
Alive-FP: Automated Verification of Floating
Point Based Peephole Optimizations in LLVM

David Menendez1, Santosh Nagarakatte1, and Aarti Gupta2

1 Rutgers University, New Brunswick, USA,
{davemm, santosh.nagarakatte}@cs.rutgers.edu

2 Princeton University, Princeton, USA,
aartig@cs.princeton.edu

Abstract. Peephole optimizations optimize and canonicalize code to
enable other optimizations but are error-prone. Our prior research on
Alive, a domain-specific language for specifying LLVM’s peephole opti-
mizations, automatically verifies the correctness of integer-based peep-
hole optimizations and generates C++ code for use within LLVM. This
paper proposes Alive-FP, an automated verification framework for float-
ing point based peephole optimizations in LLVM. Alive-FP handles a
class of floating point optimizations and fast-math optimizations involv-
ing signed zeros, not-a-number, and infinities, which do not result in loss
of accuracy. This paper provides multiple encodings for various floating
point operations to account for the various kinds of undefined behavior
and under-specification in the LLVM’s language reference manual. We
have translated all optimizations that belong to this category into Alive-
FP. In this process, we have discovered seven wrong optimizations in
LLVM.

1 Introduction

Compilers perform numerous optimizations transforming programs through mul-
tiple intermediate representations to produce efficient code. Compilers are in-
tended to preserve the semantics of source programs through such transforma-
tions and optimizations. However, modern compilers are error-prone similar to
other large software systems. Recent random testing approaches [1, 2] have found
numerous bugs in mainstream compilers. These bugs range from compiler crashes
to silent generation of incorrect programs. Among them, peephole optimizations
are persistent source of compiler bugs [1, 2].

Peephole optimizations perform local algebraic simplifications of code, clean
up code produced by other stages, and canonicalize code to enable further op-
timizations. Any misunderstanding in the semantics of the instructions, over-
looked corner cases, and the interaction of algebraic simplification with unde-
fined behavior results in compiler bugs. Furthermore, modern compilers have
numerous such peephole optimizations (e. g., the LLVM compiler has more than
a thousand such peephole optimizations performed by the InstCombine and the
InstSimplify passes).

Our prior research on the Alive domain-specific language addresses a part of
this problem of developing correct peephole optimizations in LLVM [3]. An Alive
optimization is of the form source =⇒ target with an optional precondition.
The optimization checks the input code for a directed acyclic graph (DAG) of the
form source and replaces it with the DAG specified by the target (see Section 2.1
for more details). Optimizations expressed in Alive are verified by encoding them
as first-order logic formulae whose validity is checked using Satisfiability Modulo
Theories (SMT) solvers. Further, the Alive interpreter generates C++ code for
use within the LLVM compiler to provide competitive compilation time.

In our prior work, we restricted Alive to integer optimizations because float-
ing point (FP) support with SMT solvers was either non-existent or not mature
at that point in time. This paper proposes Alive-FP, an extension of Alive, that
adds automated verification for a class of FP optimizations in LLVM. Alive-FP
leverages the Floating Point Arithmetic (FPA) [4] theory in SMT-LIB, which
has been supported by SMT solvers like Z3 [5], to perform automated reasoning.

A floating point number approximates a real number. The IEEE-754 stan-
dard [6] provides portability of FP operations across various hardware and soft-
ware components by standardizing the representation and operations. Today,
most processors support FP representation natively in hardware. To represent
large and small values, floating point numbers in the IEEE-754 are represented
in the form: (−1)s ×M × 2E , where s determines the sign, significand M is a
fractional binary number (ranges between [1, 2) or [0, 1)), and E is the exponent
that weights the value (see Section 2.2 for a background on FP numbers). The
representation has normal values (the common case), denormal values (values
close to zero), two zeros (+0.0 and −0.0), and special values such as positive
infinity, negative infinity, and not-a-number (NaN). Further, the standard has
specific rules on ordering and equality of numbers, and generation and propaga-
tion of special values. Most algebraic identities for real numbers are not accurate
with FP numbers due to rounding errors (addition is associative with reals but is
not with FP). Unfortunately, most programmers are not comfortable with these
arcane details (see the seminal paper on FP [7] for more information).

Peephole optimizations in LLVM related to FP can be classified into two
categories: optimizations that preserve bitwise precision (i. e., there is no loss in
accuracy with the optimization) and optimizations that do not preserve bit preci-
sion (i. e., sacrifice some accuracy). The optimizations that preserve bit precision
can further be classified into two categories: optimizations that are identities ac-
cording to the IEEE-754 standard and optimizations that preserve bit precision
in the absence of special values. LLVM, by default, enables optimizations that
are identities according to the standard. LLVM enables bit-precise optimizations
in the absence of special values with explicit fast-math attributes nnan (assume
no NaNs), nsz (assume no distinction between two zeros), and ninf (assume no
infinities). LLVM enables optimizations that are not bit-precise with fast-math
attributes arcp (allow reciprocals) and fast.

In this paper, we are focused on verifying the correctness of bit-precise float-
ing point based peephole optimizations in LLVM. We propose Alive-FP, a new

domain-specific language, that extends Alive with FP instructions, types, and
predicates (see Section 3) and allows the use of both integer and FP operations.
Alive-FP proves the correctness of FP optimizations by encoding them into first-
order logic formulae in the SMT-LIB theory of floating point arithmetic (FPA),
whose validity is checked using Z3 [5]. We highlight the under-specification in
the LLVM’s language reference manual about undefined behavior and round-
ing modes with floating point operations. Given this under-specification about
undefined behavior and rounding modes, we provide multiple encodings for the
FP instructions and attributes (see Section 4) into FPA theory. We have trans-
lated 104 bit-precise FP peephole optimizations from LLVM into Alive-FP (see
Section 5). In this process, Alive-FP has discovered seven previously unknown
floating point bugs [8–12]. We have added new features to Alive-FP on request
from developers (e. g., bitcast with FP). Alive-FP is open source [13].

2 Background

This section provides background on Alive [3], which we build upon in this work.
We also provide a quick primer on the FP representation in the IEEE standard.

2.1 Alive Domain-Specific Language

Alive [3] is a domain-specific language for specifying LLVM’s peephole optimiza-
tions. The Alive interpreter automatically checks the correctness of an optimiza-
tion by encoding it into a formula in first-order logic whose validity is checked
using an SMT solver. It also generates C++ code for use within LLVM, which
implements the optimization.

Pre: isSignBit(C1)

%b = xor %a, C1

%d = add %b, C2

=⇒
%d = add %a, C1 ˆ C2

Fig. 1. An Alive optimization.
The predicate isSignBit(C1) is
true when C1 is all zeros except
for the sign bit.

