
 Slits0 0 Sept. 7, 1987

 Prologue to
 Branch Cuts for Complex Elementary Functions

 W. Kahan
 Elect. Eng. and Computer Science,
 and Mathematics Departments
 University of California
 Berkeley, CA 94720

 This manuscript has been prepared on an IBM PC to be printed on an EPSON
 FX80 printer with a font of the author’s making downloaded beforehand. As
 stored in the computer, the manuscript contains various control characters
 and other characters used in a nonstandard way to print mathematical symbols
 from that font. This page describes what those characters do.

 Most of the manuscript is set in an Elite font, 12 characters per inch.
 Subscripts and superscripts are set in a Condensed font, about 17 or 18
 characters per inch. Headings are set in a Pica font, 10 characters per
 inch, or less when "Proportional". Font changes are controlled thus:

 Ctrl O Esc M sets default to Elite and prepares switch to Condensed.
 Ctrl N switches to Double Width; Ctrl T switches back.
 Esc G turns on Double-Strike; Esc H turns it off.
 Esc P switches to Condensed; Esc M switches back to Elite.
 Esc P Ctrl R switches to Pica; Ctrl O Esc M gets back to Elite etc.
 Esc E switches Pica to Bold Pica; Esc F switches back.
 Esc p 1 switches Pica to Proportional Bold; Esc p 0 switches back.

 Esc 4 switches to Italics ; Esc 5 switches back.
 Esc S 0 turns on Superscripts ; Esc S 1 turns on Subscripts ;
 Esc T turns Superscripts and Subscripts off.

 Ctrl H = nondestructive backspace, for overstriking =/ , _< , etc.
 Ctrl B = sqrt √ Ctrl D = iota ι Ctrl W = Infinity ∞
 Ctrl } = high : : Ctrl 6 = Delta ∆ Ctrl - = pi π
 Ctrl Q = Gamma Γ Ctrl V = umlaut Ctrl C = Norm bars ||
 ASCII 128 = beta β ASCII 135 = rho ρ ASCII 153 = eta η
 ASCII 147 = xi ξ ASCII 136 = chi χ ASCII 154 = zeta ζ
 ASCII 139 = Omega Ω ASCII 130 = Esc 4 Ctrl B Esc 5 = epsilon ε
 ASCII 133 = Esc 4 Ctrl E Esc 5 = lambda λ

 NOTE: During file transfers to diverse computer systems, take care NOT to
 lose each byte’s most-sig. bit lest β become NULL, ρ become BELL, etc.

 For several years this manuscript has been accreting refinements and
 improvements, some suggested by readers. The author welcomes all such
 suggestions.

 WORK IN PROGRESS

 Slits0 1 Sept. 7, 1987

 BRANCH CUTS
 for
 COMPLEX ELEMENTARY FUNCTIONS,

 or

 MUCH ADO ABOUT NOTHING’S SIGN BIT.

 by

 W. Kahan
 Elect. Eng. and Computer Science,
 and Mathematics Departments,
 University of California,
 Berkeley, CA 94720.
 May 17, 1987

 Abstract
 Zero has a usable sign bit on some computers, but not on others. This
 accident of computer arithmetic influences the definition and use of
 familiar complex elementary functions like √ , arctan and arccosh whose
 domains are the whole complex plane with a slit or two drawn in it. The
 Principal Values of those functions are defined in terms of the logarithm
 function from which they inherit discontinuities across the slit(s). These
 discontinuities are crucial for applications to conformal maps with corners.
 The behavior of those functions on their slits can be read off immediately
 from defining Principal Expressions introduced in this paper for use by
 analysts. Also introduced herein are programs that implement the functions
 fairly accurately despite roundoff and other numerical exigencies. Except
 at logarithmic branch points, those functions can all be continuous up to
 and onto their boundary slits when zero has a sign that behaves as specified
 by IEEE standards for floating-point arithmetic; but those functions must
 be discontinuous on one side of each slit when zero is unsigned. Thus does
 the sign of zero lay down a trail from computer hardware through programming
 language compilers, run-time support libraries and applications programmers
 to, finally, mathematical analysts.

 Prepared for the joint IMA/SIAM Conference on "The State of the Art in Numerical Analysis" held at the
 University of Birmingham, England, April 14 - 18, 1986, for which the proceedings have been published
 in 1987 by the Oxford University Press, edited by M. J. D. Powell and A. Iserles. This is an augmented
 and corrected version that supersedes the paper in the proceedings.

