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          This manuscript has been prepared on an  IBM PC  to be printed on an  EPSON
          FX80  printer with a font of the author’s making downloaded beforehand.  As
          stored in the computer,  the manuscript contains various control characters
          and other characters used in a nonstandard way to print mathematical symbols 
          from that font.  This page describes what those characters do.
          
          Most of the manuscript is set in an  Elite  font,  12 characters per inch.
          Subscripts and superscripts are set in a  Condensed  font,  about  17 or 18
          characters per inch.  Headings are set in a  Pica  font,  10 characters per
          inch,  or less when  "Proportional".   Font changes are controlled thus:
          
           Ctrl O  Esc M   sets default to  Elite  and prepares switch to  Condensed.
           Ctrl N  switches to  Double Width;   Ctrl T  switches back.
           Esc G   turns on  Double-Strike;   Esc H  turns it off.
           Esc P   switches to  Condensed;       Esc M   switches back to  Elite.
           Esc P  Ctrl R  switches to  Pica;   Ctrl O  Esc M  gets back to  Elite etc.
           Esc E    switches  Pica  to  Bold Pica;           Esc F    switches back.
           Esc p 1  switches  Pica  to  Proportional Bold;   Esc p 0  switches back.
          
           Esc 4   switches to  Italics ;             Esc 5   switches back.
           Esc S 0   turns on  Superscripts ;             Esc S 1   turns on  Subscripts ;
           Esc T   turns  Superscripts and Subscripts  off.
          
          
              Ctrl H  =  nondestructive backspace,  for overstriking  =/ ,  _< , etc.
              Ctrl B  =  sqrt √        Ctrl D  =  iota ι        Ctrl W  =  Infinity ∞
              Ctrl }  =  high : :      Ctrl 6  =  Delta ∆       Ctrl -  =  pi π
              Ctrl Q  =  Gamma Γ       Ctrl V  =  umlaut        Ctrl C  =  Norm bars ||
              ASCII 128 = beta β       ASCII 135 = rho ρ        ASCII 153 = eta η
              ASCII 147 = xi ξ         ASCII 136 = chi χ        ASCII 154 = zeta ζ
              ASCII 139 = Omega Ω      ASCII 130 = Esc 4 Ctrl B Esc 5 = epsilon ε
                                       ASCII 133 = Esc 4 Ctrl E Esc 5 = lambda λ

          
          NOTE:  During file transfers to diverse computer systems,  take care  NOT to
          lose each byte’s most-sig. bit lest  β  become NULL,  ρ  become BELL,  etc.
          
          
          For several years this manuscript has been accreting refinements and
          improvements,  some suggested by readers.  The author welcomes all such
          suggestions.
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          Abstract
             Zero has a usable sign bit on some computers,  but  not  on others.  This
          accident  of  computer arithmetic  influences  the  definition  and  use  of
          familiar complex elementary functions like  √ ,  arctan  and  arccosh  whose
          domains are the whole  complex plane  with a  slit  or two drawn in it.  The
          Principal Values  of those functions are  defined in terms of the  logarithm
          function from which they inherit  discontinuities across the slit(s).  These
          discontinuities are crucial for applications to conformal maps with corners.
          The behavior of  those  functions on their slits can be read off immediately
          from defining   Principal Expressions   introduced in this paper  for use by
          analysts.  Also introduced herein are programs that implement the  functions
          fairly accurately despite  roundoff  and other numerical exigencies.  Except
          at  logarithmic branch points,   those functions can all be continuous up to
          and onto their boundary slits when zero has a sign that behaves as specified
          by  IEEE  standards for floating-point arithmetic;  but those functions must
          be discontinuous on one side of each slit when zero is unsigned.   Thus does
          the sign of zero lay down a trail from computer hardware through programming
          language compilers,  run-time support libraries and applications programmers
          to,  finally,  mathematical analysts.
          
          
          Prepared for the joint  IMA/SIAM  Conference on  "The State of the Art in Numerical Analysis"  held at the
          University of Birmingham,  England,  April 14 - 18,  1986,  for which the proceedings have been published
          in 1987 by the  Oxford University Press,  edited by  M. J. D. Powell and A. Iserles.  This is an augmented
          and corrected version that supersedes the paper in the proceedings.
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          Preamble:
          
             In  1946  a long working day could be consumed by the creation and numerical
          inversion of an  8x8  matrix on the computing machine of that era,  an electro-
          mechanical desk-top contraption that carried  ten decimal digits.  A  100x100
          matrix was out of the question.  Twenty years later both matrices could be
          handled in a fraction of a minute,  at a cost well under a dollar,  by an
          electronic computer that filled a room,  carried about  eight sig. dec.,  and
          took an hour to program.  Now,  after another twenty years,  the  8x8  matrix
          can be entered and inverted in a shirt-pocket calculator,  carrying  ten sig.
          dec.,  in a few minutes spent almost entirely on input and output;  the big
          100x100  matrix  can be inverted in a desk-top computer,  carrying over sixteen
          sig. dec.,  in a few seconds at a cost under a cent.  Measured by the obvious
          metrics,-  speed, price and precision,-  scientific computation has come a long
          way.  Were these the only metrics that mattered,  I should have nothing to say.
          
