
Deep Typechecking and Refactoring
Zachary Tatlock, Chris Tucker, David Shuffleton, Ranjit Jhala, and Sorin Lerner

Computer Science and Engineering, UCSD

Communicating with Databases

JAVA DBStrings

Database interaction is crucial for many programs, 

especially web applications. Unfortunately, the 

Database / Programming Language Impedance 

Mismatch makes this interaction difficult.

A prevalent solution is to embed query 

strings directly in the application. This 

approach is efficient and flexible but 

unsafe.

The Problem :

Database query fragments 

are scattered throughout 

the program.

These fragments are 

opaque to the compiler.

Errors from DB interaction 

aren’t caught until runtime!

To ensure safety, we must guarantee:

A. All query parameters are set

B. All parameters are set to the correct type

C. Query results are safely used (correctly downcast)

Deep Typechecking ensures that these properties hold. 

Deep Refactoring extends this analysis to enable 

common software engineering tasks.

String getText(String id, Link link) {

String qStr;

Query q;

qStr = “SELECT w FROM Weblog w ”;

qStr += “WHERE w.id = ?1 ”;

qStr += “AND w.link.id = ?2”;

q = createQuery(qStr);

q.setParam(1, id);

q.setParam(2, link.id);

Weblog w = (Weblog) q.execQuery();

return w.text;

}

A

B

C

Deep Typechecking

Step 1: String Analysis

Step 2: Bound Query Analysis

Step 3: Check Parameters

Step 4: Check Results

Conclusions:

Goal:

Ensure there are no bugs from DB interaction.

1. Deep Typechecking ensures safety

- No silent failures

2. Robust in the face of imprecision

- Param and result checks independent

3. Effective in practice

- Analyze 100K lines of industrial code in 40s

- Able to prove 85% of exec sites safe

String getText(String id, Link 

link) {

String qStr;

Query q;

qStr = “SELECT w FROM Weblog w 

”;

qStr += “WHERE w.id = ?1 ”;

qStr += “AND w.link.id = ?2”;

q = createQuery(qStr);

q.setParam(1, id);

q.setParam(2, link.id);

Weblog w = (Weblog) 

q.execQuery();

return w.text;

}

“SELECT …”

“SELECT …”

“SELECT …”

“UPDATE …”

“DELETE …”

For each query object q, 

compute the query strings 

q may represent.

Track how each query object is 

modified, right up to the point it is 

executed.

Yields a set of bindings from a 

parameter to the types of data it 

has been set to.

q

BQ1, BQ2, …, BQN

Use the set of bound queries 

and the query strings to check 

that all params are safely set.

Track query result to each 

use and ensure safe 

downcast.

3 4


Deep Refactoring

Renaming classes and fields is a basic 

and frequent software engineering task. 

Unfortunately, string based queries can 

make such refactoring infeasible.

Bound Query Analysis is extended to 

refactor full query strings. Changes 

are propagated back to the source.

Example: Weblog.id Weblog.name

qStr = “SELECT w FROM Weblog w ”;

...

qStr += “WHERE w.name = ?1 ”;

...

qStr += “AND w.link.id = ?2”;





qStr = “SELECT w FROM Weblog w ”;

...

qStr += “WHERE w.id = ?1 ”;

...

qStr += “AND w.link.id = ?2”;

?
?

Bound Query 
Analysis

???

thousands of

complex manual

changes