 WORK IN PROGRESS

 Slits0 2 Sept. 7, 1987

 Preamble:

 In 1946 a long working day could be consumed by the creation and numerical
 inversion of an 8x8 matrix on the computing machine of that era, an electro-
 mechanical desk-top contraption that carried ten decimal digits. A 100x100
 matrix was out of the question. Twenty years later both matrices could be
 handled in a fraction of a minute, at a cost well under a dollar, by an
 electronic computer that filled a room, carried about eight sig. dec., and
 took an hour to program. Now, after another twenty years, the 8x8 matrix
 can be entered and inverted in a shirt-pocket calculator, carrying ten sig.
 dec., in a few minutes spent almost entirely on input and output; the big
 100x100 matrix can be inverted in a desk-top computer, carrying over sixteen
 sig. dec., in a few seconds at a cost under a cent. Measured by the obvious
 metrics,- speed, price and precision,- scientific computation has come a long
 way. Were these the only metrics that mattered, I should have nothing to say.

 Other aspects of computation must have some subtle influence upon our lives
 because the cost of computation has not dropped so fast in the past two decades
 as the price of computer arithmetic might suggest. Programming costs almost as
 much now as it ever did, and has come to dominate the thoughts of many a
 scientist and engineer. Considering how much time we spend thinking about what
 the computer will do for us, we should be surprised if its ways did not alter
 our ways of thought a little. But who would expect the computer’s treatment of
 the sign of zero to influence our thinking? In fact, the ways computers
 perform arithmetic can affect the way we think profoundly, much though we may
 wish it were the other way around.

 WORK IN PROGRESS

 Slits1 3 May 17, 1987

 BRANCH CUTS FOR COMPLEX ELEMENTARY FUNCTIONS
                    ~~~~~~ ~~~~ ~~~ ~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~
          
          
          Introduction
             Conventions dictate the ways nine familiar multiple-valued complex
          elementary functions, namely
          
            √ ,  ln,  arcsin,  arccos,  arctan,  arcsinh,  arccosh,  arctanh,  zW ,
          
          shall be represented by single-valued functions called  "Principal Values" .
          These single-valued functions are defined and analytic throughout the
          complex plane except for discontinuities across certain straight lines
          called  "slits"  so situated as to  maximize  the reign of  continuity,
          conserving as many as possible of the properties of these functions’
          familiar real restrictions to apt segments of the real axis.  There can be
          no dispute about where to put the slits;  their locations are deducible.
          However,  Principal Values  have too often been left  ambiguous  on  the
          slits,  causing confusion and controversy insofar as computer programmers
          have had to agree upon their definitions.  This paper’s thesis is that most
          of that ambiguity can and should be resolved;  however,  on computers that
          conform to the  IEEE standards 754 and 854  for floating-point arithmetic
          the ambiguity should not be eliminated entirely because,  paradoxically,
          what is left of it usually makes programs work better.
          
             What has to be ambiguous is the sign of zero.  In the past,  most people
          and computers would assign no sign to zero except under duress,  and then
          they would treat the sign as  +  rather than  - .  For example,  the real
          function
                         signum(x) := +1  if  x > 0   ,
                                   :=  0  if  x = 0   .
                                   := -1  if  x < 0   ,
          illustrates the traditional non-committal attitude toward zero’s sign, 
          whereas the Fortran function
                      sign(1.0, x) := +1.0  if  x >_ 0   ,
                                   := -1.0  if  x < 0   ,
          must behave as if zero had a  +  sign in order that this function and its
          first argument have the same magnitude.  Just as  sign(1.0, x)  is
          continuous at  x = 0+ ,  i.e.  as  x  approaches zero from the right,  so
          can each principal value above be continuous as its slit is reached from one
          side but not from the other.  Sides can be chosen in a consistent way among
          all the elementary complex functions,  as they have been chosen for the
          implementations built into the  Hewlett-Packard hp-15C  calculator that will
          be used to illustrate this approach.
          
             The  IEEE standards  754 and 854  take a different approach.  They
          prescribe representations for both  +0  and  -0  that are distinguishable
          bit patterns treated as numerically equal;  +0 = -0 ,  so the ambiguity is
          benign.  Rather than think of  +0  and  -0  as distinct numerical values, 
          think of their sign bit as an auxiliary variable that conveys one bit of
          information  (or misinformation)  about any numerical variable that takes on
          zero  as its value.  Usually this information is irrelevant;  the value of 
          3 + x  is the same for  x := +0  as for  x := -0 ,  and likewise for the
          functions  signum(x)  and  sign(y,x)  mentioned above.  However,  a few