             Other aspects of computation must have some subtle influence upon our lives 
          because the cost of computation has not dropped so fast in the past two decades
          as the price of computer arithmetic might suggest.  Programming costs almost as
          much now as it ever did,  and has come to dominate the thoughts of many a
          scientist and engineer.  Considering how much time we spend thinking about what 
          the computer will do for us,  we should be surprised if its ways did not alter
          our ways of thought a little.  But who would expect the computer’s treatment of
          the sign of zero to influence our thinking?  In fact,  the ways computers
          perform arithmetic can affect the way we think profoundly,  much though we may
          wish it were the other way around.
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                    BRANCH CUTS FOR COMPLEX ELEMENTARY FUNCTIONS
                    ~~~~~~ ~~~~ ~~~ ~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~
          
          
          Introduction
             Conventions dictate the ways nine familiar multiple-valued complex
          elementary functions, namely
          
            √ ,  ln,  arcsin,  arccos,  arctan,  arcsinh,  arccosh,  arctanh,  zW ,
          
          shall be represented by single-valued functions called  "Principal Values" .
          These single-valued functions are defined and analytic throughout the
          complex plane except for discontinuities across certain straight lines
          called  "slits"  so situated as to  maximize  the reign of  continuity,
          conserving as many as possible of the properties of these functions’
          familiar real restrictions to apt segments of the real axis.  There can be
          no dispute about where to put the slits;  their locations are deducible.
          However,  Principal Values  have too often been left  ambiguous  on  the
          slits,  causing confusion and controversy insofar as computer programmers
          have had to agree upon their definitions.  This paper’s thesis is that most
          of that ambiguity can and should be resolved;  however,  on computers that
          conform to the  IEEE standards 754 and 854  for floating-point arithmetic
          the ambiguity should not be eliminated entirely because,  paradoxically,
          what is left of it usually makes programs work better.
          
             What has to be ambiguous is the sign of zero.  In the past,  most people
          and computers would assign no sign to zero except under duress,  and then
          they would treat the sign as  +  rather than  - .  For example,  the real
          function
                         signum(x) := +1  if  x > 0   ,
                                   :=  0  if  x = 0   .
                                   := -1  if  x < 0   ,
          illustrates the traditional non-committal attitude toward zero’s sign, 
          whereas the Fortran function
                      sign(1.0, x) := +1.0  if  x >_ 0   ,
                                   := -1.0  if  x < 0   ,
          must behave as if zero had a  +  sign in order that this function and its
          first argument have the same magnitude.  Just as  sign(1.0, x)  is
          continuous at  x = 0+ ,  i.e.  as  x  approaches zero from the right,  so
          can each principal value above be continuous as its slit is reached from one
          side but not from the other.  Sides can be chosen in a consistent way among
          all the elementary complex functions,  as they have been chosen for the
          implementations built into the  Hewlett-Packard hp-15C  calculator that will
          be used to illustrate this approach.
          
