Proving Optimizations Correct
using Parameterized Program Equivalence

Sudipta Kundu

Zachary Tatlock

Sorin Lerner

University of California, San Diego
{skundu,ztatlock,lerner}@cs.ucsd.edu

Abstract

Translation validation is a technigue for checking thaterén op-
timization has run, the input and output of the optimizatare
equivalent. Traditionally, translation validation haseheused to
prove concrete, fully specified programs equivalent. Is ffaper
we present Parameterized Equivalence Checking (PEC), er-gen
alization of translation validation that can prove the gglénce
of parameterized programs. A parameterized program isteaibar
specified program that can represent multiple concretergnag)

For example, a parameterized program may contain a section o

code whose only known property is that it does not modifyaiart
variables. By proving parameterized programs equivalRB€ can
prove the correctness of transformation rules that reptesam-
plex optimizations once and for all, before they are everWaim-
plemented our PEC technique in a tool that can establishotiig-e
alence of two parameterized programs. To highlight the pafe
PEC, we designed a language for implementing complex opdimi
tions using many-to-many rewrite rules, and used this lagguo
implement a variety of optimizations including softwareedin-
ing, loop unrolling, loop unswitching, loop interchangeddoop
fusion. Finally, to demonstrate the effectiveness of PEE used
our PEC implementation to verify that all the optimizatiomns im-
plemented in our language preserve program behavior.

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Software/Program Verification €orrectness proofs, relia-
bility, validation; D.3.4 [Programming LanguaggsProcessors —
compilers, optimization

General Terms Reliability, Languages, Verification.

Keywords Compiler Optimization, Correctness, Translation Vali-
dation.

1. Introduction

Compilers are a fundamental component of the toolset pnegra
mers rely on every day. As aresult, compiler correctnessisally
important. A bug in the compiler can systematically introeler-
rors in each generated executable. Furthermore, compite tan

* Supported in part by NSF grants CCF-0644306 and CCF-0811512

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'09, June 15-20, 2009, Dublin, Ireland.
Copyright(© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

invalidate strong guarantees that were established onrtgmal
source program. As an example, various analysis tools carepr
the absence of certain kinds errors at the source level delg.
ble locking or null pointer exceptions). However, if the qaiter is
not guaranteed to be correct, then no source-level guasiasn
be safely transferred to the generated code. Finally, dempor-
rectness is all the more important in high-assurance dasridia
avionics and medical equipment, where the cost of incoest-
pilation can be extremely high.

Unfortunately, building reliable compilers is difficultrrer-
prone, and requires significant manual effort. Indeedkisaa long
time to develop a compiler that is stable enough for broagtoio
(often up to a decade), which in turn hinders the developroént
new languages and architectures.

One of the most error prone parts of a compiler is its optimiza
tion phase. Many optimizations require an intricate seqgeeuf
complex transformations. Often these transformationsraat in
unexpected ways, leading to a combinatorial explosioneémtim-
ber of cases that must be considered to ensure that the pation
phase is correct. In fact, even mature compilers have opditioin
bugs and as a result professional developers sometimes fgo as
as disabling optimizations in critical modules to lower theli-
hood of incorrectly generated code. Unfortunately, it isdming
less and less feasible to increase the reliability of a ctanpy
simply disabling most of its optimizations: with the widesad
adoption of systems whose good performance depends heavily
compiler optimizations — for example just-in-time compsleand
higher-level languages — turning off the optimizer is nogen
an option. Furthermore, the difficulties of developing eectrop-
timizations also prevent end-user programmers (non-demex-
perts) from extending the compiler with simple custom ojtan
tions, making most compilers closed black boxes, rather tpen-
ended extensible frameworks.

Previous techniques for providing correctness guararfiees
optimizations can be divided into two categories. In thet fiet-
egory optimizations are proved correctce and for al[7, 32, 8, 2,
14, 15, 16]. In this setting, to prove that an optimizationadsrect,
one must prove that for any input program the optimizatioo pr
duces a semantically equivalent program. The second agtego-
sists of proving correctnegsach time an optimization is rukiere,
each time the compiler runs an optimization, an automatdries
to prove that the original program and the correspondingroped
program are equivalent. This technique, which is calledsiation
validation, has been successfully applied in a variety tifrggs, in-
cluding mature optimizing compilers [20, 19, 22, 6, 33, 28, 24],
refinement checking of CSP programs [11], and high-levethsym
sis validation [12].

The primary advantage of once-and-for-all techniques & th
they provide a very strong guarantee: optimizations arevknim
be correct when the compiler is built, before they are rumeree.



In contrast, translation validation provides a weaker exirress
guarantee. This is because translation validation gueeanthat
only a particular run of the optimization is correct. Corepdl
that include translation validation may still contain buagsl it is
unclear what a programmer should do when the compiler islanab
to correctly compile a program.