                                          WORK IN PROGRESS



            Slits1                             4                            May 17, 1987

          extraordinary arithmetic operations must be affected by zero’s sign;  for
          example  1/(+0) = +∞  but  1/(-0) = -∞ .  To retain its usefulness,  the
          sign bit must propagate through certain arithmetic operations according to
          rules derived from continuity considerations;  for instance  (-3)(+0) = -0 ,
          (-0)/(-5) = +0 ,  (-0)-(+0) = -0 ,  etc.  These rules are specified in the
          IEEE  standards along with the one rule that had to be chosen arbitrarily;
              s-s := +0  for every string  s  representing a finite real number.
          Consequently when  t = s ,  but  0 =/ t =/ ∞ ,  then  s-t  and  t-s  both
          produce  +0  instead of opposite signs.  ( That is why,  in  IEEE style
          arithmetic,  s-t  and  -(t-s)  are numerically equal but not necessarily
          indistinguishable. )  Implementations of elementary transcendental functions
          like  sin(z) and tan(z)  and their inverses and hyperbolic analogs,  though
          not specified by the  IEEE standards,  are expected to follow similar rules; 
          if  f(0) = 0 < f’(0) ,  then the implementation of  f(z)  is expected to
          reproduce the sign of  z  as well as its value at  z = +_0 .  That does
          happen in several libraries of elementary transcendental libraries;  for
          instance,  it happens on the  Motorola 68881 Floating-Point Coprocessor,  on 
          Apple computers in their  Standard Apple Numerical Environment,  in  Intel’s 
          Common Elementary Function Libraries  for the  i8087 and i80287  floating-
          point coprocessors,  in analogous libraries now supplied with the  Sun III , 
          with the  ELXSI 6400  and with the  IBM RT/PC,  and in the  C Math Library
          currently distributed with  4.3 BSD UNIX  for machines that conform to  IEEE
          754.  With a few unintentional exceptions,  it happens also on the  hp-71B 
          hand-held computer,  whose arithmetic was designed to conform to  IEEE 854.
          
             If a programmer does not find these rules helpful,  or if he does not
          know about them,  he can ignore them and,  as has been necessary in the
          past,  insert explicit tests for zero in his program wherever he must cope
          with a discontinuity at zero.  On the other hand,  if the standards’ rules
          happen to produce the desired results without such tests,  the tests may be
          omitted leaving the programs simpler in appearance though perhaps more
          subtle.  This is just what happens to programs that implement or use the
          elementary functions named above,  as will become evident below.
          
          
          
          Where to put the slits.
             Each of our nine elementary complex functions  f(z)  has a slit or slits
          that bound a region,  called the  "principal domain" ,  inside which  f(z) 
          has a  principal value  that is single valued and analytic  ( representable
          locally by power series ),  though it must be discontinuous across the
          slit(s).  That  principal value  is an extension,  with maximal  principal
          domain,  of a real elementary function  f(x)  analytic at every interior
          point of its domain,  which is a segment of the real  x-axis.  To conserve
          the power series’ validity,  points strictly inside that segment must also
          lie strictly inside the principal domain;  therefore the slit(s) cannot
          intersect the segment’s interior.  Let  z* = x-ιy  denote the complex
          conjugate of  z = x+ιy ;  the power series for  f(x)  satisfy the identity
          f(z*) = f(z)*  within some complex neighborhood of the segment’s interior,
          so the identity should persevere throughout the principal domain’s interior
          too.  Consequently complex conjugation must map the slit(s) to itself/
          themselves.  The slit(s) of an  odd  function  f(z) = -f(-z)  must be
          invariant under reflection in the origin  z = 0 .  Finally,  the slit(s)
          must begin and end at  branch-points;  these are singularities around which

                                          WORK IN PROGRESS



            Slits1                             5                            May 17, 1987

          some branch of the function cannot be represented by a  Taylor  nor  Laurent
          series expansion.  A slit can end at a branch point at infinity.
          
             Consequently the slit for  √ ,  ln  and  zW  turns out to be the negative
          real axis.  Then the slits for  arcsin ,  arccos  and  arctanh  turn out to
          be those parts of the real axis not between  -1 and  +1 ;  similarly those
          parts of the imaginary axis not between  -ι and  +ι  serve as slits for
          arctan  and  arcsinh .  The slit for  arccosh ,  the only slit with a finite
          branch-point  ( -1 )  inside it,  must be drawn along the real axis where
          z _< +1 .  None of this is controversial,  although a few other writers have
          at times drawn the slits elsewhere either for a special purpose or by
          mistake;  other tastes can be accommodated by substitutions sometimes so
          simple as writing,  say,  ln(-1) - ln(-1/z)  in place of  ln(z)  to draw its
          slit along  (and just under)  the positive real axis instead of the negative
          real axis.
          