Syntax. Alive syntax is similar to the
LLVM intermediate representation (IR), be-
cause LLVM developers are already famil-
iar with it. Alive optimizations are speci-
fied as source ⇒ target, with an optional
precondition. An Alive optimization is a di-
rected, acyclic graph (DAG), with two root
nodes, which have only outgoing edges. One
root is the source, which is the instruction
to be replaced, and the other is the target,
which replaces it. To indicate that the source
root replaces the target, they must have the
same name. The leaves in the DAG are input variables, symbolic constants, or
constant expressions. The target may refer to instructions defined in the source
and create new instructions, which will be added when the source root is re-
placed. An example Alive optimization is shown in Figure 1. The root %d in the
source is replaced with the root in the target when the precondition is satisfied
(i. e., isSignBit(C1), where C1 is a symbolic constant). Alive preconditions con-
sist of built-in predicates, equalities, signed/unsigned inequalities, and predicates

representing the result of dataflow analyses. An Alive optimization is parametric
over types and bit widths. Hence, the Alive interpreter checks the correctness of
the optimization for feasible types and bit widths.

Undefined behavior and compiler optimizations. Most compiler bugs
result from a misunderstanding in the semantics, especially regarding various
kinds of undefined behavior [3]. The semantics of an instruction specifies when
it is well-defined. LLVM optimizes the program with the assumption that the
programmer never intends to have undefined behavior in the program [14–16].

To aggressively optimize well-defined programs, LLVM IR has undefined be-
havior with catch-fire semantics, the undef value, and poison values. Undefined
behavior in LLVM is similar to undefined behavior in C/C++, where program
can perform any action in the presence of undefined behavior. Typically, a pro-
gram with undefined behavior will cause a fault/trap (e. g., division by zero) at
runtime.

The undef value indicates that the program reads an uninitialized memory
location and the program is expected to be well-defined for any value chosen for
the undef value. The undef value is equivalent to reading a hardware register
at an arbitrary instant of time.

A poison value represents the fact that an instruction, which does not have
side effects, has produced a condition that results in undefined behavior. Un-
like undef values, there is no explicit way of representing a poison value in the
IR. A poison value indicates ephemeral effects of certain incorrect operations
(e. g., signed overflow with an instruction expected not to have signed over-
flows). LLVM has instruction attributes such as nsw (no signed wrap), nuw (no
unsigned wrap), and exact, which produce poison values on incorrect opera-
tions. An arithmetic instruction with the no signed wrap attribute produces
a poison value on signed overflows [3]. Unlike undef values, poison propagates
with dependencies. A poison value triggers undefined behavior with catch-fire se-
mantics when it produces an externally-visible effect (e. g., atomic loads/stores).
Hence, poison values that do not affect a program’s externally visible behavior
are allowed in a well-defined program.

From a Alive perspective, when the source contains a undef value, the com-
piler can pick a value for the undef in the source that makes the optimization
valid. In contrast, when the source produces a poison value, the compiler can
replace the target with anything as the source is not well-defined.

Correctness of an Alive optimization. Alive’s verification engine reasons
about the correctness of optimizations taking into account various undefinedness
conditions, which eases the job of the compiler writer. Given an optimization, the
Alive interpreter instantiates candidate types for the optimization. The Alive in-
terpreter encodes the Alive optimization with concrete types into first order logic
formulae. The validity of the formulae imply the correctness of the optimization.
The interpreter generates the following validity checks when the source tem-
plate is well-defined, poison-free, and the precondition is satisfied: (1) the target
is well-defined, (2) the target is poison-free, and (3) the source and target root
of the DAG produce the same value, and (4) the memory states in the source

and the target are equivalent (for optimizations involving memory operations).
These checks are performed for each feasible type instantiation.

2.2 Floating Point Representation and Arithmetic

A floating point number is an approximation of a real number. Although many
computer manufacturers had their own conventions for floating point earlier,
IEEE-754 [6] has become the standard for floating point representation. The
IEEE standard represents a floating point number in the form: (−1)s×M × 2E ,
where s determines the sign of the number, significand M is a fractional binary
number ranging either between [1, 2) or [0, 1), and exponent E weights the value
with a power of 2 (can be negative). The bit representation uses a single bit
for sign s, k bits for the encoding the exponent E and n-bit fractional field for
encoding the significand M (e. g., 32-bit float has 1 sign bit, k = 8, and n=
23). The value encoded by the bit representation is divided into three categories
depending on the exponent field.

Normalized values. When the bit pattern for the exponent is neither all
zeros nor all ones, the floating number is a normalized value. The exponent field
is interpreted as a signed integer in biased form (i. e., E = e−bias), where e is the
unsigned number from the bit pattern in the exponent field. The bias is 2k−1−1.
The significand M is 1.f , where f is the fractional field in the representation.
The normalized value is (−1)s × 1.f × 2(e−bias).

Denormalized values. When the bit pattern in the exponent field is all
zeros, then the number is a denormal value. In this case the exponent is 1−bias.
The significand value is f , the fractional part without the leading 1. Denormal
values are used to represent zero and values close to zero. When all the exponent
bits and fractional bits in the bit pattern are zero, then it represents a zero. There
is a positive zero and negative zero depending on value of the sign bit.

Special values. When the bit pattern in the exponent field is all ones,
then it represents special values. There are three special values: positive-infinity,
negative-infinity, and not-a-number (NaN). When the fractional field is all zeros,
then the number is a positive-infinity or a negative infinity depending on the sign.
When the fractional part is not all zeros, then it is a NaN. The standard provides
specific rules for equality, generation, and propagation of these special values.

Rounding modes. The floating point number has limited range and preci-
sion compared to real numbers. Rounding modes specify a systematic method
for finding the “closest” matching value that can be represented in a floating
point format. The IEEE-754 standard specifies the following rounding modes:
round toward nearest with ties going to the even value (RNE), round towards
nearest with ties going away from zero (RNA), round towards positive (RTP),
round towards negative (RTN), and round toward zero (RTZ). The rounding
mode is described with respect to a program block in the standard. The FPA
theory in SMT-LIB also includes these rounding modes, and parameterizes most
operations with a rounding mode. In contrast, the LLVM language reference
does not explicitly state the rounding mode for its FP operations.

prog : : = pre nl stmt =⇒ stmt
stmt : : = stmt nl stmt | reg = inst | reg = op

inst : : = binop attr op, op | fpbop fmf op, op |
conv op | select op, op, op |
icmp cond op, op | fcmp fmf fcnd op, op

typ : : = isz | half | float | double | fp128 |
x86 fp80

binop : : = add | sub | mul | udiv | sdiv |
urem | srem | shl | lshr | ashr |
and | or | xor

attr : : = nsw | nuw | exact

fpbop : : = fadd | fsub | fmul | fdiv | frem

fmf : : = nnan | ninf | nsz | arcp | fast

op : : = reg | constant | undef |
nan | inf | −inf

conv : : = zext | sext | trunc | fpext | fptrunc |
fptosi | fptoui | sitofp | uitofp |

bitcast | inttoptr | ptrtoint
cond : : = eq | ne | ugt | uge | ult |

ule | sgt | sge | slt | sle

fcnd : : = oeq | one | ogt | oge | olt | ole | ord |
ueq | une | ugt | uge | ult | ule | uno

Fig. 2. Partial Alive-FP syntax. The new additions in Alive-FP when compared to
Alive are shaded. attr represents a list of attributes with each instruction.