On the other hand, translation validation has a clear adgant
over once-and-for-all techniques in terms of automationstvbf
the techniques that provide once-and-for-all guaranegsire user
interaction. Those that are fully automated, for examplbalid14]
and Rhodium [15], work by having programmers implement-opti
mizations in a domain-specific language using flow functiand
single-statement rewrite rules. Unfortunately, the sebmifmiza-
tions that these technigues can prove correct has laggdddbeh
translation validation. In particular, translation valign can al-
ready handle complex loop optimizations like skewing, t&ptj
and interchange, which have thus far eluded automated amte-
for-all approaches. A common intuition is that once-andéib
proofs are harder to achieve because they must show thappliy a
cation of the optimization is correct, as opposed to a simgiance.

In this paper, we present a new technique for proving optimiz
tions correct called Parameterized Equivalence ChecKrigC)
that bridges the gap between translation validation ané-amcl-
for-all techniques. PEC generalizes translation valgato han-
dle parameterized programs, which are partially specifiegnams
that can represent multiple concrete programs. For exarapia-
rameterized program may contain a section of code whose only
known property is that it does not define or use a particular va
able.

The key insight of PEC is that existing translation validati
techniques can be adapted to work in the broader settingrafipa
eterized programs. This allows translation validatiorhteégues,
which have traditionally been used to prowencreteprograms
equivalent, to prov@arameterizegrograms equivalent. Most im-
portantly, because optimizations can be expressed asgatiore
than parameterized transformation rules, using beforeaétadpa-
rameterized code patterns, PEC can prove once and for edltiba
optimizations preserve semantics.

To highlight the power and generality of PEC, we designed
a new language for writing optimizations, and implemented a
checker based on PEC that can automatically check the toessc
of optimizations written in this language. Our languageifiople-
menting and proving optimizations correct is much more egpr
sive than previous such optimization languages, like Gdhd]]
and Rhodium [15]: whereas Cobalt and Rhodium only supported
local rewrites of a single statement to another, our languag-
ports many-to-many rewrite rules. Such rules are able ttacep
an entire set of statements, even entire loops and branaliths,
a completely different set of statements. Using these yulescan
express many more optimizations than in Cobalt and Rhoctunah,
we can also prove them all correct using our PEC algorithm.

In summary, our contributions are:

¢ We developed and implemented a technique for performing Pa-
rameterized Equivalence Checking. PEC adapts two appesach
from traditional translation validation to the setting afice-
and-for-all correctness proofs, namely the relationalreagh
of Necula [19], and the permute approach of Zetll.[33].

We developed a new language for implementing optimizations
Our language is more expressive than previous languages tha
can be checked for correctness automatically: it has ekplic
support for expressing many-to-many transformations ninga

al0] += 1;
b[0] += a[0];
i:=0 al1] += 1;
while (i < n) { i:=0
ali] += 1; while (i < n - 2) {
b[i] += alil; ali+2] += 1;
cl[i] += bl[il; bl[i+1] += al[i+1];
i++; c[il += blil;
¥ i++
}
c[il += blil;
bli+1] += ali+1];
cl[i+1] += bl[i+1];
() (b)

Figure 1. Software pipelining: (a) shows the original code, and (b)
shows the optimized code.

¢ We implemented and proved correct a variety of complex op-
timizations in our system. Some of these optimizations, for
example partial redundancy elimination, could have been ex
pressed and proved correct in Rhodium [15], but they are eas-
ier to express in our language because of the built-in sup-
port for many-to-many rewrite rules. Furthermore, manyhef t
optimizations we implemented and proved correct could not
be proved correct or even expressed in previous systems like
Rhodium. This includes: software pipelining, loop unsWitc
ing, loop unrolling, loop peeling, loop splitting, loop @timent,
loop interchange, loop skewing, loop reversal, loop fusiod
loop distribution.

The rest of the paper is organized as follows. Section 2 ptese
an overview of our approach through an example. Section 3 de-
scribes our PEC system at an architectural level, identjfyits
three main modules. The following three sections (Sectians
and 6) present each of the three modules in more detail.lfinal
Section 7 presents our experimental results.

2. Overview

We illustrate the main ideas of our approach through an el@mp
software pipelining. Software pipelining is an optimizati that
tries to break dependencies within a loop body by spreading i
structions from one iteration in the original program asrouulti-
ple iterations of the transformed program. Software piped can
break dependencies inside a loop body, and thus provides mor
flexibility to the scheduler, but it does so without increasthe
code size of the loop body (as opposed to loop unrolling, whic
also provides more flexibility to the scheduler, but may hate
verse effects on the cache by increasing the loop body size).

As an example, consider the code in Figure 1(a). The loop
updates three arrays iteratively, but because each updptnds
on the previous one, each instruction in the loop must wait un
the instruction immediately before it finishes. Figure 1¢hpws
the result of applying software pipelining on this loop. Tkey
insight is that, in the steady state, the transformed lodpists the
same three instructions from the original loop, but now ezfdhe
three instructions is from a different iteration of the ameg loop.
Thea[i+2] instruction runs two iterations ahead; thi+1] runs
one iteration ahead; and thdi] instruction runs on the current
iteration. In order to get into this steady state, one hasdtb a
prologue at the beginning of the transformed loop in ordesetoip

that a set of statements can be transformed to another set ofthe pipelining effect. There is also an epilogue after thapldo

statements in a single rewrite.

execute the remaining instructions.



