process of moving toward conclusions (end point) from
these assumptions by rules [74]. To conceptualize reasoning, logi-
cians consider that reasoning can be modeled abstractly by a graph
or argument diagram where arcs (steps) link points (vertices in
the graph) [75]. In logic, laying out an argument structure is also
referred to as “argument diagramming”, which aims to transfer ar-
guments into a structured representation to evaluate them [55, 59].

In NLP, “reasoning” is a process of answering questions that re-
quire complex, multi-step generation with intermediate steps [58],
though current LLMs are still not capable of genuine logical reason-
ing [48]. In this process, the reasoning model integrates multiple
knowledge (e.g., encyclopedic and commonsense knowledge) to
derive some new conclusions about the (realistic or hypothetical)
world [88]. Knowledge can be derived from sources that are both
explicit and implicit. Conclusions are assertions or events assumed
to be true in the world, or practical actions [89]. There are a number
of ways to build and improve reasoning models, such as tree-based
search methods [41, 66, 83, 85] and reinforcement learning [16]. Re-
cent methods to improve test-time scaling emphasized improving
the final model output (rather than on the length or steerability in
our paper), leveraging methods such as Monte-Carlo Tree Search
(MCTS) [84], process reward models [83], and budget forcing [49].

Our work builds on this foundation by modeling the reasoning
processes of LLMs as graphs. Unlike previous research that focuses
on reasoning that follows a defined argumentative structure, e.g.,
essays [69], debates [14], and political rhetoric [67], we emphasize
capturing the intermediate reasoning steps from a simple query to
LLMs. These steps, which are typically internal to the model, are
made visible to users, enabling transparency and interaction with
the reasoning process. This transparency not only allows users to
see the various topics the reasoning includes, and how the final
response is derived but also enables interaction with the model
reasoning process during test-time scaling.

2.2 Appropriate AI Reliance

With the increasing LLM capabilities, users increasingly seek guid-
ance from LLMs for decision-making in daily life [11, 52, 94]. These
decision-making processes are not clear-cut and depend on trade-
offs on the contexts, personal values, and ethical standards [17].
However, the prevalence of LLMs has raised questions about over-
reliance and LLMs’ impact on critical thinking skills and practices
when making such personal decisions [38]. Prior work in explain-
able AI (XAI) has studied users’ appropriate reliance on AI exten-
sively. The concept of appropriate reliance can typically be defined
as “relying on the AI when it’s correct, and relying on yourself
when it’s not” [61]. To address overreliance, prior work has in-
vestigated solutions, e.g., providing information about the AI’s
performance [87], explanation of outputs [5], and communication
of uncertainty [93]. A notable example is the cognitive forcing
function—interventions being applied at the decision-making time
to disrupt heuristic reasoning and thus cause the person to engage
in analytical thinking [8].

Recent work has built on these work and turned to how end
users can appropriately rely on LLMs and incorporate LLMs into
their decision-making process [6, 31]. These work mostly focus on
user reliance in the context of answering objective questions (e.g.,
facts, LSAT questions). However, many daily decisions do not have
a clear-cut answer and arguably require users to make trade-offs
based on their unique contexts. Our work builds on strategies from
the XAI community to foster appropriate reliance on AI, and re-
design the intermediate reasoning process to explore how users
may engage with decisions with the long reasonig chain.

2.3 Diagramming for Large Language Models

HCI has contributed systems to explore and evaluate LLMs’ output
via diagrams. For example, Graphologue [25] and Sensecape [70]
help users interact non-linearly on an interface to help users under-
stand and explore LLM-generated information in a node-link dia-
gram. In a similar vein, prior work have leveraged the node-link dia-
grams to explore different topical aspects in, e.g., data analysis [44],
creative coding [1], responsible AI [79], research ideation [57].
These tools, as Arawjo et al. [2] dubbed, are sensemaking interfaces
for information foraging. Another thread of novel visual interac-
tion of LLMs include systems for designing LLM-based applications,
such as PromptChainer[81], which construct “AI chains” [82], or
data feeds between LLM and other tools or scripts.

In addition to tools to show the flow of the LLM-generated in-
formation, there is a large number of work focusing on interactive
evaluation for LLM prompts and output [53]. For instance, Chain-
Forge is a visual toolkit for prompt engineering and on-demand
hypothesis testing of text generation of LLMs [2]. EvalLM is an
interface that aids users in revising prompts with synthetic LLM-
based evaluators by providing the difference of the outputs [34].
LLM Comparator analyzes the LLM results from automatic side-by-
side evaluation, thereby allowing users to understand when and
why a model performs better or worse than a baseline model, and
how the responses from two models are qualitatively different [28].

Our work focus on the reasoning process at test-time scaling,
where users can provide feedback. In doing so, users alsomake sense
of the reasoning steps, and enable the linkage between the reasoning
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and the output. Our goal is to allow users to directly scrutinize the
model reasoning, and explore the design opportunities for human
participation in reasoning during test-time scaling.

3 Design Goals

We formulate our concrete design goals (DG) by drawing upon re-
search in the HCI, UIST, and XAI communities around interacting
and sensemaking with LLMs, as well as on avoiding AI overreliance.

DG1: Allow users to directly manipulate reasoning chains.

While several computational approaches have been developed to ad-
dress the challenge of aligning LLMs with human values [68], these
models may still struggle to automatically resolve value conflicts
in complex real-world decision-making tasks that require human
intervention for trade-offs [11]. Users frequently encounter outputs
that are overly general responses that may not correctly reflect
the user’s context [35]. Interactive Reasoning should allow users
to directly give feedback to the intermediate reasoning process of
the model, in line with the principles of direct manipulation of
LLMs [45, 63]. This avoids the usual trial-and-error (i.e., iterative
prompting and excessive turn-taking with AI) that is required when
trying to obtain a satisfactory result [12, 90].

DG2: Encourage users to cognitively engage with assump-

tions made in the reasoning chain. The reasoning chain can
often be regarded as supporting details or justification for the LLM
response [80]. Prior work in XAI suggests that in many settings,
the very presence of an explanation can increase users’ trust and
reliance (which can also result in overreliance) [5, 77]. However,
cognitive forcing functions [8] have been shown to compel people
to engage more thoughtfully with AI-generated explanations and
reduce over-reliance. Further, a waiting time before model output
may help users gain useful insight and reflect on the task [54]. Re-
viewing the intermediate reasoning steps can potentially serve as
an effective means of involving users in critically evaluating the
model’s reasoning steps, encouraging them to verify underlying
assumptions rather than passively accepting results.