          
          
          Why do Slits Matter?
             A computer program that includes complex arithmetic operations must be a
          product of a deductive process.  One stage in that process might have been a
          model formulated in terms of analytic expressions that constrain physically
          meaningful variables without telling explicitly how to compute them.  From
          those expressions somebody had to deduce other complex analytic expressions
          that the computer will evaluate to solve the given physical problem.  The
          deductive process entails transformations among which some may resemble
          algebraic manipulations of real expressions,  but with a crucial difference:
               Certain transformations,  generally valid for real expressions,
               are valid for complex expressions only while their variables
               remain within suitable regions in the complex plane.
          Moreover,  those regions of validity can depend disconcertingly upon the
          computer that will be used to evaluate the expressions in question.  For
          example,  simplifying the expression   √(z/(z-1)) √(1/(z-1))  to  √(z)/(z-1)
          seems legitimate in so far as they both describe the same complex function,
          one that is continuous everywhere except for a pole at  z = 1  and a  jump-
          discontinuity along the negative real axis  z < 0 .  And when those two
          expressions are evaluated upon a variety of computers including the  ELXSI
          6400,  the  Sun III,  the  IBM RT/PC,  the  IBM PC/AT,  PC/XT and PC  using
          i80287 or i8087,  and the  hp-71B,  they agree everywhere within a rounding
          error or two.  But when the same expressions are evaluated upon a different
          collection of computers including  CRAYs,  the  IBM 370 family,  the DEC VAX
          line,  and the  hp-15C,  those expressions take opposite signs along the
          negative real axis!  An experience like this could undermine one’s faith in
          some computers.
          
             What deserves to be undermined is blind faith in the power of  Algebra. 
          We should not believe that the  equivalence class  of expressions that all
          describe the same complex analytic function can be recognized by algebraic
          means alone,  not even if relatively uncomplicated expressions are the only
          ones considered.  To locate the domain upon which two analytic expressions
          take equal values generally requires a combination of algebraic,  analytical
          and topological techniques.  The paradigm is familiar to complex analysts, 
          but it will be summarized here for the sake of other readers,  using the two
          expressions given above for concrete illustration.

                                          WORK IN PROGRESS



            Slits1                             6                            May 17, 1987

            How to decide where two analytic expressions describe the same function.
            ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 1. Locate the singularities of each constituent subexpression of the given
 expressions.

 The singularities of an analytic function are the boundary points of its
 domain of analyticity. These will consist of poles, branch-points and
 slits in this paper; but more generally they would include certain contours
 of integration, boundaries of regions of convergence, etc. In general,
 singularities can be hard to find; in our examples the singularities are
 obviously the pole at z = 1 , the branch-point z = 0 , and respective
 slits 0 < z < 1 , z < 1 and z < 0 whereon the quantities under square
 root signs are negative real.

 2. Taken together, the singularities partition the complex plane into a
 collection of disjoint connected components. Inside each such component
 locate a small continuum upon which the equivalence of the given two
 expressions can be decided; that decision is valid throughout the
 component’s interior.

 The "small continuum" might be a small disk inside which both expressions
 are represented by the same Taylor series; or it could be a curvilinear arc
 within which both expressions take values that can be proved equal by the
 laws of real algebra. Other possibilities exist; some will be suggested by
 whatever motivated the attempt to prove that the given expressions are
 equivalent. In our example, the two expressions are easily proven equal on
 that part of the real axis where z > 1 , which happens to lie inside the
 one connected component into which the slits along the rest of the real axis
 divide the complex plane. Therefore the two expressions must be equivalent
 everywhere in the complex plane except possibly where z _< 1 . (When a
 complex variable satisfies this kind of inequality its value must be real.)

 3. The singularities constitute loci in the plane upon which the processes
 in steps 1 and 2 above can be repeated, finally leaving isolated
 singular points to be handled individually. End of paradigm.

 In our example, the slit along z < 1 is partitioned into two connected
 components by the branch-point at z = 0 . Each component has to be handled
 separately. Whether the two expressions are equivalent on a component must
 depend upon the definition of complex √z on its slit where z < 0 ; there
 diverse computers appear to disagree. That is what this paper is about.

