Deep Typechecking and Refactoring

Zachary Tatlock, Chris Tucker, David Shuffleton, Ranjit Jhala, and Sorin Lerner

Computer Science and Engineering, UCSD

Communicating with Databases Deep Typechecking

Database interaction is crucial for many programs, Step 3: Check Parameters

especially web applications. Unfortunately, the Use the set of bound queries

Dgtabase / Prl?grarr]r_}m_ing Lan_guag_; Imlpedance adcadbdani % and the query strings to check
hﬂ|5ﬂ11€l“:f]|11€l es this Iinteraction C“ ICUIL. fﬂﬁﬁ EErHSl]rEEtT]EHWEPEirEEI1C)l3l]€ﬂ3 frCH11 DB hntBrEU:tkDr]. 111EItEaJI‘361r6u115;zireafsefﬁedy(fseﬂ: ‘ﬁﬁﬁﬁ?c;
A prevalent solution Is to embed query _ _ Step 4° Check Results

strings directly in the application. This Step 1: St”ng Analysis P

. . . Track query result to each
322§2Ch IS efficient and flexible but a / For each query object q, Jse and ensure safe

“UPDATE .

____, compute the query strings downcast.

™ “DELETE ..
Java EEE D S8 mr amayrepresent
Conclusions:
Step 2: Bound Query Analysis 1. Deep Typechecking ensures safety
The Problem : String getText (String id, Link link) . Track how each query object is - No silent failures
ring gStr; . . . -

uery g; modified, right up to the point it Is - - .
Database query fragments Query q ocUa ght up P 2. Robust in the face of imprecision
are scattered throughout ete +e WHERE w id o o1 e | - Param and result checks independent
the program. WEE AR e T ?:" Yields a set of bindings from a 3. Effective in practice

1= createQuery(aStils arameter to the types of data it - - - -
These fragments are N / - {) Eas e ot yP - Analyze 100K lines of industrial code in 40s

. :setParam 2’ lin]lc.id);K/ Bal, BA2, ..., BON . _ 0 '

opague to the compiler. T (2, Able to prove 85% of exec sites safe

Weblog w = (Weblog) q.execQuery() ;
Errors from DB interaction Ceturn w. text “Nc :
aren’t caught until runtime! | Deep Refactorin O

To ensure safety, we must guarantee:

Example: Weblog.id =2 Weblog.name

Renaming classes and fields Is a basic

A. All query parameters are set . .
and frequent software engineering task. qStr = “SELECT w FROM Weblog w ”; / d \
C. Query results are safely used (correctly downcast) make such refactoring infeasible. ' An alysis
o T gStr += “AND w.link.id = ?2”; ? K /
Deep Typechecking ensures that these properties hold. ‘1’
gStr = “SELECT w FROM Weblog w ”;
. . . Bound Query Analysis Is extended to | -
Deep Refac;tormg ext_endsr_:]hlst ankaIyS|s to enable - thou:sands of | refactor full query strings. Changes qStr += “WHERE w.name = ?1 ”; \/
common software engineering tasks. comfhzﬁgneasnua are propagated back to the source. e +m oD v tsn.id = 7275 &€