3 Alive-FP Domain-Specific Language

Alive-FP is a domain-specific language that adds support for FP operations
in LLVM to Alive. Alive-FP is a ground-up rewrite of Alive to simplify the
addition of FP reasoning along with other extensible features. Alive-FP uses the
FPA theory [4] in SMT-LIB to reason about the correctness of optimizations. An
Alive-FP optimization may combine integer and FP operations. Figure 2 lists
the new FP types, instructions, and attributes in Alive-FP.

FP types. LLVM has six different floating point types: half, float, double,
fp128, x86 fp80 (x86 extended float), and ppc fp128 (PowerPC double double).
Alive-FP supports five of the six floating point types. Alive-FP does not support
ppc fp128, as it uses a pair of double-precision values to represent a number and
does not correspond directly to an SMT FP sort. Among the FP types supported
by Alive-FP, half (k=5, n=10), float (k=8, n=23), double (k=11, n=52), and
fp128 (k=15, n=112) correspond directly to SMT floating-point sorts, which
are determined by the width in bits for the exponent and significand. We treat
x86 fp80 as k=15, n=64, except when its exact bit representation is significant.

FP instructions. LLVM has twelve FP instructions in the LLVM IR. Alive-
FP augments Alive with these twelve LLVM instructions dealing with FP values.
The FP instructions can be classified into three categories: binary operators,
conversion instructions, and a comparison instruction. All LLVM FP instructions
are polymorphic over FP types, with the conversion operators imposing some
additional constraints. Alive-FP’s select instruction is polymorphic over all
“first-class” types, which include integer and FP types.

Binary operators. Alive-FP supports the five binary arithmetic operators
in LLVM for FP computation: fadd, fsub, fmul, fdiv, and frem, which imple-
ment addition, subtraction, multiplication, division, and taking the remainder,
respectively. LLVM’s frem instruction differs from fpRem in the IEEE standard
and the FPA theory. LLVM’s frem is similar to the fmod function in the C li-
brary. Given two floating-point values x and y, the frem instruction in LLVM

(hence, Alive-FP) calculates x/y and truncates the fractional part. Let’s call the
resultant value n. Then, frem x, y returns x− ny.

Conversion operators. LLVM includes two instructions for converting be-
tween FP types, fpext and fptrunc, and four instructions for converting to or
from signed and unsigned integers, fptosi, fptoui, sitofp, and uitofp. Alive-
FP supports all these instructions. The fpext instruction promotes a value to a
larger FP type, while fptrunc demotes a value to a smaller one. The fptosi and
fptoui instructions first discard the fractional part of the input (i. e., rounding
to integer towards zero), then map the result to a signed or unsigned integer
value, respectively. Similarly, sitofp and uitofp convert signed and unsigned
integers to FP values. Alive-FP also supports the bitcast instruction between
FP and integer types with the same representation size in bits.

Conversions to floating point can fail in two general ways: they may be in-
exact, meaning the value being converted falls between two finite values repre-
sentable in the target type, or they may be out-of-range, meaning the value falls
between the largest (or smallest) finite representable value and infinity. Further,
LLVM does not specify rounding mode for all instructions.

Comparison instruction. LLVM provides a fcmp instruction for compar-
ing FP values, which supports sixteen comparison predicates (see Figure 2). An
example is fcmp uge %x, %y, where uge is one of the sixteen comparison pred-
icates in LLVM, %x and %y are operands to the fcmp instruction. The sixteen
predicates are derived from four primitive predicates: unordered, which is true if
either operand is NaN, and ordered equality, greater-than, and less-than, which
are true when neither operand is NaN and the respective condition holds be-
tween %x and %y. The FP comparison predicate uge is true if the operands are
unordered or equal or the first operand is greater than the second. All sixteen
predicates can be translated using combinations of operations in FPA theory.

FP instruction attributes. LLVM defines five FP related instruction at-
tributes that may appear on FP instructions. These are also called fast-math
attributes. When present, the optimizer may make certain assumptions about
the inputs to these instructions enabling more extensive code transformations.

The no-NaNs attribute, nnan, permits the optimizer to assume that the argu-
ments and the result of an instruction will not be NaN. In particular, the LLVM
language reference manual states that an operation with a NaN argument or
that produces a NaN result is an undefined value (but not undefined behavior).
However, it is unclear whether it is an undef value or a poison value.

The no-infinities attribute, ninf, is similar to nnan, except applying to ∞
and −∞. The no-signed-zeros attribute, nsz, permits the optimizer to ignore the
difference between positive and negative zero. The allow reciprocal attribute,
arcp, permits the optimizer to assume that multiplying by the reciprocal is
equivalent to division. Alive-FP does not handle this attribute as there is only
one optimization that uses it. The final attribute, fast, implies all the others
and permits the optimizer to perform optimizations that are possible with real
numbers but can result in inaccurate computation with FP arithmetic (e. g.,
reassociating arithmetic expressions). Alive-FP will report such optimizations to

be incorrect, as they do not preserve bitwise precision. Handling fast attribute
would require reasoning about accuracy loss [17, 18].

FP constants and literals. Alive-FP supports expressing constant FP val-
ues in decimal representation. Alive-FP represents negative zero as -0.0, Not-a-
Number as nan, positive-infinity as inf, and negative-infinity as -inf. Alive-FP
also extends Alive’s constant language to be polymorphic over integer and FP
types, so that the expression C+1 may describe an integer or a FP value, depend-
ing on the context. Alive-FP adds new constant functions to convert between FP
types and to obtain information such as the bit width of an FP type’s significand.

4 Verification with Alive-FP

The Alive-FP interpreter checks the correctness of an optimization by encoding
FP operations into operations in FPA theory in SMT-LIB. Similar to Alive,
integer operations are encoded with operations from the bitvector theory. The
Alive-FP interpreter checks the correctness of an optimization for each feasible
type. In contrast to Alive, Alive-FP enumerates all feasible types with a non-
SMT based type checker to reduce the number of SMT queries.