             The  IEEE standards  754 and 854  take a different approach.  They
          prescribe representations for both  +0  and  -0  that are distinguishable
          bit patterns treated as numerically equal;  +0 = -0 ,  so the ambiguity is
          benign.  Rather than think of  +0  and  -0  as distinct numerical values, 
          think of their sign bit as an auxiliary variable that conveys one bit of
          information  (or misinformation)  about any numerical variable that takes on
          zero  as its value.  Usually this information is irrelevant;  the value of 
          3 + x  is the same for  x := +0  as for  x := -0 ,  and likewise for the
          functions  signum(x)  and  sign(y,x)  mentioned above.  However,  a few
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          extraordinary arithmetic operations must be affected by zero’s sign;  for
          example  1/(+0) = +∞  but  1/(-0) = -∞ .  To retain its usefulness,  the
          sign bit must propagate through certain arithmetic operations according to
          rules derived from continuity considerations;  for instance  (-3)(+0) = -0 ,
          (-0)/(-5) = +0 ,  (-0)-(+0) = -0 ,  etc.  These rules are specified in the
          IEEE  standards along with the one rule that had to be chosen arbitrarily;
              s-s := +0  for every string  s  representing a finite real number.
          Consequently when  t = s ,  but  0 =/ t =/ ∞ ,  then  s-t  and  t-s  both
          produce  +0  instead of opposite signs.  ( That is why,  in  IEEE style
          arithmetic,  s-t  and  -(t-s)  are numerically equal but not necessarily
          indistinguishable. )  Implementations of elementary transcendental functions
          like  sin(z) and tan(z)  and their inverses and hyperbolic analogs,  though
          not specified by the  IEEE standards,  are expected to follow similar rules; 
          if  f(0) = 0 < f’(0) ,  then the implementation of  f(z)  is expected to
          reproduce the sign of  z  as well as its value at  z = +_0 .  That does
          happen in several libraries of elementary transcendental libraries;  for
          instance,  it happens on the  Motorola 68881 Floating-Point Coprocessor,  on 
          Apple computers in their  Standard Apple Numerical Environment,  in  Intel’s 
          Common Elementary Function Libraries  for the  i8087 and i80287  floating-
          point coprocessors,  in analogous libraries now supplied with the  Sun III , 
          with the  ELXSI 6400  and with the  IBM RT/PC,  and in the  C Math Library
          currently distributed with  4.3 BSD UNIX  for machines that conform to  IEEE
          754.  With a few unintentional exceptions,  it happens also on the  hp-71B 
          hand-held computer,  whose arithmetic was designed to conform to  IEEE 854.
          
             If a programmer does not find these rules helpful,  or if he does not
          know about them,  he can ignore them and,  as has been necessary in the
          past,  insert explicit tests for zero in his program wherever he must cope
          with a discontinuity at zero.  On the other hand,  if the standards’ rules
          happen to produce the desired results without such tests,  the tests may be
          omitted leaving the programs simpler in appearance though perhaps more
          subtle.  This is just what happens to programs that implement or use the
          elementary functions named above,  as will become evident below.
          
          
          
          Where to put the slits.
             Each of our nine elementary complex functions  f(z)  has a slit or slits
          that bound a region,  called the  "principal domain" ,  inside which  f(z) 
          has a  principal value  that is single valued and analytic  ( representable
          locally by power series ),  though it must be discontinuous across the
          slit(s).  That  principal value  is an extension,  with maximal  principal
          domain,  of a real elementary function  f(x)  analytic at every interior
          point of its domain,  which is a segment of the real  x-axis.  To conserve
          the power series’ validity,  points strictly inside that segment must also
          lie strictly inside the principal domain;  therefore the slit(s) cannot
          intersect the segment’s interior.  Let  z* = x-ιy  denote the complex
          conjugate of  z = x+ιy ;  the power series for  f(x)  satisfy the identity
          f(z*) = f(z)*  within some complex neighborhood of the segment’s interior,
          so the identity should persevere throughout the principal domain’s interior
          too.  Consequently complex conjugation must map the slit(s) to itself/
          themselves.  The slit(s) of an  odd  function  f(z) = -f(-z)  must be
          invariant under reflection in the origin  z = 0 .  Finally,  the slit(s)
          must begin and end at  branch-points;  these are singularities around which
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          some branch of the function cannot be represented by a  Taylor  nor  Laurent
          series expansion.  A slit can end at a branch point at infinity.
          
             Consequently the slit for  √ ,  ln  and  zW  turns out to be the negative
          real axis.  Then the slits for  arcsin ,  arccos  and  arctanh  turn out to
          be those parts of the real axis not between  -1 and  +1 ;  similarly those
          parts of the imaginary axis not between  -ι and  +ι  serve as slits for
          arctan  and  arcsinh .  The slit for  arccosh ,  the only slit with a finite
          branch-point  ( -1 )  inside it,  must be drawn along the real axis where
          z _< +1 .  None of this is controversial,  although a few other writers have
          at times drawn the slits elsewhere either for a special purpose or by
          mistake;  other tastes can be accommodated by substitutions sometimes so
          simple as writing,  say,  ln(-1) - ln(-1/z)  in place of  ln(z)  to draw its
          slit along  (and just under)  the positive real axis instead of the negative
          real axis.
          