DG3: Use graphical representations to reduce the infor-

mation load for long reasoning chains. While requiring users
to read the entire reasoning chain carefully would be ideal to en-
sure transparency, doing so is impractical, especially under limited
time [71]. Interactive Reasoning should support effective commu-
nication of ideas, especially in the often long reasoning chains
such as DeepSeek-R1. In HCI and visualization, graphical repre-
sentations have been used to support sensemaking [4], in many
domains [57, 70, 79], including for LLMs. For example, Grapha-
logue [25], which leverages node-link diagrams generated from
LLMs’s final output, has been shown to help users quickly grasp
key concepts and their connections. We draw on this idea to make
sense of the long reasoning chains, rather than the final output
as done in [25]. In addition, the graphical representation should
be complete even if it means visualizing a large tree to ensure full
transparency of the reasoning chain. Similar to theWikum system’s
summarization feature [91], users should be able to prune the tree
to shorten the reasoning steps.

DG4: Provide timely opportunities for users to intervene

and steer the model via reasoning. In a similar vein to DG3,

requiring users to edit every idea in a reasoning chain is unrealistic.
Interactive Reasoning requires balanced control between automation
and human agency [23]. When dealing with large texts or datasets,
decomposing the information can be beneficial, but interacting
with each component inevitably makes recalling the context diffi-
cult [30, 82]. From early feedback on our prototype, we observed
that users quickly lost the patience to interact with all the reasoning
components if the chain is too long. Interactive Reasoning requires
users to intervene on smaller information components, and only
when the model requires feedback.

DG5: Attribute the final output to specific parts of the rea-

soning chain. Prior work has found that the presence of sources im-
pacts the credibility of the outputs of LLM-infused applications [32,
33]. When reading the final output of the LLMmodel in high-stakes
decision-making tasks, understanding the statements and their re-
lations to the assumptions in the reasoning chain explain how the
final response is generated. This linkage, as prior work suggested,
can improve users’ sense of control and ownership of the text gen-
eration process [15, 22, 29, 30], and has been employed in many
RAG-based models and platforms, e.g., Perplexity.

4 Interactive Reasoning

In this section, we describe Interactive Reasoning, an interaction
design for breaking up a reasoning chain into smaller topical units,
visualizing the units in a hierarchy, and editing units via user feed-
back. Our current Interactive Reasoning implementation includes
four interactive operations: one can add, edit, or delete units, or re-
generate the model’s reasoning chain. We detail the implementation
of Interactive Reasoning in an interface called Hippo.

4.1 Hippo User Interface

We detail the features of Hippo that support each design goal in
Section 3. At its core, Hippo allows users’ control of an LLM’s
reasoning chains displayed in a hierarchical tree structure (rather
than a linear sequence of plain text), which can in turn steer the
final model response. We use a prompt – “Where should I travel to

during the spring break?” to walk through the interface in Figure 1.
Interactive Preorder Traversal Tree Playground. After click-

ing the “Ask” button, the interactive reasoning tree appears as
shown in Figure 1. The tree progressively generates its nodes zB in
a pre-order (depth-first) tree traversal sequence, where the parent
(topic) node appears first, followed by the left subtree. This interface
parses the original long reasoning chain into smaller, manageable
nodes to reduce the reader’s cognitive load. In each node, the text
tokens are displayed to the user in “real-time”. This sequential pro-
gression allows users to observe the model’s thinking as it unfolds,
rather than seeing only the completed output. Users can stop the
tree progression, and focus on a specific node.

Interactive Nodes. For each node, users can directly revise the
reasoning text by clicking the edit button zB (DG1). Users can also
generate additional nodes zF and subtrees under a parent node to
steer the reasoning subtopics using a custom prompt zC (DG4).
Users can regenerate or redirectly edit this node if desired. Users
can delete a node or a subtree entirely if they choose to ignore the
(sub)-topics. Users can also revisit the tree and revise the content
inside a tree node after the tree generation is complete. Altogether,
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Figure 1:Hippo includes a tree visualization of the reasoning steps and allows users to directly control when models need users’

feedback. Users input their query in the input bar
zA . Then, the reasoning tree progressively generates nodes

zB following a

preorder (depth-first) tree traversal order. Users can branch out a reasoning node
zC by providing a customized prompt, which

will add a new child node
zF . Hippo halts the tree generation at Feedback node to elicit feedback to clarify user contexts at

zD .

Users can trim the tree by collapsing the subtree
zE , where Hippo append a summary of the subtree below a node. Users can

pause and continue the generation at any point. Users organize the reasoning tree before reviewing the response in Figure 2.

the reasoning chain is completely represented in a tree structure
(DG3), rather than a linear textual representation.

Hippo reasoning tree generation stops and prompts users to
clarify the situation and give feedback zD (DG2, DG4). Our early
prototype asked users to stop at all given nodes to confirm the
model reasoning, but this approach demanded excessive attention
throughout the intermediate tree generation process. To address
this, we implemented a Clarify step (Section 4.2.2) in the graph
generation pipeline where only Feedback nodes that require clari-
fication or context are surfaced to users. Users can choose to skip
the answer. In the case of providing users’ own feedback, Hippo
automatically generates a follow-up node to users.

Interative Tree Trimming. When the full reasoning chain gen-
eration is completed, users can zoom out to view the tree overview
and “trim” the tree by clicking zE the “collapse the tree” button
(DG3) to reduce the reasoning chain’s size if it becomes too large. A
summary of the collapsed subtree is appended below the immediate

parent node. We acknowledge the inherent tradeoff between dis-
playing the complete reasoning chain and abstracting information;
however, our project’s primary aim is to enhance the transparency
of the reasoning process through a progressive tree-based visual-
ization and to study users’ perceptions after interacting with this
information structure.

Visual Highlighting between Reasoning and Response.
Users can edit the interactive reasoning tree and “review the re-
sponse” based on the edited reasoning (Figure 2). Users can hover
over the sentence in the response, and the Hippo highlights the
connection between a sentence in the response zH and the nodes
in the reasoning tree zG (DG5). Users can continue to edit the tree
and update the response.