4.1 Overview of Correctness Checking

Given a concrete type instantiation, the Alive-FP interpreter creates the follow-
ing SMT expressions for each instruction in both the source and the target: (1)
the expression v that represents the result of the instruction, (2) the expres-
sion δ that represents constraints for the instruction to have defined behavior,
(3) the expression ρ that represents constraints for the instruction to produce a
non-poison value. Further, to handle undef values, the interpreter also creates a
set of quantified variables U for both the source and target. The validity checks
will involve universal quantification for the variables from U in the target and
existential quantification for the variables from U in the source. The defined-
ness constraints and poison-free constraints propagate with data dependencies.
Hence, the order of instructions in an Alive-FP optimization is not important.
Instructions which do not introduce undefined behavior, poison, or undef values
use these encodings by default:

δx =
∧

a∈args(x)

δa, ρx =
∧

a∈args(x)

ρa, Ux =
⋃

a∈args(x)

Ua,

where δx, ρx, and args(x) are the definedness constraints, poison-free constraints,
and arguments of instruction x, respectively.

The interpreter also generates SMT expressions corresponding to the precon-
dition. Let ψ ≡ φ ∧ δs ∧ ρs where φ represents constraints for the precondition,
δs represents constraints for the source root to be defined, and ρs represents the
constraints for the source root to be poison-free. A transformation is correct if
and only if all of the following constraints hold for the source and target roots.

1. ∀I,Ut ∃Us : ψ =⇒ δt

2. ∀I,Ut ∃Us : ψ =⇒ ρt

3. ∀I,Ut ∃Us : ψ =⇒ vs = vt

where I is the set of input variables in the DAG, U t is the set of undef variables
in the target, Us is the set of undef variables in the source, δt represents the
constraints for the target to be well-defined, ρt represents the constraints for the
target to be poison-free, vs is the value computed by the source, and vt is the
value computed by the target.

Next, we show how to encode three fast-math attributes (nnan, ninf, and
nsz) into FPA theory and their interaction with various kinds of undefined be-
havior in LLVM. We also highlight the challenges in encoding that arise because
the LLVM language reference is under-specified about what values are returned
when an instruction is not well-defined. Finally, we provide the encoding for FP
instructions in FPA theory and their interaction with fast-math attributes and
rounding modes, as LLVM does not define rounding modes for all instructions.

4.2 Encoding Fast-Math Attributes

Fast-math attributes may occur on any of the five arithmetic instructions and
the fcmp instruction. Optimizations are free to make certain assumptions when
these attributes are present in an instruction, specifically:

nnan the arguments and result are not NaN
ninf the arguments and result are not positive or negative infinity
nsz there is no distinction between negative and positive zero

The challenging task in encoding these attributes is in their interaction with
various kinds of undefined behavior in LLVM. When an instruction with an
attribute violates the assumption, does it produce an undef value or a poison
value? The key difference between the these two interpretations is that a poison
value propagates through dependencies whereas an undef value does not. The
LLVM language reference for FP operations predates the development of poison
values and hence, there is no reference to it in the language reference. The LLVM
language reference states that optimizations must “retain defined behavior for
NaN (or infinite) inputs, but the value of the result is undefined”.

Similar attributes for integer operations in LLVM, no-signed wrap (nsw),
no-unsigned wrap (nuw), and exact, produce poison values. Given this under-
specification in the LLVM language reference manual, we provide two encodings
for nnan and ninf attributes: one using undef values and other with poison val-
ues. Both encodings have their own advantages and disadvantages. The encoding
with poison values is the most permissive.

Encoding for nnan and ninf with undef values. In this interpretation,
an instruction with nnan returns an undef value when an argument or the result
is NaN. For an instruction z performing binary operation (⊕) with arguments x
and y, we create a fresh undef value and add it to the set of quantified variables

if either of the operands or the result is NaN. These undef variables will be
appropriately quantified depending on whether they occur in the source or the
target in the validity checks.

Uz = {u} ∪ Ux ∪ Uy

vz =

{
u if isNaN(vx) ∨ isNaN(vy) ∨ isNaN(vx ⊕ vy)
vx ⊕ vy otherwise

where u is a fresh variable and isNaN predicate returns true if its argument is
NaN. The encoding for infinities with undef values is similar except we use a
different predicate (i. e., isInf) with infinities.

Encoding nnan and ninf with poison values. In this interpretation, an
instruction with nnan (or the ninf attribute) returns a poison value when either
its arguments or the result is NaN (or infinity). We encode the fact that these
result in poison values in the poison-free constraints for the instruction. The
poison-free constraints for an instruction z performing a binary operation (⊕)
with arguments x and y are given below:

ρz = ¬(isNaN(vx) ∨ isNaN(vy) ∨ isNaN(vx ⊕ vy)) ∧ ρx ∧ ρy
vz = vx ⊕ vy

There are multiple advantages in using the poison interpretation. First, the
semantics of poison ensures that the poison value propagates along dependencies.
In particular, if a value occurs in multiple instructions, some but not all of which
have the nnan attribute, then an optimization is free to assume that value is not
NaN everywhere. Second, it permits more optimizations and is consistent with
the treatment of integer attributes, which use poison values. Third, the encoding
does not use quantifiers and FPA theory solvers can check validity quickly. A
disadvantage of this encoding is that this interpretation can arguably conflict
with the LLVM language reference, which is ambiguous. The encoding for the
ninf attribute with poison values is similar.

Encoding nsz attributes. The nsz attribute is used to indicate the as-
sumption that the sign of zero does not matter. The LLVM language reference
states that optimizations may “treat the sign of a zero argument or result as
insignificant” when an instruction has the nsz attribute.

We encode the nsz attribute by giving zero-valued results an undef sign-
bit (i. e., the result is an undef value that is constrained to be from the set
{+0,−0}).

For a non-division instruction z with arguments x and y performing the
binary operation ⊕, we create a fresh undef variable and add it to the set of
quantified variables. The result is constrained to choose either +0.0 or −0.0
based on the undef value. These variables to represent undef values will be

appropriately quantified in the validity checks.

Uz = {b} ∪ Ux ∪ Uy

vz =

 0 if isZero(vx ⊕ vy) ∧ b
−0 if isZero(vx ⊕ vy) ∧ ¬b

vx ⊕ vy otherwise

where b is a fresh boolean variable. It is not necessary to examine the arguments
of the instruction with the encoding for nsz as the sign of any input zero is only
significant when the result is also zero.

The encoding is a bit more involved for the division instruction, as the sign
of a zero input may affect a non-zero result. Given z = fdiv x, y, the result
will be ±0 if x is zero and y non-zero and ±∞ if y is zero and x non-zero. Other
results are unaffected by signed zeros and can be calculated normally.