          
          
          Why do Slits Matter?
             A computer program that includes complex arithmetic operations must be a
          product of a deductive process.  One stage in that process might have been a
          model formulated in terms of analytic expressions that constrain physically
          meaningful variables without telling explicitly how to compute them.  From
          those expressions somebody had to deduce other complex analytic expressions
          that the computer will evaluate to solve the given physical problem.  The
          deductive process entails transformations among which some may resemble
          algebraic manipulations of real expressions,  but with a crucial difference:
               Certain transformations,  generally valid for real expressions,
               are valid for complex expressions only while their variables
               remain within suitable regions in the complex plane.
          Moreover,  those regions of validity can depend disconcertingly upon the
          computer that will be used to evaluate the expressions in question.  For
          example,  simplifying the expression   √(z/(z-1)) √(1/(z-1))  to  √(z)/(z-1)
          seems legitimate in so far as they both describe the same complex function,
          one that is continuous everywhere except for a pole at  z = 1  and a  jump-
          discontinuity along the negative real axis  z < 0 .  And when those two
          expressions are evaluated upon a variety of computers including the  ELXSI
          6400,  the  Sun III,  the  IBM RT/PC,  the  IBM PC/AT,  PC/XT and PC  using
          i80287 or i8087,  and the  hp-71B,  they agree everywhere within a rounding
          error or two.  But when the same expressions are evaluated upon a different
          collection of computers including  CRAYs,  the  IBM 370 family,  the DEC VAX
          line,  and the  hp-15C,  those expressions take opposite signs along the
          negative real axis!  An experience like this could undermine one’s faith in
          some computers.
          
             What deserves to be undermined is blind faith in the power of  Algebra. 
          We should not believe that the  equivalence class  of expressions that all
          describe the same complex analytic function can be recognized by algebraic
          means alone,  not even if relatively uncomplicated expressions are the only
          ones considered.  To locate the domain upon which two analytic expressions
          take equal values generally requires a combination of algebraic,  analytical
          and topological techniques.  The paradigm is familiar to complex analysts, 
          but it will be summarized here for the sake of other readers,  using the two
          expressions given above for concrete illustration.
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            How to decide where two analytic expressions describe the same function.
            ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          1.  Locate the singularities of each constituent subexpression of the given
              expressions.
          
             The singularities of an analytic function are the boundary points of its
          domain of analyticity.  These will consist of  poles,  branch-points  and
          slits in this paper;  but more generally they would include certain contours
          of integration,  boundaries of regions of convergence,  etc.  In general,
          singularities can be hard to find;  in our examples the singularities are
          obviously the pole at  z = 1 ,  the branch-point  z = 0 ,  and respective
          slits  0 < z < 1 ,  z < 1  and  z < 0  whereon the quantities under square
          root signs are negative real. 
          
          2.  Taken together,  the singularities partition the complex plane into a
              collection of disjoint connected components.  Inside each such component
              locate a  small continuum  upon which the equivalence of the given two
              expressions can be decided;  that decision is valid throughout the
              component’s interior.
          
             The "small continuum" might be a small disk inside which both expressions
          are represented by the same Taylor series;  or it could be a curvilinear arc
          within which both expressions take values that can be proved equal by the
          laws of real algebra.  Other possibilities exist;  some will be suggested by
          whatever motivated the attempt to prove that the given expressions are
          equivalent.  In our example,  the two expressions are easily proven equal on
          that part of the real axis where  z > 1 ,  which happens to lie inside the 
          one connected component into which the slits along the rest of the real axis
          divide the complex plane.  Therefore the two expressions must be equivalent
          everywhere in the complex plane except possibly where  z _< 1 .  ( When a
          complex variable satisfies this kind of inequality its value must be real.)
          
          3.  The singularities constitute loci in the plane upon which the processes
              in steps  1 and 2  above can be repeated,  finally leaving isolated
              singular points to be handled individually.  End of paradigm.
          
             In our example,  the slit along  z < 1  is partitioned into two connected 
          components by the branch-point at  z = 0 .  Each component has to be handled 
          separately.  Whether the two expressions are equivalent on a component must
          depend upon the definition of complex  √z  on its slit where  z < 0 ;  there
          diverse computers appear to disagree.  That is what this paper is about.
          
            More generally,  programmers who compose complex analytic expressions out
          of the nine elementary functions listed at this paper’s beginning will have
          to verify whether their expressions deliver the functions that they intend
          to compute.  In principle,  that verification could proceed without prior
          agreements about the functions’ values on their slits if instead analysts
          and programmers were obliged to supply an explicit expression to handle
          every boundary situation as they intend.  Such a policy seems inconsiderate
          ( not to say unconscionable )  considering how hard some singularities are
          to find and how easy to overlook;  but that policy is not entirely heartless
          since verifying correctness along a boundary costs the intellect nearly as
          much as writing down a statement of intent about that boundary.  The trouble 
          with those statements is that they generally contain inequalities and tests
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          and diverse cases,  and as they accumulate they burden proofs and programs 
          with a dangerously enlarged capture cross-section for errors.  And almost
          all of those statements become superfluous in programs after we agree upon
          reasonable definitions for the functions in question on their slits.
          