4.2 Tree Generation Pipeline

In Interactive Reasoning (Figure 3), the intermediate reasoning is
decomposed using reasoning operators (describing the high-level
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Figure 2: Hippo highlights the tree nodes
zG and sentences

in the reasoning model final response
zH .

structure of reasoning) and tags (capturing the low-level details
and important entities given structural constraints). This process
requires structuring the raw text from the model’s reasoning into
a hierarchy of smaller components, drawing out components that
require human intervention, and linking the final output to compo-
nents in the reasoning chain.

4.2.1 Structure the Text. The Structure operator leverages the
LLMs’ capability to break down any unstructured text into top-
ics [37]. The reasoning chain logic usually follows a general-to-

specific deductive method of developing a topic [27, 50]. For in-
stance, a paragraph may start with “First, I should consider different

types of travelers. I should list options that cater to different prefer-

ences”. Then, this paragraph continues to dive into sub-topics: “For
beach destinations, places like Cancun, Miami, or the Caribbean come

to mind.” After explaining these popular places, the reasoning chain
further breaks down into another option within “beach destination”

(e.g., “But maybe I should also include some less crowded beaches for

those who prefer a quieter time.” ) The NLP community has demon-
strated that LLMs have capabilities that organize the text into a
hierarchy [26, 95]. Prior work has also shown that LLMs generally
demonstrate capabilities in relationship awareness and structural
understanding [9, 26, 40, 76], particularly using markups such as
XML-like tags with few-shot prompting [16, 56, 65].

Building on these insights, our backend uses a few-shot prompt
that instructs GPT-4o to identify the hierarchy of information. The
instruction asks the model to annotate the original text inline
with XML-like tags (i.e., <topic>...</topic> and <branch>...
</branch>) to indicate the separation of text and hierarchy. In our
pipeline, we do not rely on the paragraphs broken down by the
original reasoning chain, as several paragraphs can discuss the
same topic (this was also reflected in our pilot study and user eval-
uation, baseline condition). Instead, we aggregate text from the
reasoning chain and segment it by topic z1 before applying the
Structure operator z2 on these segments. We input smaller text
chunks, rather than the monolithic reasoning text because LLM
performance can degrade significantly with longer input length,
making it difficult for a single long-context prompt to effectively
cover all aspects [42]. Note that this component is different from
prior work [25] in that we use the few-shot prompt to extract the

topic hierarchy rather than important entities (e.g., nouns). We in-
clude our prompt template with an example output marked in the
few-shot prompt in the supplementary material.

4.2.2 Flag nodes that need user feedback. Given a tagged concept
hierarchy, the Clarify operator identifies the components that
could benefit from human feedback. In the running example, a
chunk of text such as “Wait, what is the user’s budget? I should

include some budget-friendly options too.” assumes that the user is
looking for budget-friendly options. Users can quickly intervene
and provide their budget expectations. For each node, we leverage
the LLMs’ ability to perform classification tasks, which can achieve
accuracy comparable to human annotators [18, 47]. We used few-
shot prompting to identify the Feedback nodes where user input
would be valuable (e.g., uncertainty, preferences, personal experi-
ences). To avoid latency (annotate node by node), we annotate the
marked-up text with the additional tag <user>...</user>.

In practice, we found users became frustrated when presented
with multiple similar questions from different branches of topics.
Questions like “How about the Caribbean?” and “Some spring break-

ers do cruises in the Caribbean. How about that?” essentially ask the
user to clarify the same question. To address this problem, we keep
track of questions that have already been flagged and check for
duplicates (using a cosine similarity measure on sentence vector in
the embedding space with a all-MiniLM-L6-v2 model threshold
> 0.8) before showing new feedback nodes. We show our prompt
for the Clarify operator in the supplementary material.

4.2.3 Generate a response based on the edited reasoning chain.

When users provide feedback to questions or directly edit nodes
in Hippo, we incorporate these contributions into the thought con-
text. Once the user completes their edits, the pipeline updates the
reasoning text enclosed within <think>...</think> tags [16]. We
do not impose over-complicated system prompts in this step (e.g.,
imposing additional prompts other than the user’s input to affect
the final output). One goal of this paper is to examine if users find
value in responses generated from the edited intermediate reason-
ing. We provide the prompt to elicit updated model response below
(also see z4 in Figure 3).
{{original_text_prompt}}

<think>{{updated Thought Process}}</think>

<answer>[Updated Response to be generated]

4.2.4 Link the response to intermediate responses. The Link op-
erator establishes connections between elements in the reasoning
chain and corresponding segments in the final response. This func-
tionality enables the traceability of how specific reasoning steps
influence particular conclusions. We conceptualized this as a Natu-
ral Language Inference (NLI) task, where the reasoning segment
serves as a premise and the response segment as a hypothesis.
To achieve this, we prompt GPT-4o using a zero-shot prompting
method to identify the connections [36].

We initially implemented this connection mechanism using the
bart-largemodel [39] to evaluate semantic relationships between
text segments. However, we encountered computational latency
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Figure 3: The Interactive Reasoning pipeline fetches the initial reasoning chain, structures the reasoning into topical hierarchy,

flags text that might benefit from user intervention. The final output is directed back to the updated reasoning chain.

challenges in the case of long reasoning chains, which usually gen-
erate numerous reasoning nodes and response paragraphs. Process-
ing times in batch for visual highlighting frequently exceeded one
minute. In the end, we decided to use the the zero-shot prompting, as
recent work has shown that LLMs exhibit strong zero-shot capabili-
ties for NLI taskswithout requiring task-specific fine-tuning [60, 78].
Additionally, prior work [21] showed that such models can effec-
tively identify semantic relationships between text segments with
performance comparable to specialized NLI models while offer-
ing significant computational advantages. We include the detailed
prompt in the supplementary material.

4.3 Implementation

Hippo was implemented in the Next.js React framework and Tail-
wind CSS for styling, and a backend server using the Python Flask
framework.We used gpt-4o, more specifically the gpt-4o-2024-08
-06, for each of the reasoning operator, model to structure, clarify,
and link the graphs. We used this for its fast API response time,
computational efficiency, and low expense. The cost of gpt-4o was
$2.50/1M tokens during the implementation. We used the open-
weight DeepSeek-R1 using the together.ai [73] as the reasoning
model in the system implementation and the study.