Uz = {b} ∪ Ux ∪ Uy

vz =


0 if isZero(vx) ∧ ¬isZero(vy) ∧ b
−0 if isZero(vx) ∧ ¬isZero(vy) ∧ ¬b
∞ if ¬isZero(vx) ∧ isZero(vy) ∧ b
−∞ if ¬isZero(vx) ∧ isZero(vy) ∧ ¬b

vx ÷ vy otherwise

where b is a fresh boolean variable.

Attributes with the fcmp instruction. Although fcmp accepts the same
fast-math attributes as the binary operators, only nnan and ninf have any effect,
because it does not return an FP value. Aside from the type of the undef value
(for the undef encoding), attributes on fcmp can be encoded similarly to the
binary operators.

4.3 Encoding FP Arithmetic Instructions

LLVM has five FP arithmetic instructions: fadd, fsub, fmul, fdiv, and frem.
The first four translate directly to corresponding SMT FPA operations, aside
from the presence of rounding modes. LLVM does not specify what rounding
modes to use when performing arithmetic, nor does it provide any standard way
for programs to access or determine the rounding mode.

Handling rounding mode with instructions. Alive-FP, by default, per-
forms all arithmetic using a default rounding mode which is chosen by the user
at the command line when the tool is run. In most cases, the choice of round-
ing mode does not affect correctness. Exceptions include optimizations involv-
ing zero-valued results, as the RTN (round-to-negative) rounding mode produces
−0.0 for many operations that would produce 0.0 under other modes. The choice
of rounding mode can also affect whether some out-of-range values round to the
largest (or smallest) finite value, or to positive (or negative) infinity.

Alive-FP could also provide an option to make the rounding mode an undef

value for each instruction, effectively returning a two-valued set (i. e., round up

or round down) for any imprecise operation. This interpretation of rounding
rules out some existing optimizations as they produce different results depend-
ing on the rounding mode chosen. It is unclear whether the complexity of this
interpretation is outweighed by any semantic benefit.

Handling the frem instruction. The frem instruction in LLVM does not
correspond to the IEEE floating-point remainder operation, as it requires the
remainder to have the same sign as the dividend. LLVM’s frem corresponds to
the fmod in the C library. In version 4.4.1, Z3’s fpRem operation differs from the
specification in the SMT-FPA theory and implements the fmod function in the
C library, which we have reported as a bug [19]. Hence, we encode LLVM’s frem
directly using Z3’s fpRem operation.

Implementing LLVM’s frem using a correct SMT-FPA fpRem is relatively
straightforward, involving some sign manipulation for negative dividends and
addition.

frem(x, y) =


z if isPos(x) ∧ isPos(z)

|y|+ z if isPos(x) ∧ isNeg(z)
−z if isNeg(x) ∧ isPos(z)

−(|y|+ z) if isNeg(x) ∧ isNeg(z)

z = fpRem(|x|, |y|)

4.4 Encoding Floating-Point Comparison

LLVM’s fcmp instruction takes a condition code and two floating-point values,
and returns a 1-bit integer, indicating whether the comparison is true. The condi-
tion code indicates which comparison is to be performed. LLVM includes ordered
and unordered versions of the usual equality and inequality tests (see Figure 2).
The ordered tests always fail if one or more argument is NaN, and the unordered
tests always succeed if one or more argument is NaN. These are encoded using
SMT-FPA comparisons in the obvious manner.

4.5 Encoding Conversion Instructions

LLVM (hence, Alive-FP) has the following conversion instructions: fpext, fptrunc,
fptosi, fptoui, sitofp, and uitofp. LLVM’s language reference does not state
whether these operations result in either an undef or a poison value in the case
of imprecise conversions. Next, we describe our encoding of these operations.

Encoding fpext instruction. The fpext instruction promotes a floating-
point value to a larger type. All floating-point types are strict supersets of smaller
types, so fpext is always defined. Alive-FP encodes fpext as:

vz = fpToFP(r, vx, τz)

where r is the default rounding mode (the choice is irrelevant), τz is the target
type, and fpToFP in the FPA theory converts either a FP value or a signed
bitvector value to the specified FP type with the specified rounding mode.

Encoding fptrunc instruction. The fptrunc instruction demotes a floating-
point value to a smaller type. Not all values in the larger type are exactly rep-
resentable in the smaller type. These fall into two categories. A conversion is
imprecise if the exponent can be represented in the target type, but least sig-
nificant bits of the source significand are non-zero. LLVM requires the result of
an imprecise conversion to be one of the two representable values closest to the
source value, but leaves the choice undefined. This can be interpreted as round-
ing, according to (a) a fixed rounding mode (e. g., RNE — round to the nearest
representable number with ties to even), (b) an arbitrary rounding mode, or (c)
an undefined choice between the two nearest values. By default, Alive-FP rounds
using the current rounding mode in this case.

A conversion is out of range if the exponent cannot be represented in the
target type. LLVM states that the result is undefined. This may be interpreted
as an undef or a poison value. We provide encodings for both interpretations.

Encoding out-of-range truncations with undef values. In this inter-
pretation, we handle out-of-range conversions by creating fresh undef variables
that are appropriately quantified.

Uz = {u} ∪ Ux

vz =

{
fpToFP(r, vx, τz) if vx ∈ τz
u otherwise

where r is the default rounding mode, τz is the target type, and u is a fresh
variable. We write vx ∈ τz to indicate that vx is exactly representable in τz.

Encoding out-of-range truncations with poison values. In this inter-
pretation, we encode out-of-range conversions in the poison-free constraints.

ρz = vx ∈ τz ∧ ρx
vz = fpToFP(r, vx, τz)

where τz is the target type, r is the current rounding mode, and ρx are the
poison-free constraints for x.

Encoding fptosi instruction. The fptosi instruction converts a floating-
point value to a bitvector, interpreted as a signed value. Any fractional part of the
value is truncated (i. e., rounded towards zero). If the resulting value is outside
the range of the target type, the result is undefined. We provide encodings both
as an undef value and a poison value to represent values outside the range of
the target type.

Encoding out-of-range fptosi conversions with a undef value. We
create a fresh undef variable, which will be appropriately quantified, when the
value to be converted is beyond the range.

Uz = {u} ∪ Ux

vz =

{
fpToSBV(RTZ, vx, τz) if smin(τz) ≤ vx ≤ smax(τz)
u otherwise

where u is a fresh variable, τz is the target type, and fpToSBV in the FPA the-
ory converts a floating point number to signed bitvector similar to the semantics
of fptosi instruction. Constant functions smin(τz) and smax(τz) return the
largest and smallest signed values for a type τz. We use the rounding mode
RTZ (round towards zero) because the LLVM language reference manual explic-
itly specifies it.

Encoding out-of-range fptosi conversions with a poison value. The
encoding is similar to other instructions except the poison-free constraints use
the constant functions smin and smax.

ρz = smin(τz) ≤ vx ≤ smax(τz) ∧ ρx
vz = fpToSBV(RTZ, vx, τz)

where τz is the target type.