             For instance,  in our example above we had to discover whether the two
          expressions agreed on an interval  0 < z < 1  that lies strictly inside the
          domain of the desired function’s analyticity,  not on its boundary.  That
          interval turns out to be a  removable singularity,  and it does remove
          itself from all the computers mentioned above because they evaluate both
          expressions correctly on that interval;  diverse computers disagree only on
          the boundary where the desired function is discontinuous.  Perhaps that’s
          just luck.  ( Unlucky examples do exist and one will be presented later. )
          Let us accept good luck with gratitude whenever it simplifies our programs.
          
             Complex analytic expressions that involve slits and other singularities
          are intrinsically complicated,  and they get more complicated when rounding
          errors are taken into account.  Our objective cannot be to make complicated
          things simple but rather,  by choosing reasonable values for our nine
          elementary functions on their slits,  to make them no worse than necessary.
          
          
          
          Principal values on the slits, IEEE style.
             Since all the slits in question lie on either the real or the imaginary
          axis,  every point  z  on a slit is represented in at least two ways,  at
          least once with a  +0  and at least once with a  -0  for whichever of the
          real and imaginary parts of  z  vanishes.  Benignly,  ambiguity in  z  at a
          discontinuity of  f(z)  permits  f(z)  to be defined formally continuously,
          except possibly at the ends of some slits,  by continuation from inside the
          principal domain.  This continuity goes beyond mere formality.  By analytic
          continuation,  the domain of each of our nine elementary functions  f(z) 
          extends until it fills out a  Riemann Surface;  think of this surface as a
          multiple covering wrapped like a bandage around the  Riemann Sphere  and
          mapped onto it continuously by  f .  To construct  f ’s  principal domain,
          cut the bandage along the slit(s) and discard all but one layer covering the
          sphere.  That layer is a  closed  surface mapped by  f  continuously onto a
          subset of the sphere.  The shadow of that layer projected down upon the 
          sphere is the  principal domain;  it consists of the whole sphere,  but with
          slit(s) covered twice.  That is why we wish to represent slits ambiguously.
          
             Here are some illustrative examples,  the first of a real function that
          is recommended for any implementation of  IEEE standard 754 or 854.
          
               copysign(x, y)  has the magnitude of  x  but the sign bit of  y ,  so
               copysign(1,+0) = +1 = lim copysign(1, y)  at  y = 0+  , and
               copysign(1,-0) = -1 = lim copysign(1, y)  at  y = 0-  .
          
               √(-1 + ι0) = +0 + ι = lim √(-1 + ιy)  at  y = 0+  ;
               √(-1 - ι0) = +0 - ι = lim √(-1 + ιy)  at  y = 0-  .
          Consequently,  √(z*) = √(z)*  for every  z ,  and  √(1/z) = 1/√(z)  too.
          These identities persist within roundoff provided the programs used for
          square root and reciprocal are those,  supplied in this paper,  that would
          have been chosen anyway for their efficiency and accuracy.   
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            arccos(2 + ι0) = +0 - ι arccosh(2)  = lim arccos(2 + ιy)  at  y = 0+ ,
            arccos(2 - ι0) = +0 + ι arccosh(2)  = lim arccos(2 + ιy)  at  y = 0- .
          An implementation of  arccos  that preserves full accuracy in the imaginary
          part of  arccos(2 + ιy)  when  |y|  is very tiny can be expected to get its
          sign right when  y = +_0  too without extra tests in the code;  such a
          program is supplied later in this paper.
          
             But the foregoing examples make it all seem too simple.  The next example
          presents a more balanced picture.
          
             Let function   a(x) := √(x2 - 1)   for  real  x  with   x2 _> 1 ,  and let
          b(x) := a(x)  for real  x _> 1 ;  note that  b(x)  is not yet defined when
          x _< -1 .  The principal values of the complex extensions of  a  and  b 
          following the principles enunciated above turn out to be
                         a(z)  =  √( z2 - 1 )      =   a(-z)   ,    and
                         b(z)  =  √(z-1) √(z+1)    =  -b(-z)   .
          Both  a  and  b  are defined throughout the complex plane and both have a
          slit on the real axis running from  -1  to  +1 ,  but  a  has another slit
          that runs along the entire imaginary axis separating the right half-plane
          where  a = b  from the left half-plane where  a = -b .  The functions are
          different because generally
                 √(ξ) √(η)  =  √(ξ η)   when   | arg(ξ) + arg(η) | < π ,
                            = -√(ξ η)   when   | arg(ξ) + arg(η) | > π ,
                            = +_√(ξ η)  (hard to say which)  when   ξ η <_ 0 .
          Both functions  a  and  b  are continuous up to and onto ambiguous boundary
          points in  IEEE  style arithmetic,  as described above,  only if that
          arithmetic is implemented carefully;  in particular, the expression  z + 1 
          should not be replaced by the ostensibly equivalent  z + (1+i0)  lest the
          sign of zero in the imaginary part of  z  be reversed wrongly.  ( Generally,
          mixed-mode arithmetic combining real and complex variables should be
          performed directly,  not by first coercing the real to complex,  lest the
          sign of zero be rendered uninformative;  the same goes for combinations
          of pure imaginary quantities with complex variables.  And doing arithmetic
          directly this way saves execution time that would otherwise be squandered
          manipulating zeros.)  When  z  is near  _+1  the expression  a(z)  nearly
          vanishes and loses its relative accuracy to roundoff.  Although this loss
          could be avoided by rewriting   a(z) := √((z-1) (z+1)) ,  doing so would
          obscure the discontinuity on the imaginary axis in a cloud of roundoff which
          obliterates  Re(z)  whenever it is very tiny compared with  1  as well as
          when it is  _+0 .
          