5 User Evaluation

To evaluate Hippo, we conducted a within-subjects study with 16
participants. Each participant was asked to use a baseline system
and theHippo system. Our goal was to understand users’ perception
of Interactive Reasoning and explore design opportunities for future
exploration. Concretely, our user evaluation was guided by the
following three research questions.

• RQ1: How does Hippo compare to a baseline system in
terms of users’ sense of control over, sense-making of, and
awareness of the reasoning steps?

Review and edit the reaching chain below!

Figure 4: The baseline system. The reasoning steps show up

progressively. Users can directly edit the reasoning steps in

line before revealing the final response.

• RQ2: How do users perceive the final response after inter-
acting with the reasoning steps?

• RQ3: How do users leverage interactive reasoning to under-
stand and steer the model’s behaviors?

5.1 Procedure

The study started with a brief introduction and overview of rea-
soning models. Then, participants were required to conduct tasks
under two conditions: (1) a baseline system with regular reasoning
output, which we adapted to allow editing as shown in Figure 4,
and (2) the Hippo system that displays the reasoning steps in an
interactive tree structure. We implemented the editable version as
the baseline, as opposed to a non-editable version for a fair compar-
ison. Comparing an editable interface to a non-editable one (e.g., on
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DeepSeek or ChatGPT) would have likely yielded intuitive results
for our RQs, especially on measure of the sense of control.

In each condition, participants asked a question selected from the
DailyDilemma dataset [11], which represents relatable and realistic
ethical dilemmas that require nuanced reasoning. We chose the
daily dilemma situations to increase the stakes of the tasks in the
controlled setting. Participants were told that they could modify the
reasoning steps. We counterbalanced the prompts and conditions
that each participant received to reduce the learning effects.

(1) Your parents are having a hard time managing their finances
due to cognitive decline. They have always been fiercely inde-
pendent and get extremely upset at the idea of you stepping
in to help. Should you respect their independence and let
them continue to struggle or intervene, potentially against
their wishes, to ensure their financial stability?

(2) You have a close friend who frequently visits and stays at
your place. Recently, you noticed that they’ve been taking
advantage of your hospitality by eating your food and us-
ing your things without asking. Should you confront your
friend about their behavior despite risking damaging your
friendship?

After each condition, participants were directed to reveal the
response by DeepSeek-R1 and the updated response. Participants
were then asked to fill out a short questionnaire, consisting of the
following metrics (presented as seven-point Likert scale questions):

• Control: I could easily control the intermediate reasoning
steps (e.g., by adding or revising the steps).

• Sense-making: I was able to make sense of the topics the
LLMs navigated in their reasoning process.

• Layout: The layout of the information made it easy for me
to understand the logic in the reasoning.

• Awareness: I was aware of the assumptions in the reasoning
process.

• Confidence: By using the system, I feel confident about my
potential decision in response to the prompt.

• Insights: I obtained useful insights from using the system.
• Satisfaction: I am satisfied with the response.
• Caution: I was fairly cautious when I read the response
generated by the language model.

• Future Use: I could see myself integrating this system into
myworkflowwhen usingAI to helpwith high-stakes decision-
making.

The study concluded with a semi-structured interview that lasted
around 15 minutes. Participants were asked to reflect on their ex-
periences across the two interfaces and their previous experience
with reasoning models such as OpenAI-o1 and DeepSeek-R1. The
interview was guided by questions about the usefulness and usabil-
ity of both systems, as well as observations on how users interact
with the reasoning tree during the study.

Analysis. We applied the Wilcoxon-Sign Rank test for the post-
task Likert-scale questions. We conducted a thematic analysis of the
semi-structured interviews. One author created an initial codebook
from two interview sessions. Then, two authors came together to
iteratively update the codebook in two sessions. The goal of the
qualitative analysis was to identify emerging themes and challenges,
rather than reach for strict inter-rater reliability [7].

5.2 Participants

To estimate the required number of participants, we performed an
a-priori power analysis (Cohen’s d = 0.8, 𝛼 = 0.05) and decided that
a sample size of 16 participants is needed for detecting a medium
effect between the baseline system and Hippo. We, therefore, re-
cruited 16 participants through snowball sampling with the require-
ment that they had used LLM chatbots before. Our participants
were 19-40 years of age, 9 male and 7 female, and had diverse back-
grounds (from undergraduate students to working professionals
in computer science, medicine, finance, education, and the movie
industry). All reported using LLM chatbots more than once per
week. Nine participants rarely reviewed the reasoning chain (i.e.,
1-3 out of every 10 model runs), two never reviewed the reasoning
chain, two sometimes reviewed them (i.e., around half of the time),
two often reviewed reasoning (i.e., for a majority of model runs as
part of a standard workflow), one always reviews the reasoning.

5.3 Results

In this section, we present quantitative and qualitative analyses of
participants’ data from our user study. We group these findings by
our research questions. Participants’ responses to the Likert-scale
questions are shown in Figure 5.

5.3.1 Sense of Control, Sense-making, and Awareness of Assump-

tions (RQ1). First, participants appreciated the function of directly
intervening in the model reasoning process. Based on the post-task
ratings, there was a significant difference in perceived control be-
tween the baseline andHippo (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 4.19, 𝑀Hippo = 5.75, 𝑝 =

0.003). The sense of control can be attributed to the feedback node
where users need to provide their comments or clarification before
moving forward in the reasoning chain, as well as the ability to
directly add, edit, or regenerate nodes within the reasoning tree. In
the study, we observed that all participants gave feedback to the
nodes, and regenerated or added new content to the reasoning tree.
P10 commented on their perceived ease of editing the reasoning
steps: “[Hippo]’s a direct manipulation of the reasoning, which is very

nice, I see for me it was very easy to select and delete the whole thing

that I didn’t care about.” P6 mentioned that they were “empowered

to take steps and make changes”. Notably, while the baseline con-
dition also supported users in directly editing the reasoning steps,
participants commented that “yeah, I know that I can edit, but I don’t

know where to start.” [P4].
We also found that the graphical representation may improve

their sense-making of the overall reasoning process. Participants
rated Hippo higher than the baseline condition in sense-making
of the long reasoning chain (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 5.19, 𝑀Hippo = 6.44, 𝑝 =

