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Communicating with Databases Deep Typechecking

Database interaction is crucial for many programs, Step 3: Check Parameters

especially web applications. Unfortunately, the Use the set of bound queries
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A prevalent solution Is to embed query _ _ Step 4° Check Results

strings directly in the application. This Step 1: St”ng Analysis P

. . . Track query result to each
322§2Ch IS efficient and flexible but a / For each query object q, Jse and ensure safe
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____, compute the query strings downcast.
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Conclusions:
Step 2: Bound Query Analysis 1. Deep Typechecking ensures safety
The Problem : String getText (String id, Link link) . Track how each query object is - No silent failures
ring gStr; . . . -

uery g; modified, right up to the point it Is - - .
Database query fragments Query q ocUa ght up P 2. Robust in the face of imprecision
are scattered throughout ete +e WHERE w id o o1 e | - Param and result checks independent
the program. WEE AR e T ?:" Yields a set of bindings from a 3. Effective in practice
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opague to the compiler. T (2, Able to prove 85% of exec sites safe

Weblog w = (Weblog) q.execQuery() ;
Errors from DB interaction Ceturn w. text “Nc :
aren’t caught until runtime! | Deep Refactorin O

To ensure safety, we must guarantee:

Example: Weblog.id =2 Weblog.name

Renaming classes and fields Is a basic

A. All query parameters are set . .
and frequent software engineering task. qStr = “SELECT w FROM Weblog w ”; / d \
C. Query results are safely used (correctly downcast) make such refactoring infeasible. ' An alysis
o T gStr += “AND w.link.id = ?2”; ? K /
Deep Typechecking ensures that these properties hold. ‘1’
gStr = “SELECT w FROM Weblog w ”;
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