 More generally, programmers who compose complex analytic expressions out
 of the nine elementary functions listed at this paper’s beginning will have
 to verify whether their expressions deliver the functions that they intend
 to compute. In principle, that verification could proceed without prior
 agreements about the functions’ values on their slits if instead analysts
 and programmers were obliged to supply an explicit expression to handle
 every boundary situation as they intend. Such a policy seems inconsiderate
 (not to say unconscionable) considering how hard some singularities are
 to find and how easy to overlook; but that policy is not entirely heartless
 since verifying correctness along a boundary costs the intellect nearly as
 much as writing down a statement of intent about that boundary. The trouble
 with those statements is that they generally contain inequalities and tests

 WORK IN PROGRESS

 Slits1 7 May 17, 1987

 and diverse cases, and as they accumulate they burden proofs and programs
 with a dangerously enlarged capture cross-section for errors. And almost
 all of those statements become superfluous in programs after we agree upon
 reasonable definitions for the functions in question on their slits.

 For instance, in our example above we had to discover whether the two
 expressions agreed on an interval 0 < z < 1 that lies strictly inside the
 domain of the desired function’s analyticity, not on its boundary. That
 interval turns out to be a removable singularity, and it does remove
 itself from all the computers mentioned above because they evaluate both
 expressions correctly on that interval; diverse computers disagree only on
 the boundary where the desired function is discontinuous. Perhaps that’s
 just luck. (Unlucky examples do exist and one will be presented later.)
 Let us accept good luck with gratitude whenever it simplifies our programs.

 Complex analytic expressions that involve slits and other singularities
 are intrinsically complicated, and they get more complicated when rounding
 errors are taken into account. Our objective cannot be to make complicated
 things simple but rather, by choosing reasonable values for our nine
 elementary functions on their slits, to make them no worse than necessary.

 Principal values on the slits, IEEE style.
 Since all the slits in question lie on either the real or the imaginary
 axis, every point z on a slit is represented in at least two ways, at
 least once with a +0 and at least once with a -0 for whichever of the
 real and imaginary parts of z vanishes. Benignly, ambiguity in z at a
 discontinuity of f(z) permits f(z) to be defined formally continuously,
 except possibly at the ends of some slits, by continuation from inside the
 principal domain. This continuity goes beyond mere formality. By analytic
 continuation, the domain of each of our nine elementary functions f(z)
 extends until it fills out a Riemann Surface; think of this surface as a
 multiple covering wrapped like a bandage around the Riemann Sphere and
 mapped onto it continuously by f . To construct f ’s principal domain,
 cut the bandage along the slit(s) and discard all but one layer covering the
 sphere. That layer is a closed surface mapped by f continuously onto a
 subset of the sphere. The shadow of that layer projected down upon the
 sphere is the principal domain; it consists of the whole sphere, but with
 slit(s) covered twice. That is why we wish to represent slits ambiguously.

 Here are some illustrative examples, the first of a real function that
 is recommended for any implementation of IEEE standard 754 or 854.

 copysign(x, y) has the magnitude of x but the sign bit of y , so
 copysign(1,+0) = +1 = lim copysign(1, y) at y = 0+ , and
 copysign(1,-0) = -1 = lim copysign(1, y) at y = 0- .

 √(-1 + ι0) = +0 + ι = lim √(-1 + ιy) at y = 0+ ;
 √(-1 - ι0) = +0 - ι = lim √(-1 + ιy) at y = 0- .
 Consequently, √(z*) = √(z)* for every z , and √(1/z) = 1/√(z) too.
 These identities persist within roundoff provided the programs used for
 square root and reciprocal are those, supplied in this paper, that would
 have been chosen anyway for their efficiency and accuracy.

 WORK IN PROGRESS

 Slits2 8 May 17, 1987

 arccos(2 + ι0) = +0 - ι arccosh(2) = lim arccos(2 + ιy) at y = 0+ ,
 arccos(2 - ι0) = +0 + ι arccosh(2) = lim arccos(2 + ιy) at y = 0- .
 An implementation of arccos that preserves full accuracy in the imaginary
 part of arccos(2 + ιy) when |y| is very tiny can be expected to get its
 sign right when y = +_0 too without extra tests in the code; such a
 program is supplied later in this paper.

 But the foregoing examples make it all seem too simple. The next example
 presents a more balanced picture.