0.004) and attributed the improved sense-making to the different
layout (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 3.44, 𝑀Hippo = 6.00, 𝑝 = 0.009). P8, a data
analyst, commented “That [Hippo] makes sense of the topics. That

was one of the best parts of it, actually. It made so much sense to

break down [like] the key ideas, and then it breaks down into more

in-depth components.” P9 stated that “the representation made it

easier to follow the reasoning, see different paths, and understand the

differences between them more readily than with linear text.”
In the study, we also asked users for their awareness of assump-

tions in the reasoning process. The post-task ratings indicate a
significant difference in the awareness of assumptions (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
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Figure 5: Participants’ responses to the Likert-scale questions, contrasting the baseline andHippo conditions. Asterisks indicate

statistically significant (𝑝 < 0.05) differences.

4.69, 𝑀Hippo = 6.25, 𝑝 = 0.012). This improvement could be at-
tributed to the attention that participants paid to completing the
feedback node. Notably, P10 commented that the baseline requires
“a lot of cognitive effort to pay attention” but they only spent less
than one minute on skimming the reasoning steps in this condi-
tion. However, even though P10 also recognized they “paid more

attention” to the tree node generation in Hippo, they found the
process more engaging and felt that it helped them understand the
structure of the reasoning process.

5.3.2 Response Personalization and Repurposing of Model Response.

In general, participants reported feeling more confident in making
a final decision in the study scenarios when usingHippo than when
using the baseline system (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 5.06, 𝑀Hippo = 6.06, 𝑝 =

0.049). Many participants commented that the response after using
Hippo feels personalized. For example, P8 went into more detail
describing their friends in a Feedback node “They have toxic traits
here and there. For example, they tend to gaslight a little.” They
were excited to see that the answer incorporated this consideration:
“If they gaslight or deflect, calmly reiterate your boundaries (e.g., ‘I
still need to stick to my budget, so let’s plan ahead’)”. Compared
to their previous experience with reasoning models on the market,
P10 commented that “It [The output] feels like what I was expecting.
So it’s kind of yeah, it’s kind of personalized. And I think that’s cool.”
In the study, P10 had deleted a few nodes in the reasoning, which
were “just generic answers”; in the end, they commented that the
final response was “definitely shorter to my situation”.

However, there was no significant difference between the base-
line and Hippowhen it comes to participants’ insights (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =

5.38, 𝑀Hippo = 6.06, 𝑝 = 0.135) and satisfaction over the final re-
sponse (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 5.50, 𝑀Hippo = 6.06, 𝑝 = 0.147), perhaps be-
cause the model response for the baseline system was “already very
decent,” as P13 commented. What distinguished the experience was
the personalized response, which made them feel that the model
“hears my voice rather than generating a generic answer.“ In line with
this, P6 stated:

“It feels like the situation is not like a wall [of text]. This
is very rude to say, but when ChatGPT and DeepSeek

produce things it feels like, oh, this is the most average

or median output that can be created, and therefore

everyone would do this. But if, after being able to provide

your feedback and see what it says, it feels like this is

actually tailored towards me. ”

The Likert-scale ratings also revealed no significant difference
in participants’ caution when reading model responses between
conditions (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 3.56, 𝑀Hippo = 4.31, 𝑝 = 0.267), though
participants reported being slightly more cautious with Hippo’s
output. In fact, we found that 7 participants felt more cautious
when they read the final model output in Hippo; 2 participants
were neutral; the rest of the 7 participants felt that they became
less cautious after engaging with the reasoning in Hippo. For in-
stance, compared to the baseline interface where they skimmed
the reasoning, P2 reported, “I think I spent more time working with

the reasoning [with Hippo ], I tend to have a better understanding of

the situation already. So I trust the final response to align with my

feedback.” Similarly, P4 noted, “the response is a good summary of

the different reasonings, but I kind of feel that I don’t need to see the

response to make a decision for this task already. At the end of the day,

it’s me who is going to deal with the situation.” The finding suggests
that model reasoning can be just as valuable, if not more valuable,
than the final model output itself. We further discuss the design
implications of this observation in Section 7.

5.3.3 User’s Interaction with Hippo. Sparsity of Interaction on

the Tree.We observed that participants rarely made edits to the
tree on the fly without the user feedback node. P13 explained
that the content in the chain “made a lot of sense, so I do not feel

like changing anything”. This is especially the case in the baseline
condition, where only four users typed their own experiences and
opinions, rather than just deleting the text or making no edits at all.
Even with Hippo, P14 suggested that “it is so easy to add or delete
nodes during the reasoning process, but I rarely wanted to edit a node.”
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For other participants, they indicated that they would like to make
more edits after the tree completes, or even after the final response
is generated. For example, P8 said “it’s good to use the graph when I

revisit the reasoning, and I can just share my thought process with

others if I want.”
In the post-study interviews, participants were asked to reflect

on the difference between providing feedback during the reason-
ing process (as implemented in our system) versus the traditional
approach of iteratively prompting language models. Participants
showed varying levels of preference for interactive reasoning. Some
participants preferred to monitor the intermediate process. In par-
ticular, P4 mentioned that “seeing the reasoning is so important, and

I have always been wanting to edit the reasoning chain.” However,
other participants suggested that they did not consider it necessary
to see the reasoning steps. P9, a movie producer, commented “if
I’m having a hard time making a decision, I would want to get a few

general recommendations. This process seems too logical,” suggesting
that while insights into the reasoning steps may be helpful in some
situations, it may depend on users’ decision styles and the contexts.

The requirement to provide feedback to the model may also
lead users to doubt the model’s performance, or as P9 told us: “if
the model needs to confirm with me so many times, I just felt that

the model is not that good.” The diverging opinions on interaction
frequency is in line with our result that there is no significant differ-
ence between the ratings on Future Use (𝑀𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 4.00, 𝑀Hippo =

5.25, 𝑝 = 0.089).
Trade-off between granular details and high-level sum-

mary. We developed Hippo to uplift the transparency of the in-
termediate reasoning steps and encourage users to intervene and
control reasoning when possible. While many participants appre-
ciate being more attentive to and making sense of the reasoning
chains, a few participants commented on the tradeoffs between
attending to the granular details and high-level summaries. P11
commented that when a user asks Hippo a question, they may not
want to spend too much time focusing on the reasoning chain:
“While I read a lot of the reasoning, it might not be practical to do so

in every case.” However, most participants acknowledged that they
wanted to double-check the model’s reasoning if they were to ask
AI for advice for themselves in the real world.