             Also obscure is what happens at the ends of some slits.  Take for example
          ln(z) = ln(ρ) + ι-0 ,  where  ρ = |z|  and  -0 = arg(z)  are the polar 
          coordinates of  z = x + ιy  and satisfy
             x  =  ρ cos -0 ,   y  =  ρ sin -0 ,   ρ _> 0   and   -π <_ -0 _< π .
          Evidently  ρ := +√(x2+y2) ,  and when  0 < ρ < +∞  then
                   -0  :=  2 arctan( y/(ρ+x) )   if  x _> 0 ,  or
                      :=  2 arctan( (ρ-x)/y )   if  x _< 0 .
          At the end of the slit where   z = x = y = ρ = 0   (and  ln(ρ) = -∞ )  the
          value of  -0  may seem arbitrary,  but in fact it must cohere with other
          almost arbitrary choices concerning division by zero and arithmetic with
          infinity.  A reasonable choice is to interpose the reassignment
                          if   ρ = 0   then   x := copysign(1, x)
          between the computations of  ρ  and  -0  above.  More about that later.
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             The foregoing examples provide an unsettling glimpse of the complexities
          that have daunted implementers of compilers and run-time libraries who would 
          otherwise extend to complex arithmetic the facilities they have supplied for
          real floating-point computation.  These complexities are attributable to
          failures,  in complex floating-point arithmetic,  of familiar relationships
          like algebraic identities that we have come to take for granted in the arena
          of real variables.  Three classes of failures can be discerned:
          
          i)   The domain of an analytic expression can enclose singularities that
               have no counterparts inside the domain of its real restriction.  That
               is why   √(z2-1) =/ √(z-1) √(z+1) ,   for example.
          
          ii)  Rounding errors can obscure the singularities.  That is why,  for
               example,   √(z2-1) = √((z-1)(z+1))  fails so badly when either  z2 = 1
               very nearly or when  z2 < 0  very nearly.  To avoid this problem,  the
               programmer may have to decompose complex arithmetic expressions into
               separate computations of real and imaginary parts,  thereby forgoing
               some of the advantages of a compact complex notation.
          
          iii) Careless handling can turn infinity or the sign of zero into
               misinformation that subsequently disappears leaving behind only a
               plausible but incorrect result.  That is why compilers must not
               transform  z - 1  into  z - (1+ι0) ,  as we have seen above,  nor
               -(-x-x2)  into  x + x2 ,  as we shall see below,  lest a subsequent
               logarithm or square root produce a nonzero imaginary part whose sign is
               opposite to what was intended.
          
             The first two classes are hazards to all kinds of arithmetic;  only the
          third kind of failure is peculiar to  IEEE  style arithmetic with its signed
          zero.  Yet all three kinds must be linked together esoterically because the
          third kind is not usually found in an application program unless that
          program suffers also from the second kind.  The link is fragile,  easily
          broken if the rational operations or elementary functions,  from which
          applications programs are composed,  contain either of the last two kinds of
          failures.  Therefore,  implementers of compilers and run-time libraries bear
          a heavy burden of attention to detail if applications programmers are to
          realize the full benefit of the  IEEE  style of complex arithmetic.  That
          benefit deserves some discussion here if only to reassure implementors that
          their assiduity will be appreciated.
          