 Let function a(x) := √(x2 - 1) for real x with x2 _> 1 , and let
 b(x) := a(x) for real x _> 1 ; note that b(x) is not yet defined when
 x _< -1 . The principal values of the complex extensions of a and b
 following the principles enunciated above turn out to be
 a(z) = √(z2 - 1) = a(-z) , and
 b(z) = √(z-1) √(z+1) = -b(-z) .
 Both a and b are defined throughout the complex plane and both have a
 slit on the real axis running from -1 to +1 , but a has another slit
 that runs along the entire imaginary axis separating the right half-plane
 where a = b from the left half-plane where a = -b . The functions are
 different because generally
 √(ξ) √(η) = √(ξ η) when | arg(ξ) + arg(η) | < π ,
 = -√(ξ η) when | arg(ξ) + arg(η) | > π ,
 = +_√(ξ η) (hard to say which) when ξ η <_ 0 .
 Both functions a and b are continuous up to and onto ambiguous boundary
 points in IEEE style arithmetic, as described above, only if that
 arithmetic is implemented carefully; in particular, the expression z + 1
 should not be replaced by the ostensibly equivalent z + (1+i0) lest the
 sign of zero in the imaginary part of z be reversed wrongly. (Generally,
 mixed-mode arithmetic combining real and complex variables should be
 performed directly, not by first coercing the real to complex, lest the
 sign of zero be rendered uninformative; the same goes for combinations
 of pure imaginary quantities with complex variables. And doing arithmetic
 directly this way saves execution time that would otherwise be squandered
 manipulating zeros.) When z is near _+1 the expression a(z) nearly
 vanishes and loses its relative accuracy to roundoff. Although this loss
 could be avoided by rewriting a(z) := √((z-1) (z+1)) , doing so would
 obscure the discontinuity on the imaginary axis in a cloud of roundoff which
 obliterates Re(z) whenever it is very tiny compared with 1 as well as
 when it is _+0 .

 Also obscure is what happens at the ends of some slits. Take for example
 ln(z) = ln(ρ) + ι-0 , where ρ = |z| and -0 = arg(z) are the polar
 coordinates of z = x + ιy and satisfy
 x = ρ cos -0 , y = ρ sin -0 , ρ _> 0 and -π <_ -0 _< π .
 Evidently ρ := +√(x2+y2) , and when 0 < ρ < +∞ then
 -0 := 2 arctan(y/(ρ+x)) if x _> 0 , or
 := 2 arctan((ρ-x)/y) if x _< 0 .
 At the end of the slit where z = x = y = ρ = 0 (and ln(ρ) = -∞) the
 value of -0 may seem arbitrary, but in fact it must cohere with other
 almost arbitrary choices concerning division by zero and arithmetic with
 infinity. A reasonable choice is to interpose the reassignment
 if ρ = 0 then x := copysign(1, x)
 between the computations of ρ and -0 above. More about that later.

 WORK IN PROGRESS

 Slits2 9 May 17, 1987

 The foregoing examples provide an unsettling glimpse of the complexities
 that have daunted implementers of compilers and run-time libraries who would
 otherwise extend to complex arithmetic the facilities they have supplied for
 real floating-point computation. These complexities are attributable to
 failures, in complex floating-point arithmetic, of familiar relationships
 like algebraic identities that we have come to take for granted in the arena
 of real variables. Three classes of failures can be discerned:

 i) The domain of an analytic expression can enclose singularities that
 have no counterparts inside the domain of its real restriction. That
 is why √(z2-1) =/ √(z-1) √(z+1) , for example.

 ii) Rounding errors can obscure the singularities. That is why, for
 example, √(z2-1) = √((z-1)(z+1)) fails so badly when either z2 = 1
 very nearly or when z2 < 0 very nearly. To avoid this problem, the
 programmer may have to decompose complex arithmetic expressions into
 separate computations of real and imaginary parts, thereby forgoing
 some of the advantages of a compact complex notation.

 iii) Careless handling can turn infinity or the sign of zero into
 misinformation that subsequently disappears leaving behind only a
 plausible but incorrect result. That is why compilers must not
 transform z - 1 into z - (1+ι0) , as we have seen above, nor
 -(-x-x2) into x + x2 , as we shall see below, lest a subsequent
 logarithm or square root produce a nonzero imaginary part whose sign is
 opposite to what was intended.

 The first two classes are hazards to all kinds of arithmetic; only the
 third kind of failure is peculiar to IEEE style arithmetic with its signed
 zero. Yet all three kinds must be linked together esoterically because the
 third kind is not usually found in an application program unless that
 program suffers also from the second kind. The link is fragile, easily
 broken if the rational operations or elementary functions, from which
 applications programs are composed, contain either of the last two kinds of
 failures. Therefore, implementers of compilers and run-time libraries bear
 a heavy burden of attention to detail if applications programmers are to
 realize the full benefit of the IEEE style of complex arithmetic. That
 benefit deserves some discussion here if only to reassure implementors that
 their assiduity will be appreciated.