Encoding the fptoui instruction. The fptoui instruction converts a
floating-point value to a bitvector, interpreted as an unsigned value. The en-
coding is similar to the fptosi instruction except we use the constant functions
umin and umax (that return unsigned minimum and unsigned maximum value
for a type), and fpToUBV in the FPA theory to convert the value to an unsigned
bitvector.

Encoding the sitofp instruction. The sitofp instruction converts a
bitvector, interpreted as a signed integer, to a floating-point value. As with
fptrunc, such a conversion may be exact, imprecise, or out-of-range. Alive-FP
handles imprecise conversions by rounding according to the current rounding
mode. Alive-FP provides both undef and poison interpretations for out-of-range
conversions.

Encoding out-of-range sitofp conversions with undef. The encoding
is similar to fptrunc except we use the constant functions fmin and fmax that
provide the largest and smallest finite values for a given floating point type.

Uz = {u} ∪ Ux

vz =

{
sbvToFP(r, vx, τz) if fmin(τz) ≤ vx ≤ fmax(τz)
u otherwise

where u is a fresh variable, τz is the target type, and r is the current rounding
mode.

Encoding out-of-range sitofp conversions with poison. Similar to
the encoding for fptrunc, we encode out-of-range conversions with sitofp as a
poison value that result in an additional poison-free constraint.

ρz = fmin(τz) ≤ vx ≤ fmax(τz) ∧ ρx
vz = sbvToFP(r, vx, τz)

where r is the current rounding mode and τz is the target type.

Encoding the uitofp instruction. The uitofp instruction converts a
bitvector, interpreted as an unsigned integer, to a floating-point value. This

%r = fmul nnan nsz %x, -1

=>

%r = fsub nnan nsz -0.0, %x

(a) An example optimization

P = isNaN(x) ∨ isNaN(−1) ∨ isNaN(x×−1)

Q = isNaN(−0) ∨ isNaN(x) ∨ isNaN(−0− x)

(b) The non-NaN conditions, used below

Us = {u1, b1}
δs = >
ρs = >

vs =


u1 if P
0 if ¬P ∧ isZero(x×−1) ∧ b1
−0 if ¬P ∧ isZero(x×−1) ∧ ¬b1

x×−1 if ¬P ∧ ¬isZero(x×−1)

U t = {u2, b2}
δt = >
ρt = >

vt =


u2 if Q
0 if ¬Q ∧ isZero(−0− x) ∧ b2
−0 if ¬Q ∧ isZero(−0− x) ∧ ¬b2

−0− x if ¬Q ∧ ¬isZero(−0− x)

value check: ∀xu2 b2, ∃u1 b1, v
s = vt

(c) The undef encoding

Us = {b1}
δs = >
ρs = ¬P

vs =


0 if isZero(x×−1) ∧ b1
−0 if isZero(x×−1) ∧ ¬b1

x×−1 if ¬isZero(x×−1)

U t = {b2}
δt = >
ρt = ¬Q

vt =


0 if isZero(−0− x) ∧ b2
−0 if isZero(−0− x) ∧ ¬b2

−0− x if ¬isZero(−0− x)

poison check: ∀x b2, ∃b1, ρs =⇒ ρt

value check: ∀x b2, ∃b1, ρs =⇒ vs = vt

(d) The poison encoding

Fig. 3. Illustration of the encodings and the validity checks generated by Alive-FP for
the optimization shown in (a). To simplify the exposition, we use the constraints in
(b) in the examples. The constraints and the validity checks generated with the undef

interpretation for nnan attribute is shown in (c). The constraints and the validity checks
generated with the poison interpretation for the nnan attribute is shown in (d). The
fmul instruction is always defined. Hence, the definedness condition (δs for source and
δt for the target is true (>). In the undef interpretation in (c), there are no poison
values, hence poison-free conditions are set to true (i. e., ρs = > and ρt = >).

is handled analogously to sitofp, but using the corresponding unsigned conver-
sion, ubvToFP in FPA theory.

Encoding bitcast instruction with floating point operations. The
bitcast instruction converts a value from one type to another without chang-
ing any bits. Thus, its source and target types must have the same bit width.
When converting an integer to a floating-point value, Alive-FP uses SMT-FPA’s
fpToFP, which converts a bit vector to a floating-point value directly when called
with two arguments.

vz = fpToFP(vx, τz)

When converting a floating-point value to an integer, we use Z3’s fpToIEEEBV,
a non-standard addition to the FPA theory.

vz = fpToIEEEBV(vx, τz)

This has the limitation of only producing one bit pattern for NaNs. An alter-
native would be returning an undef value restricted so that its conversion to
floating point is equal to vx.

Illustration of correctness checking. Figure 3(a) presents a simple Alive-
FP optimization. Figure 3(c) and Figure 3(d) present the encoding and the valid-
ity checks generated with the undef and poison encoding for the nnan attribute.

5 Evaluation

This section describes our prototype, the optimizations that we translated from
LLVM to Alive-FP, new bugs discovered, and the time taken for verification.

Prototype. Alive-FP is a ground-up rewrite of the Alive infrastructure,
designed with the goal of extending the language and the semantics. The Alive-
FP interpreter is written in Python and uses Z3-4.4.1 for solving SMT queries.
Alive-FP supports a subset of the features in Alive—enough to verify the Alive
suite of optimizations—along with the new FP support. Specifically, Alive-FP
does not support memory operations and cycle detection with composition [20].
Unlike Alive, which uses SMT queries to find feasible type instantiations, Alive-
FP enumerates all feasible type models using an unification-based type checker.

When we were designing FP support in Alive-FP, we discovered that Alive’s
treatment of undef was incorrect in some scenarios where a single undef was
referenced more than once [21]. Alive-FP addresses this problem by generating
fresh quantified variables for each reference to an undef value or an instruction
that may produce undef values. Alive-FP is open source [13].

Translation of LLVM optimizations to Alive-FP. We translated all the
bit-precise FP optimizations, which do not result in loss of accuracy, in LLVM-3.8
to Alive-FP. In total, we generated a total of 104 Alive-FP optimizations. Among
these 104 Alive-FP optimizations, 48 optimizations were from InstSimplify,
12 are FP mul/div/rem optimizations, 37 are FP compare optimizations, 1 is a
cast optimization, and 6 are FP add/sub optimizations. Certain optimizations
in LLVM are expressed as multiple Alive-FP optimizations, in particular opti-
mizations involving fcmp conditions or conditional flags in the target.