Zero participants used “Collapse the tree” function while the
tree generation unfolded. Only three participants used it to collapse
a subtree after the complete tree generation, primarily to revisit
the overall reasoning process. When asked during post-study in-
terviews why they did not use this feature during tree generation,
participants explained they preferred maintaining full transparency
of all reasoning steps on the fly. For instance, P5 mentioned that
“currently I know that I can collapse the tree after the reasoning process

completes, but I kind of want to see the response quickly on the fly.

Maybe you can try a more top-down approach where users can expand

the tree.” This suggests a potential complementary design from the
current depth-first tree traversal to a breadth-first tree traversal,
which we further discuss in Section 7.

6 Case Studies

After our user study (Section 5), two participants requested to use
Hippo for their real-world use cases. We followed up with the

participants to explore other potential use cases and how users
interact with reasoning in other decision-making scenarios. We
demonstrate how they exploreHippo and design insights from these
sessions. To distinguish from participants in Section 5, we refer to
participants as C1 and C2. We display text that participants typed
into and nodes on Hippo as “text against a light gray background”.

6.1 Information Seeking

C1, a computational neuroscientist, had recently used an LLM chat-
bot for a question “How does hippocampus consolidate memory
back to the neocortex?” for their own research studies. C1 typed and
asked this question on Hippo, which generated, as C1 commented,
a graphical mindmap of reasoning.

C1 followed the tree generation. In the first subtree, Hippo
showed details about a related term “systems consolidation”: “Maybe
during sleep, especially slow-wave sleep, the hippocampus replays
memories, which helps transfer them to the neocortex.” One child
node followed this topic: “There’s something about sharp-wave
ripples in the hippocampus during this replay.” The user halted
the generation and asked their follow-up question (via zc from
Figure 1): “Does sharp-wave ripple carry memory information?” C1
was satisfied with the response to this small point and stored this
in this subtree. Later, C1 also added another follow-up question:
“What are the circuits that connect hippocampus and entorhinal
cortex” when the Hippo mentioned “neocortex”. C1 commented
that the ability to “walk through the mindmap with the reasoning

is actually very useful”, and the ability to comment and follow up
with the model reasoning made them “very engaged in the answer”
for this use case.

However, C1 wished to introduce further control not only to the
individual nodes, but the entire tree generation process. While they
acknowledged that the full reasoning chain was “definitely more

comprehensive,” C1 commented that they “kind of got the answer” in
the middle of the tree generation, and “at this point, I really wanted

to skip and see the [subsequent final] response, almost like a summary

of what I just answered in the process.” This indicates future design
opportunities to skip subtrees where users are familiar with the
subtopics and reveal the final model output promptly.

Another feedback was that the Feedback node interaction is not
exactly what they would like to stop. For instance, Hippo stopped
at a Feedback node for C1’s clarification: “But I’m a bit fuzzy on
the mechanisms of reactivation.” C1 stated “I can see why it was

stopped, but I think I don’t really feel like giving input here” because
this was not a point of confusion for C1. When asked about the
difference between reviewing the reasoning chain and a traditional
chatbot interface (e.g., ChatGPT), C1 recognized that reviewing the
reasoning “is just more engaging for this task which honestly requires

a lot of attention for him”. The right or wrong answer seems less
critical, compared to going through different topics in a mindmap.

6.2 Financial Planning

C2, a financial analyst, had recently been tasked with evaluating
the potential acquisition of another company (referred to as com-
pany A). They were in the early stage of the evaluation and wanted
to navigate through different aspects of this process. They typed
their query “I worked at [Anonymized Company] in their corporate
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development team. We are looking to acquire a company called
Company X [a brief description of this company]. Help memake the
case for why we should or should not acquire this company.” During
the interaction, we observed that C2 consistently collapsed each rea-
soning tree as it was generated, creating a more manageable visual
hierarchy. At the Feedback nodes, C2 provided domain-specific ex-
pertise in response to clarify questions about Company A’s market
share and competitive technological positioning. This contextual
information was then incorporated into subsequent branches.

Upon completing the session, C2 reflected: “This is essentially a

plan for me to consider. What this really represents is the decision-

making process that happens in corporate boardrooms. What I ap-

preciate about this approach, compared to ChatGPT or DeepSeek, is

that it effectively models C-suite decision-making processes.” C2 elab-
orated that in large organizations, acquisition discussions involve
consideration of multiple factors, and this interface allowed them
to anticipate these considerations and get ahead of these ideas.

When asked to compare this experience with chatbot interfaces,
C2 emphasized the value of depth over speed: “The text alone in
standard responses doesn’t provide much nuance or reveal the underly-

ing stream of consciousness. For a financial analyst, it’s not about how

quickly we can complete this process. I’m focused on how diligently

we can review the logic behind the decision.” C2 further noted that
a conventional output listing pros and cons without revealing the
reasoning process would prompt immediate questions about the
rationale, stating: “If you just show the pros and cons in the final

answer, I would immediately ask why is it so?”

7 Discussion and Design Opportunities

Our work introduces user interaction with reasoning chains for
LLMs. We discuss the implications of our findings as they relate to
making reasoning processes transparent and paving a future design
space for interaction during test-time scaling.

Improving user agency may improve perceived output

quality in reasoning models. In our user study, all participants
valued the transparency of reviewing the reasoning process before
seeing the final model output. Reviewing the reasoning helped them
understand the tradeoffs of these oftentimes subjective decision-
making tasks. Having the direct entry point of interaction onHippo
made participants feel their voices are heard. Moreover, participants
observed that havingmore direct control over the reasoning process
made the final output personalized. The empirical evidence of an
increased sense of control over the reasoning process suggests
users benefit from engaging with the reasoning process. While
work in the NLP community has emphasized the goal of test-time
scaling to improve the model output [66], the observations in our
study challenge recommendations [3, 51] that suggest concealing
intermediate reasoning processes from users or limiting user control
over the reasoning process.