 The first benefit that users of IEEE style complex arithmetic notice is
 that familiar identities tend to be preserved more often than when other
 styles of arithmetic are used. The mechanism that preserves identities can
 be revealed by an investigation of an analytic function f(z) whose domain
 is slit along some segment of the real or imaginary axis; say the real (x)
 axis. When z = x + ιy crosses the slit, f(z) jumps discontinuously as
 y reverses sign although f(z) is continuous as z approaches one side of
 the slit or the other. Consequently the two limits
 f(x + ι0) := lim f(x + ιy) as y --> 0+ and
 f(x - ι0) := lim f(x + ιy) as y --> 0-
 both exist, but they are different when x has a real value inside the
 slit. Ideally, a subroutine F(z) programmed to compute f(z) should
 match these values; F(x +_ ι0) = f(x +_ ι0) respectively should be satisfied
 within a small tolerance for roundoff. This normally happens in IEEE style

 WORK IN PROGRESS

 Slits2 10 May 17, 1987

 arithmetic as a by-product of whatever steps have been taken to ensure that
 F(x + ιy) = f(x + ιy) , within a similarly small tolerance, for all
 sufficiently small but nonzero |y| . To generate a discontinuity, the
 subroutine F must contain constructions similar to copysign(..., y) or
 arctan(1/y) possibly with "y" replaced by some other expression that
 either vanishes or tends to infinity as y --> 0 . That expression cannot
 normally be a sum or difference like arctan(y-1) + π/4 or exp(y) - 1 that
 vanishes by cancellation, because roundoff can give such expressions values
 (typically 0) that have the wrong sign when |y| is tiny enough. Instead,
 to preserve accuracy when |y| is tiny, that expression must normally be a
 real product or quotient involving a power of y or sin(y) or some other
 built-in function that vanishes with y and therefore should inherit its
 sign at y = +_0 . Thus does careful implementation of compiler and library
 combine with careful applications programming to yield correct behavior on
 and near the slit. And if two such carefully programmed subroutines F(z) ,
 though based upon different formulas, agree within roundoff everywhere near
 the slit, then the foregoing reasoning implies that normally they have to
 agree on the slit too; this is the way IEEE style arithmetic preserves
 identities like √(z*) = (√z)* and √(1/z) = 1/√z that would have to
 fail on slits if zero had no sign.

 Of course, applications programmers generally have things more important
 than the preservation of identities on their minds. Here is a more typical
 and realistic example:

 Picture of Conformal Map ζ = f(z) :
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
          
                     ->  liquid flow  ->       ιπ                        |
          --- wall -----------------------------.                   air  |
                        air                     ‘:       |v               |ι
          ....................................../                        :    liquid
                                                                         :
                    <-   liquid jet    <-        <- liquid flow        - O - <- - <- -
          ......................................                         :
                        air                     ‘:       |̂               :
          ___ wall _____________________________/                   air  |-ι

                     ->  liquid flow  ->      -ιπ   ζ - plane            |  z - plane
          
          Conformal Map  ζ = f(z)  of Half-Plane to Jet with Free Boundary
          
          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Let f(z) := 1 + z2 + z√(1+z2) + ln(z2 + z√(1+z2)) , and construe the
 equation ζ := f(z) as a conformal map, from the plane of z = x + ιy to
 the plane of ζ = ξ + ιη , that maps the right half-plane x >_ +0 onto the
 region wetted by a liquid that is being forced by high pressure to jet into
 a slot. The walls of the slot, where ξ < 0 and η = +_π , should be the
 images of those parts of the imaginary axis z2 < -1 lying beyond +_ι .
 The free surfaces of the jet, curving forward from ζ = +_ιπ and then back
 to ζ = -∞ +_ ιπ/2 , should be the image of that segment of the imaginary
 axis -1 < z2 < 0 between +_ι .

 WORK IN PROGRESS

 Slits2 11 May 17, 1987

 The picture of f(z) should be symmetrical about the real axis because
 f(z*) = f(z)* . As z runs up the imaginary axis, with x = +0 and y
 running from -∞ through -1 toward -0 and then from +0 through +1
 toward +∞ , its image ζ = f(z) should run from left to right along the
 lower wall and back along the lower free boundary of the jet, then from
 left to right along the jet’s upper free boundary and back along the upper
 wall. This is just what happens when f(z) is plotted from a one-line
 program on the hp-71B calculator, which implements the proposed IEEE
 standard 854. But when f(z) is programmed onto the hp-15C, whose zero
 is unsigned, the lower wall disappears. Its pre-image, the lower part of
 the imaginary axis where z/ι < -1 , is mapped during the computation of
 f(z) into the slit that belongs to √ and ln ; the upper part z/ι > 1
 gets mapped onto the same slit. For lack of a signed zero, that slit gets
 attached to a side that is right for the upper wall but wrong for the lower
 wall, thereby throwing the pre-image of the lower wall away into a tiny
 segment of the upper wall. To put the lower wall back, x must be
 increased from 0 to a tiny positive value while y runs from -∞ to -1 .
 (How tiny should x be? That’s a nontrivial question.)