             The first benefit that users of  IEEE style  complex arithmetic notice is 
          that familiar identities tend to be preserved more often than when other
          styles of arithmetic are used.  The mechanism that preserves identities can
          be revealed by an investigation of an analytic function  f(z)  whose domain
          is slit along some segment of the real or imaginary axis;  say the real  (x)
          axis.  When  z = x + ιy  crosses the slit,  f(z)  jumps discontinuously as
          y  reverses sign although  f(z)  is continuous as  z  approaches one side of
          the slit or the other.  Consequently the two limits
                            f(x + ι0) := lim f(x + ιy)  as  y --> 0+   and
                            f(x - ι0) := lim f(x + ιy)  as  y --> 0-
          both exist,  but they are different when  x  has a real value inside the
          slit.  Ideally,  a subroutine  F(z)  programmed to compute  f(z)  should
          match these values;  F(x +_ ι0) = f(x +_ ι0) respectively  should be satisfied
          within a small tolerance for roundoff.  This normally happens in  IEEE style 
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          arithmetic as a by-product of whatever steps have been taken to ensure that 
          F(x + ιy) = f(x + ιy) ,  within a similarly small tolerance,  for all
          sufficiently small but nonzero  |y| .  To generate a discontinuity,  the
          subroutine  F  must contain constructions similar to  copysign(..., y)  or 
          arctan(1/y)  possibly with  "y"  replaced by some other expression that
          either vanishes or tends to infinity as  y --> 0 .  That expression cannot
          normally be a sum or difference like  arctan(y-1) + π/4  or  exp(y) - 1  that
          vanishes by cancellation,  because roundoff can give such expressions values
          (typically 0)  that have the wrong sign when  |y|  is tiny enough.  Instead,
          to preserve accuracy when  |y|  is tiny,  that expression must normally be a 
          real product or quotient involving a power of  y  or  sin(y)  or some other
          built-in function that vanishes with  y  and therefore should inherit its
          sign at  y = +_0 .  Thus does careful implementation of compiler and library
          combine with careful applications programming to yield correct behavior on
          and near the slit.  And if two such carefully programmed subroutines  F(z) , 
          though based upon different formulas,  agree within roundoff everywhere near
          the slit,  then the foregoing reasoning implies that normally they have to
          agree on the slit too;  this is the way  IEEE style  arithmetic preserves 
          identities like   √(z*) = (√z)*   and   √(1/z) = 1/√z   that would have to
          fail on slits if zero had no sign.
          
            Of course,  applications programmers generally have things more important
          than the preservation of identities on their minds.  Here is a more typical
          and realistic example:
          
          
          Picture  of  Conformal Map   ζ = f(z) :
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          
                     ->  liquid flow  ->       ιπ                        |
          --- wall -----------------------------.                   air  |
                        air                     ‘:       |v               |ι
          ....................................../                        :    liquid
                                                                         :
                    <-   liquid jet    <-        <- liquid flow        - O - <- - <- -
          ......................................                         :
                        air                     ‘:       |̂               :
          ___ wall _____________________________/                   air  |-ι

                     ->  liquid flow  ->      -ιπ   ζ - plane            |  z - plane
          
          Conformal Map  ζ = f(z)  of Half-Plane to Jet with Free Boundary
          
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          
             Let  f(z) := 1 + z2 + z√(1+z2) + ln(z2 + z√(1+z2)) ,   and construe the
          equation  ζ := f(z)  as a conformal map,  from the plane of  z = x + ιy  to
          the plane of  ζ = ξ + ιη ,  that maps the right half-plane  x >_ +0  onto the
          region wetted by a liquid that is being forced by high pressure to jet into
          a slot.  The walls of the slot,  where  ξ < 0  and  η = +_π ,  should be the
          images of those parts of the imaginary axis  z2 < -1  lying beyond  +_ι . 
          The free surfaces of the jet,  curving forward from  ζ = +_ιπ  and then back
          to  ζ = -∞ +_ ιπ/2 ,  should be the image of that segment of the imaginary
          axis  -1 < z2 < 0  between  +_ι . 
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             The picture of  f(z)  should be symmetrical about the real axis because 
          f(z*) = f(z)* .  As  z  runs up the imaginary axis,  with  x = +0  and  y 
          running from  -∞  through  -1  toward  -0  and then from  +0  through  +1 
          toward  +∞ ,  its image  ζ = f(z)  should run from left to right along the
          lower wall and back along the lower free boundary of the jet,  then from
          left to right along the jet’s upper free boundary and back along the upper
          wall.  This is just what happens when  f(z)  is plotted from a one-line
          program on the  hp-71B  calculator,  which implements the proposed  IEEE
          standard 854.  But when  f(z)  is programmed onto the  hp-15C,  whose zero
          is unsigned,  the lower wall disappears.  Its pre-image,  the lower part of
          the imaginary axis where  z/ι < -1 ,  is mapped during the computation of 
          f(z)  into the slit that belongs to  √ and ln ;  the upper part  z/ι > 1
          gets mapped onto the same slit.  For lack of a signed zero,  that slit gets
          attached to a side that is right for the upper wall but wrong for the lower
          wall,  thereby throwing the pre-image of the lower wall away into a tiny
          segment of the upper wall.  To put the lower wall back,  x  must be
          increased from  0  to a tiny positive value while  y  runs from  -∞ to -1 .
          ( How tiny should  x  be?   That’s a nontrivial question.)
          