Re-purposing model output after interactive reasoning.
We found mixed results on participants’ caution over the final
model output. While prior work in XAI suggests that cognitive
forcing functions may reduce overreliance on the model output,
our findings add nuances. For high-stakes decision-making tasks,
users may consult LLMs for tradeoffs but may defer to themselves
to make such decisions. In fact, as P2 put it in Section 5.3.2, users

may just gain “a better understanding of the situation already” by
going through the reasoning process. While test-time scaling is now
primarily viewed as a means to improve model responses [3, 66], in
the context of decision-making tasks, the final response could be re-
purposed as a personalized summary, rather than themain objective
that models typically produce. This finding suggests a potential
shift in how we conceptualize the “output” of AI systems—from the
final objective to supportive reasoning artifacts that enhance users’
decision-making.

Tensions in designing for interactive reasoning. Our study
also revealed potential difficulties in how users engage with LLM
reasoning. Participants found that the long presentation of rea-
soning in the baseline created significant cognitive barriers that
prevented meaningful engagement, despite participants’ expressed
interest in understanding the model’s thought process.Hippo allevi-
ated some of these problems by transforming the “wall of text” into
an interactive tree representation. We note that participants were
more aware of the assumptions from the reasoning by interacting
withHippo; after all, making an informed decision requires navigat-
ing nuanced trade-offs. However, the tree representation—or even
showing any reasoning at all—might be unnecessary for simpler
or low-stakes queries. Indeed, some participants wished to bypass
the reasoning process altogether after providing some feedback
(e.g., C1). This surfaces a design opportunity to calibrate the display
of and interaction with reasoning based on task complexity. This
might involve adaptive interfaces that present abbreviated reason-
ing for routine decisions while reserving comprehensive reasoning
chains for ones that demand more complex tradeoffs.

Tradeoffs of the depth-first and breadth-first tree struc-

ture. Hippo was motivated by projects in the UIST community
that use a node-link diagram for information sense-making [25, 70].
Our findings (Section 5.3.1) of improved sense-making corroborate
prior work in the context of reviewing long reasoning during test-
time scaling. Meanwhile, we note a potential design opportunity
to edit AI reasoning on the fly. Many participants suggested new
features to view reasoning at multiple levels of abstraction—first
seeing broad conceptual frameworks before selectively exploring
specific details of interest (i.e., a breadth-first tree traversal). Con-
trasting this was the Hippo design which followed a depth-first

tree traversal that followed the original trajectory of the reason-
ing chains. However, as some participants suggested, reasoning
involves complex networks of interconnected concepts, premises,
and inferences, rather than a purely sequential or linear fashion
in current interfaces (including in Hippo). The current sequential
reasoning paradigm from the reasoning model and the exploration
based on hierarchical order reflects a mismatch between current

interface paradigms and the nature of reasoning [27]. Future designs
could better support interactive reasoning by adopting visualization
approaches that explicitly represent networked relationships. This
could involve interfaces that support both breadth-first exploration

for context and depth-first exploration for details, with interactive
capabilities to expand or collapse reasoning branches according to
user interest. Such approaches could bridge the gap between the
linear presentation of current interfaces and the more networked
structure of human reasoning.

Varied Engagement Preferences in LLM Reasoning. We
found significant variation in how participants wished to engage
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with reasoning processes. On the one hand, some participants
wished to reduce the engagement level, stating that “if the model

needs to confirmwith me so many times, I just felt that the model is not

that good.” [P9] Other participants wish to include even more inter-
action, such as eliciting users’ confirmation when a node branches
off. This suggests that future designwithmodel reasoning (e.g., [43])
should require considerations such as user’s existing level of AI
reliance and task complexity. For instance, participants noted that
the tree visualization was more valuable for analytical questions
than for creative or simple factual tasks. Some participants might
prioritize efficiency, while others value learning from the reasoning
process itself. These findings suggest design opportunities for inter-
active reasoning that accommodates varying levels of engagement
across different contexts and decision-making styles [46]. Potential
designs that support this variance may range from fully automated
reasoning with minimal visibility to highly interactive approaches
in which users actively shape the reasoning trajectory.

8 Limitations and Future Work

Limitations of this work are the relatively limited sample size (N=16)
as well as participants’ relatively high familiarity with LLM mod-
els, which may limit the generalizability of our findings to novice
populations. We attempted to alleviate this limitation by recruiting
participants from diverse backgrounds ranging from undergradu-
ate students to working professionals in finance, computer science,
and art. While we used two daily dilemma scenarios to increase
the stakes of the task and allow fair comparison between the two
conditions in the study, decision-making in knowledge-intensive
scenarios (e.g., coding [86] or medical diagnosis [72]) might require
information from beyond just model reasoning.

Another limitation is that our current approach does not system-
atically analyze the model behaviors given users’ feedback. In fact,
a recent study [10] of reasoning models during test-time scaling
without human feedback shows that CoTs may not faithfully repre-
sent a model’s actual reasoning process to answer math and coding
problems. While our paper does not claim that user feedback led
to more personalized or accurate reasoning chains or final model
outputs, participants observed that their inputs were incorporated
into the final outputs, which demonstrated several benefits from the
end user perspective. We also acknowledge that the Link operator
matches the sentences in the model response and the content within
each reasoning node based on semantic similarity; however, this
linkage does not indicate a causal relationship internal to the model.
Future work may consider investigating more robust approaches
to derive this causal relationship for further explainability.

We acknowledge thatHippomay incur misuse for ethical consid-
eration. We recognize that LLMs, such as gpt-4o and DeepSeek-R1
can hallucinate and generate false information that may affect daily
decision makings. Users might also mistakenly steer model output
by providing existing biased or malicious feedback, leading to harm-
ful result but became more confident in the end [62]. To remedy
this, we cautioned users for such risks in our system and study. We
also chose daily dilemma tasks in the user study rather than topics
that can be highly controversial, such as political disagreement [13].