New LLVM bugs reported with Alive-FP. We discovered and reported
seven wrong FP optimizations in LLVM [8–12], which are listed in Figure 4.
Among these reported bugs, PR26746 [8] incorrectly changes the sign of zero and
has already been fixed. The sign of the zero is important for complex elementary
functions [22], where having a single zero can introduce discontinuities. After we
reported bug PR26862-1 in Figure 4, a developer pointed us to a discussion in
LLVM developers mailing list [23] that alluded to the argument that an undef

value in the source can be a signaling NaN [6] and therefore the source likely
exhibits undefined behavior. This argument is flawed because not all hardware
supports traps for signaling NaNs, and because it effectively erases the distinc-
tion between undef and undefined behavior for FP values, which is explicit in the
LLVM language reference. The optimization PR27151 [11] in Figure 4 is wrong

Name: PR26746

Pre: C == 0.0

%1 = fsub -0.0, %x

%r = fsub C, %1

=>

%r = %x

Name: PR26862-1

%r = fdiv undef, %x

=>

%r = undef

Name: PR26862-2

%r = fdiv %x, undef

=>

%r = undef

Name: PR26863-1

%r = frem undef, %x

=>

%r = undef

Name: PR26863-2

%r = frem %x, undef

=>

%r = undef

Name: PR27151

Pre: C == 0.0

%y = fsub nnan ninf C, %x

%z = fadd %y, %x

=>

%z = 0

Name: PR27153

Pre: sitofp(C0) == C && \

WillNotOverflowSignedAdd(%a, C0)

%x = sitofp %a

%r = fadd %x, C

=>

C0 = fptosi(C)

%y = add nsw %a, C0

%r = sitofp %y

Fig. 4. Seven wrong optimizations discovered by Alive-FP. In PR26746 [8], the opti-
mization is wrong because when x = −0.0 and C = 0, the source always evaluates to
0 but target evaluates to −0. In PR26862-1 [9], the optimization is wrong because if
x = ±0, the only possible return values for the source are ±∞ and NaN, but the tar-
get can produce any floating-point value. In PR26862-2 [9], the optimization is wrong
because if x = ±0, the only possible return values for the source are ±0 and NaN, but
the target may return any value. In PR26863-1 [10], the optimization is wrong because
if x = ±0, the only possible return value for the source is NaN, but the target may
return any value. In fact, for any finite, positive x, we will have r < x in the target. In
PR26863-2 [10], the optimization is wrong because for a finite x we have |r| < |x| for
the source, but the target may return any value. The optimization in PR27151 [11] is
wrong in the undef interpretation but correct in the poison interpretation for nnan.
With undef interpretation, when x is NaN, then y will be an undef value. The value z
in the source will always be NaN, because any value added to NaN is NaN but the
target is 0. In the poison interpretation, we can assume x is not NaN, because that
would result in z being a poison value. Because z can never be visibly used without
causing undefined behavior, we are free to replace it with 0 in that case. The buggy
optimization PR27153 [12] reassociates an integer-to-floating point conversion and a
constant add, when LLVM can show that the constant C is exactly representable in
the type of a and the sum a + C is also representable in that type (i. e., computing
it will not overflow). The optimization fails if a cannot be exactly represented in the
target type but a+C can be (this could occur if a and C have opposite signs). In such
a case, the source will lose precision due to rounding, but the target will not, resulting
in changed behavior.

depending on the interpretation used for nnan and ninf attributes. The opti-
mization is wrong under the undef interpretation but is correct under the poison
interpretation. The optimization PR27153 [12] in Figure 4 is wrong because the

0.01 0.1 1 10 100 1000

Time (s)

0

20

40

60

80

100

O
p
ti

m
iz

at
io

n
s

half

float

double

fp80

fp128

0.01 0.1 1 10 100 1000

Time (s)

0

20

40

60

80

100

O
p
ti

m
iz

at
io

n
s

half

float

double

fp80

fp128

(a) undef encoding (b) Poison encoding

Fig. 5. The number of optimizations solvable in a given time with the undef encoding
and the poison encoding. The x-axis is in log-scale. We could not verify some of the
optimizations with larger FP types because the solver returned unknown result, ran out
of memory, or did not complete.

target has a higher precision than the source, which violates the expectation of
bitwise similarity.

Time taken to verify optimizations. Figure 5 reports the number of
optimizations that can be verified in a given amount of time for different FP
types with the undef and the poison encoding. We conducted this experiment by
specializing the FP type on a x86-64 2.6GHz Haswell machine with 16GB main
memory. We were not able to verify 3 optimizations with any FP type because
the solver did not complete. Figure 5 illustrates that the poison encoding is faster
than the undef encoding. Further, the smaller FP types are verified quickly.

6 Related Work

There is significant prior research on checking, estimating, and/or improving
the accuracy of FP operations [17, 18, 24–33], which is orthogonal to Alive-FP.
Our work is also related to analyses and formal verification of bit-precise FP
computations [30, 34–36]. In the context of verified compilers, CompCert [37]
provides semantics to FP operations and performs mechanized verification of
bit-precise FP computations [38]. In contrast, Alive-FP performs automated
verification by encoding into FPA theory and takes into account the undefined
behavior in the LLVM compiler.

Alive-FP is also related to prior DSLs for specifying optimizations [39–41],
which typically do not address FP operations. Alive-FP builds on our prior
work Alive [3], which focused on integer optimizations. Concurrent to Alive-FP,
LifeJacket [42] is initial work that also adds FP reasoning to Alive. In contrast
to Alive-FP, LifeJacket does not explore the various semantic interpretations
for attributes or instructions. LifeJacket primarily uses undef values for any
undefined behavior. Its encoding for the nsz attribute is likely restrictive and
can incorrectly rule out optimizations. Also, it does not support the bitcast

instruction or the x86 fp80 and fp128 types.

7 Conclusion

We have presented Alive-FP, a domain-specific language to express and verify
bit-precise FP optimizations in LLVM. We have proposed multiple encodings for
FP operations and fast-math attributes (nsz, nnan, and ninf) to account for the
ambiguity in the LLVM language reference. Alive-FP provides a comprehensive
semantic treatment of FP operations and its interaction with undefined behavior
in LLVM. Alive-FP is a first step in the automated verification of bit-precise FP
computations in the LLVM compiler.

Acknowledgments

We thank Vinod Ganapathy, Thomas Wahl, and the reviewers for their feed-
back on this paper. This paper is based on work supported in part by NSF
CAREER Award CCF–1453086, a sub-contract of NSF Award CNS–1116682, a
NSF Award CNS–1441724, a Google Faculty Award, and gifts from Intel Cor-
poration.