             The misbehavior revealed in the foregoing example  f(z)  may appear to be 
          deserved because  f(z)  has slits on the imaginary axis  z2 < -1  beyond +_ι .
          Should mapping a slit to the wrong place be blamed upon the discontinuity
          there rather than upon arithmetic with an unsigned zero?   No.   Arithmetic
          with an unsigned zero can also cause other programs to misbehave similarly
          at places where the functions being implemented are otherwise well behaved. 
          For example consider  c(z) := z - ι√(ιz+1)√(ιz-1) ,  whose slit lies in the
          imaginary axis  -1 < z2 < 0  between  +_ι .  Now  ζ := c(z)  maps the slit  z
          plane  onto the  ζ plane  outside the circle  |ζ| >_ 1 ;  vertical lines in
          the  z plane  map to stream lines in the vertical flow of a fluid around the
          circle.  Implementing  c(z) ,  the programmer notices that he can reduce two
          expensive square roots to one by rewriting
                          c(z)  :=  z  +  √(z2+1) copysign(1, Re(z)) .
          The two expressions for  c(z)  match everywhere in  IEEE style  arithmetic;  
          but when zero has only one sign,  say  + ,  the second expression maps the
          lower part of the imaginary axis,  where z/ι < -1 ,  into the inside instead
          of the outside of the circle,  although  c(z)  should be continuous there.
          
             The ease with which  IEEE style  arithmetic handled the important
          singularities near  z = +_ι  in the examples above should not be allowed to
          persuade the reader that all singularities can be dispatched so easily.  The
          singularities  f(0)  and  f(∞)  and the overflows near  z = ∞  would have to
          be handled in the usual ways if they did not lie so far off the left-hand
          side of the picture that nobody cares.  Another kind of singularity that did
          not matter here,  but might matter elsewhere,  insinuated weasel words like
          "not usually",  "tends to be" and "normally"  into the earlier discussion of
          sums and differences that normally vanish by cancellation.  Sums and
          differences  can  vanish without cancellation if they combine terms that
          have already vanished;  an example is   h(x) := x + x2   when  x = 0 .
          Evaluating  h(+_0)  in  IEEE style  real arithmetic yields  +0  instead of
          +_0 respectively,  losing the sign of zero.  h(x)  has other troubles;  it
          signals  Underflow  when  x  is very tiny,  suffers inaccuracy when  x  is
          very near  -1 ,  and becomes  Invalid  at  x = -∞ .  Simply rewriting
          h(x) := x(1+x)  dispels all these troubles,  but is slightly less accurate
          for very tiny  |x|  than is  h(x) := -(-x - x2) ,  which preserves accuracy

                                          WORK IN PROGRESS



            Slits2                             12                           May 17, 1987

          and the sign of zero for all tiny real  x .  Complex arithmetic complicates
          this situation.  Both expressions  z+z2  and  z(1+z)  produce zeros with the
          wrong sign for  Im(h(z))  on various segments of the real  z-axis;  to get
          the correct sign and better accuracy requires an expression like
                               h(x + ιy) := x(1+x)-y2 + 2ιy(x+0.5)
          regardless of arithmetic style.  For similar reasons,  the expression for 
          f(z)  used above for the conformal map would have to be rewritten if the
          interesting part of its domain were the left instead of right half-plane.
          
             IEEE style  complex arithmetic appears to burden the implementers of
          compilers and run-time libraries with a host of complicated details that
          need rarely bother the user if they are dispatched properly;  and then
          familiar identities will persist,  despite roundoff,  more often than in
          other styles of arithmetic.  This thought would comfort us more if the
          aberrations were easier to uncover.  Locating potential aberrations remains
          an onerous task for an application programmer,  regardless of the style of 
          arithmetic;  however that style can affect the locus of aberration
          fundamentally.  In  IEEE style  arithmetic,  a programmed implementation of
          a complex analytic function can take aberrant boundary values,  different
          from what would be preduced by continuation from the interior,  because of
          roundoff or similar phenomena.  In arithmetic without a signed zero,  such
          an aberration can be caused as well by an unfortunate choice of analytic
          expression,  though the programmer has implemented it faithfully.  The fact
          that an analytic expression determines the values of an analytic function
          correctly inside its domain is no reason to expect the boundary values to be 
          determined correctly too when zero is unsigned.
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