 The misbehavior revealed in the foregoing example f(z) may appear to be
 deserved because f(z) has slits on the imaginary axis z2 < -1 beyond +_ι .
 Should mapping a slit to the wrong place be blamed upon the discontinuity
 there rather than upon arithmetic with an unsigned zero? No. Arithmetic
 with an unsigned zero can also cause other programs to misbehave similarly
 at places where the functions being implemented are otherwise well behaved.
 For example consider c(z) := z - ι√(ιz+1)√(ιz-1) , whose slit lies in the
 imaginary axis -1 < z2 < 0 between +_ι . Now ζ := c(z) maps the slit z
 plane onto the ζ plane outside the circle |ζ| >_ 1 ; vertical lines in
 the z plane map to stream lines in the vertical flow of a fluid around the
 circle. Implementing c(z) , the programmer notices that he can reduce two
 expensive square roots to one by rewriting
 c(z) := z + √(z2+1) copysign(1, Re(z)) .
 The two expressions for c(z) match everywhere in IEEE style arithmetic;
 but when zero has only one sign, say + , the second expression maps the
 lower part of the imaginary axis, where z/ι < -1 , into the inside instead
 of the outside of the circle, although c(z) should be continuous there.

 The ease with which IEEE style arithmetic handled the important
 singularities near z = +_ι in the examples above should not be allowed to
 persuade the reader that all singularities can be dispatched so easily. The
 singularities f(0) and f(∞) and the overflows near z = ∞ would have to
 be handled in the usual ways if they did not lie so far off the left-hand
 side of the picture that nobody cares. Another kind of singularity that did
 not matter here, but might matter elsewhere, insinuated weasel words like
 "not usually", "tends to be" and "normally" into the earlier discussion of
 sums and differences that normally vanish by cancellation. Sums and
 differences can vanish without cancellation if they combine terms that
 have already vanished; an example is h(x) := x + x2 when x = 0 .
 Evaluating h(+_0) in IEEE style real arithmetic yields +0 instead of
 +_0 respectively, losing the sign of zero. h(x) has other troubles; it
 signals Underflow when x is very tiny, suffers inaccuracy when x is
 very near -1 , and becomes Invalid at x = -∞ . Simply rewriting
 h(x) := x(1+x) dispels all these troubles, but is slightly less accurate
 for very tiny |x| than is h(x) := -(-x - x2) , which preserves accuracy

 WORK IN PROGRESS

 Slits2 12 May 17, 1987

 and the sign of zero for all tiny real x . Complex arithmetic complicates
 this situation. Both expressions z+z2 and z(1+z) produce zeros with the
 wrong sign for Im(h(z)) on various segments of the real z-axis; to get
 the correct sign and better accuracy requires an expression like
 h(x + ιy) := x(1+x)-y2 + 2ιy(x+0.5)
 regardless of arithmetic style. For similar reasons, the expression for
 f(z) used above for the conformal map would have to be rewritten if the
 interesting part of its domain were the left instead of right half-plane.

 IEEE style complex arithmetic appears to burden the implementers of
 compilers and run-time libraries with a host of complicated details that
 need rarely bother the user if they are dispatched properly; and then
 familiar identities will persist, despite roundoff, more often than in
 other styles of arithmetic. This thought would comfort us more if the
 aberrations were easier to uncover. Locating potential aberrations remains
 an onerous task for an application programmer, regardless of the style of
 arithmetic; however that style can affect the locus of aberration
 fundamentally. In IEEE style arithmetic, a programmed implementation of
 a complex analytic function can take aberrant boundary values, different
 from what would be preduced by continuation from the interior, because of
 roundoff or similar phenomena. In arithmetic without a signed zero, such
 an aberration can be caused as well by an unfortunate choice of analytic
 expression, though the programmer has implemented it faithfully. The fact
 that an analytic expression determines the values of an analytic function
 correctly inside its domain is no reason to expect the boundary values to be
 determined correctly too when zero is unsigned.

 WORK IN PROGRESS