References

1. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. pp. 283–294. PLDI, ACM (2011)

2. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 216–226. PLDI (2014)

3. Lopes, N., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with Alive. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 22–32. PLDI, ACM
(2015)

4. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics for
IEEE-754 floating-point arithmetic. In: Proceedings of the 22nd IEEE Symposium
on Computer Arithmetic. pp. 160–167. ARITH, IEEE (Jun 2015)

5. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the The-
ory and Practice of Software, 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 337–340. TACAS (2008)

6. IEEE standard for floating-point arithmetic. IEEE 754-2008, IEEE Computer So-
ciety (Aug 2008)

7. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys 23(1), 5–48 (Mar 1991)

8. Menendez, D.: LLVM bug 26746 InstructionSimplify turns 0.0 to −0.0. https:

//llvm.org/bugs/show_bug.cgi?id=26746, retrieved 2016-04-16

9. Menendez, D.: LLVM bug 26862 InstructionSimplify broadens undef when simplify-
ing frem. https://llvm.org/bugs/show_bug.cgi?id=26862, retrieved 2016-04-16

10. Menendez, D.: LLVM bug 26863 InstructionSimplify broadens undef when simplify-
ing fdiv. https://llvm.org/bugs/show_bug.cgi?id=26863, retrieved 2016-04-16

11. Menendez, D.: LLVM bug 27151 InstructionSimplify turns NaN to 0.0. https:

//llvm.org/bugs/show_bug.cgi?id=27151, retrieved 2016-04-16
12. Menendez, D.: LLVM bug 27153 InstCombine changes results by reassociating

addition and sitofp. https://llvm.org/bugs/show_bug.cgi?id=27153, retrieved
2016-04-16

13. Menendez, D., Nagarakatte, S.: Alive-NJ. https://github.com/rutgers-apl/

alive-nj, retrieved 2016-04-16
14. Lattner, C.: What every C programmer should know about undefined behav-

ior. http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.

html (May 2011), retrieved 2016-04-16
15. Regehr, J.: A guide to undefined behavior in C and C++. http://blog.regehr.

org/archives/213 (Jul 2010), retrieved 2016-04-16
16. Wang, X., Zeldoivch, N., Kaashoek, M.F., Solar-Lezama, A.: Towards optimization-

safe systems: Analyzing the impact of undefined behavior. In: Proceedings of the
24th ACM Symposium on Operating Systems Principles. pp. 260–275. SOSP, ACM
(Nov 2013)

17. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically im-
proving accuracy for floating point expressions. In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation. pp.
1–11. PLDI, ACM (Jun 2015)

18. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic Taylor expansions. In: Pro-
ceedings of the 20th International Symposium on Formal Methods. pp. 532–550.
FM, Springer (Jun 2015)

19. Menendez, D.: FPA remainder does not match SMT-FPA semantics. https://

github.com/Z3Prover/z3/issues/561, retrieved 2016-04-16
20. Menendez, D., Nagarakatte, S.: Termination-checking for LLVM peephole opti-

mizations. In: Proceedings of the 38th International Conference of Software Engi-
neering. pp. 191–202. ICSE (May 2016)

21. Menendez, D.: Incorrect undef semantics. https://github.com/nunoplopes/

alive/issues/31, retrieved 2016-04-17
22. Kahan, W.: Branch cuts for complex elementary functions, or much ado about

nothing’s sign bit. In: Proceedings of the Joint IMA/SIAM Conference on the
State of the Art in Numerical Analysis Held at the UN. pp. 165–211 (1987)

23. Anderson, O.: Re: [llvmdev] bug 16257 - fmul of undef ConstantExpr not folded
to undef. http://lists.llvm.org/pipermail/llvm-dev/2014-August/076225.

html (Aug 2014), retreived 2016-04-17
24. Ivančić, F., Ganai, M.K., Sankaranarayanan, S., Gupta, A.: Numerical stability

analysis of floating-point computations using software model checking. In: Pro-
ceedings of the 8th IEEE/ACM International Conference on Formal Methods and
Models for Codesign. pp. 49–58. MEMOCODE, IEEE (Jul 2010)

25. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 235–248. POPL, ACM, New York, NY, USA (2014)

26. Kinsman, A.B., Nicolici, N.: Finite precision bit-width allocation using SAT-
modulo theory. In: Proceedings of the Conference on Design, Automation and
Test in Europe. pp. 1106–1111. DATE ’09, European Design and Automation As-
sociation, 3001 Leuven, Belgium, Belgium (2009)

27. Rubio-González, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: Tuning assistant for floating-

point precision. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 27:1–27:12. SC ’13,
ACM, New York, NY, USA (2013)

28. Fu, Z., Bai, Z., Su, Z.: Automated backward error analysis for numerical code.
In: Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. pp. 639–654. OOP-
SLA 2015, ACM, New York, NY, USA (2015)

29. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-point exceptions.
In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. pp. 549–560. POPL ’13, ACM, New York, NY,
USA (2013)

30. Goubault, E.: Static analyses of the precision of floating-point operations. In: Pro-
ceedings of the 8th International Symposium on Static Analysis. pp. 234–259. SAS,
Springer (2001)

31. de Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted verification of elementary
functions using Gappa. In: Proceedings of the 2006 ACM Symposium on Applied
Computing. pp. 1318–1322. SAC, ACM (2006)

32. Brain, M., DSilva, V., Griggio, A., Haller, L., Kroening, D.: Interpolation-based
verification of floating-point programs with abstract CDCL. In: Proceedings of the
20th International Symposium on Static Analysis. pp. 412–432. SAS, Springer (Jun
2013)

33. Goubault, E., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accu-
racy in control systems: Principles and experiments. In: Revised Selected Papers
from the 12th International Workshop on Formal Methods for Industrial Critical
Systems, pp. 3–20. FMICS, Springer (2007)

34. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 30(3), 12:1–12:41 (May
2008)

35. Martel, M.: Semantics-based transformation of arithmetic expressions. In: Proceed-
ings of the 14th International Symposium on Static Analysis. pp. 298–314. SAS,
Springer (2007)

36. Harrison, J.: Floating point verification in HOL. In: Proceedings of the 8th Inter-
national Workshop on Higher Order Logic Theorem Proving and Its Applications.
pp. 186–199. Springer (Sep 1995)

37. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7), 107–115 (Jul 2009)

38. Boldo, S., Jourdan, J.H., Leroy, X., Melquiond, G.: A formally-verified C compiler
supporting floating-point arithmetic. In: Proceedings of the 21st IEEE Symposium
on Computer Arithmetic. pp. 107–115. ARITH, IEEE (Apr 2013)

39. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for
dataflow analyses and transformations via local rules. In: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 364–377. POPL (2005)

40. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 327–337. PLDI (2009)

41. Buchwald, S.: Optgen: A generator for local optimizations. In: Proceedings of the
24th International Conference on Compiler Construction. pp. 171–189. CC (2015)

42. Nötzli, A., Brown, F.: LifeJacket: Verifying precise floating-point optimizations in
LLVM. http://arxiv.org/pdf/1603.09290v1.pdf, retrieved 2016-04-04