9 Conclusion

In this paper, we introduced Hippo, a system that instantiates in-
teractive reasoning, an approach that visualizes the LLM reasoning
steps via test-time scaling and allows users to make sense of, and
control the reasoning before reaching the model’s final output. We
evaluated Hippo through a user study with 16 participants from
diverse occupational backgrounds, as well as two case studies to ex-
plore how users leverage interactive reasoning in decision-making
tasks. Results showed that Hippo increased the sense of control,
sense-making, and assumption in the model output compared to
a baseline system. We also observed participants’ repurposing of
model responses after engaging with the reasoning steps. We dis-
cuss practical implications for future adaptive designs that support
interaction with a model’s reasoning steps. Overall, our contri-
butions set the stage for new interactive paradigms for test-time
scaling not just for model response quality but also to improve user
control through human agency.
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A An example of DeepSeek-R1 response with

the reasoning steps

Intermediate reasoning steps ... 

[Okay, so the user is asking for my opinion on whether no-knock warrants should be 
abolished.]

Final Output ...

[The question of whether to abolish no-knock warrants is complex, balancing public safety, 
civil liberties, and institutional accountability.]

Figure 6: An example of the current DeepSeek-R1 platform

that shows the reasoning steps. The model thought for 22

seconds with over 600 words in the reasoning.

B The System Prompts for Operators in the

Tree Generation Pipeline

B.1 The Structure Operator

This prompt structures the original chain-of-thoughts (CoTs) rea-
soning into sub-topics. Before applying this operator, we grouped
the thoughts first ( z1 Figure 3) into manageable topics, in line
with prior work to leverage LLMs to aggregate concepts [37]. In
the project, we observed that CoTs during test-time scaling often
lead to many paragraphs, which made the tree very sparse/shallow
without this step. Below are the prompts for both the Structure

operator and the group thought pre-processing.

B.1.1 Structure. You are a helpful assistant that *only* tags
the chain of thought for a given text.

Rule 1: Use <topic>...</topic> to indicate a major new area
of thought.

Rule 2: Use <branch>...</branch> to indicate a subtopic
extending from a previous point.

Rule 3: Nesting Structure: 1. All content must be contained
within tags, with no unmarked text. 2. <topic> tags should
only appear at the top level. 3. <branch> tags can nest inside
<topic> tags or other <branch> tags. 4. Each <branch> must
begin with at least one complete sentence before any nested
branches. Please follow the rules strictly.

Example:
<Topic> Okay, the user is asking where they should travel
during spring break. Hmm, I need to consider different types
of destinations to cover various interests.
</Topic>
<Topic> First, I should consider different destinations. I
should list options that cater to different preferences.
</Topic>
<Branch>

<Branch>
For beach destinations, places like Cancun, Miami, or
the Caribbean come to mind.
<Branch>
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These spots are popular for spring break because they
offer warm weather, beaches, and vibrant nightlife.

</Branch>
</Branch>
<Branch>

But maybe I should also include some less crowded beaches
for those who prefer a quieter time.
<Branch>

Costa Rica is known for eco-tourism, rainforests, and
activities like zip-lining.

</Branch>
<Branch>

Hawaii is another option with hiking and volcanoes.
</Branch>

</Branch>
<Branch>

Cities with cultural attractions could be another category:
places like Paris, Kyoto, or Barcelona. Oh, Kyoto in
spring would have cherry blossoms, that’s a big plus.

</Branch>

</Branch>
<Branch>

Wait, what is the user’s budget? I should include some
budget-friendly options too.

</Branch> [More of this example]

B.1.2 Group Thoughts. I have this monologue, representing my
reasoning for the query: ${query}. Structure this text into
high-level themes.

Rule 1: Keep the exact text from the input text!! Use the
same words. Each theme should surround a high-level idea.

Rule 2: New line to separate each theme. The output should
be a direct division of the input text into themes under 8
paragraphs.

Rule 3: The output should not include anything beyond the
origin input text, or any summary. I’d like to the exact same
text from the input.

Input: ${reasoning.replaceAll("\n", "")}
Output:

B.2 The Clarify Operator

You are a helpful assistant that *only* tag the chain of
thought (which was generated by a model) for a given text. The
goal is for users to help clarify the uncertain or incorrect
assumptions in the input reasoning chain. You use <user></user>
to tag such text.

Rule 1: Identify places where user input would be valuable
(uncertainty, preferences, personal experiences)

Rule 2: Sentences like "I don’t know X" that the reasoning
chain is unsure about the situation.

Rule 3: Preserve the original text from the input and only
add the <user> tag to the sentences that need clarification.

Rule 4: A good user should tag an uncertain question or a
situation so that a user can easily give their feedback or
context.

Rule 5: Do not tag questions that are answered in the
reasoning chain later in the text.

Rule 6: The user tag should only appear between <branch>
tags; no user tag between <topic> tags allowed.

Bad example: <branch>Hmmm. Let me think. </branch>

Good example: <branch><user>But then, how to enforce that?
It’s tricky because everyone has different schedules. What
rules would be reasonable to create and enforce in this
situation?</user></branch>
<Branch>

<user>Wait, what is the user’s budget? I should include
some budget-friendly options too.</user>

</Branch> [More of this example]

B.3 The Link Operator

Given the following premises (reasoning nodes) and hypotheses
(response paragraphs), determine the entailment relationship
between them.

PREMISES: [
{"id": $node_1_id, "content": $node_1_content},
{"id": $node_2_id, "content": $node_2_content}, ...]
HYPOTHESES: [
{"id": $response_1_id, "content": $response_1_content},
{"id": $response_2_id, "content": $response_2_content}, ...]
For each hypothesis (response paragraph), identify the

premise that most strongly entails or supports it. Consider the
semantic and logical relationship between each premise-hypothesis
pair.

Return your analysis as a valid JSON array with objects
containing:

{
"hypothesis_id": [response ID number],
"entailing_premise": {
"premise_id": [most relevant node ID],
"entailment_strength": [confidence score between 0 and

1]
}

}

B.4 Other Prompts

Hippo also has a summarization feature to collapse the (sub)-trees.
This operator aggregates the subtree nodes into a low-level context,
then performs a summarization with GPT-4o. Note that when users
expand the summarized subtree, the child nodes remain the same
and are not regenerated.
Given the context, please summarize these thoughts into a
paragraph of summary under 60 words.

Content: ${subtree_context} One sentence summary:
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