rI :=0 7
I:=0 So
L1 : So Sl
Ly :while (I<E) { whllg (I<E-1) {
Ls : Si - I+2+
L4 : Sz S
Ls : I++ 1
} }
S2
[ I++ i
where

DoesNotModifySe, I)@L; A

DoesNotModifyS1,I)@Ls A DoesNotModifyS2, I)@L4A
StrictlyPositiv¢ E)@L; A DoesNotModifyS:, E)@LsA
DoesNotModifyS2, E)QL4 A DoesNotModifyI++, E)QLs

Figure 2. First part of software pipelining

Lq: S2 Sl[ I+1 ]
I++ EES So
S1[I] I++

where DoesNotModifySz, I)@QL; A
CommutéSz, S;[ I+1 |)@QL,

Figure 3. Second part of software pipelining

fact StrictlyPositivéE)
has meaningeval(c, E) > 0

fact DoesNotModifyS, E)
has meaningeval (o, E) = eval(step(o,S), E)

fact CommutéS,, S2)
has meaningstep (step(o, S1), S2) = step(step(o, Sz2), S1)

Figure 4. Meanings of some facts that we use in our system

Software pipelining is a non-trivial optimization, with ima
subtle corner cases that need to be correctly implementetipio-
logue and the epilogue must execute a precisely craftecaeqof
instructions to setup and unwind the steady state; thalictstns in
the loop must be correctly re-indexed; and the entire ogttion
must be applied only if no dependencies in the original pogr
would be broken by software pipelining.

2.1 Expressing Software Pipelining

We implement software pipelining in our language as theatgue
application of two simple optimizations. In Figure 2 we shihe
first one, which simply moves some instructions (nangly from
the current iteration to the next iteration. Optimizatiemsur lan-
guage are written as parameterized rewrite rules with Siaelie
tions: P, = P> where ¢, where P, and P, are parameterized
programs, ana is a side condition that states when the rewrite rule
can safely be fired. An optimizatiah, = P» where ¢ states that
when a concrete program is found that matches the parazeseri
programP, it should be transformed tB: if the side conditionp
holds.

Parameterized programs.A parameterized program is a partially
specified program that can represent multiple concreterpnag)
For example, in the original and transformed programs fraga F

rT :=0 T
= So
5% ° Si1]
vhile (I<E) { Whllg %a:f?_l) e
S:[I] = S,
Sz I++
I++ }
} S,
L I++ i

Figure 5. Software pipelining as one rewrite rule

loops, and sequences of statements) that are singlegntye
exit; I ranges over concrete program variables; Bncinges over
concrete expressions. Because variables $ke I and E range
over the syntax of concrete programs, we call such variahkts-
variables To simplify exposition, rather than provide explicit type
for all meta-variables, we instead use the following nansog-
ventions: meta-variables starting wifh range over statements,
meta-variables starting witR range over expressions, and meta-
variables starting witll range over variables.

Side Conditions.The side conditions are boolean combinations of
facts that must hold at certain points in the original pragr&or
example the side conditidboesNotModifySo, I)@L, in Figure 2
states that at locatiofi; in the original progranSe should not
modify I. In general, side conditions are first-order logic formulas
with facts likeDoesNotModifySe, I)@L, as atomic predicates.

Each fact used in the side condition must have a semantic
meaning, which is a predicate over program states. Figuiee$ g
the semantic meanings for the three primary facts that wenuma
system. In general, meanings can be first-order logic foamwiith
a few special function symbols: (&)is a term that represents the
program state at the point where the fact holds.e(@) evaluates
an expression in a program state and returns its valuest€3)
executes a statement in a program state and returns thénmgsul
program state.

The semantic meanings are used by the PEC algorithm to de-
termine the semantic information that can be inferred frobenside
conditions when proving correctness. Although optimativrit-
ers must provide these meanings, in our experience we heawe fo
that there is a small number of common facts used across nifany d
ferent optimizations (for exampRoesNotModify, and since these
meanings only need to be written once, the effort in writingam-
ings is not onerous.

Executing optimizations. Optimizations written in our language
are meant to be executed by an execution engine. When running
an optimizationP; —> P> where ¢, the execution engine must
find concrete program fragments that math Furthermore, it
must perform some program analysis to determine if the facts
the side conditior hold. One option for implementing these pro-
gram analyses is to use a general purpose programming lgegua
Although this provides the most flexibility, it does not gaatee
that the facts in the side condition are computed correédlgr-
natively, if one wants stronger correctness guaranteedattts in
the side conditions can be computed in a way that guarartiaes t
their semantic meanings hold, for example using the Rhodiysn
tem of Lerneret al. [15], or using Leroy’s Compcert system [16].
Although all the side conditions we used in our system pertai
the original program, it is also possible to express sidalitimms
over the transformed program. In such cases, the execuigine
would check the side conditions by building the transformeat

ure 2,So ranges over concrete statements (including branches, gram before knowing that all the side conditions hold, arehth



r i :=20
ali] += 1
i:=0 while (i < n -
while (i < n) { ali+1] += 1;
alil += 1; + S;[I] bli] += al[il;
bli] += alil; }(—S — c[il += blil;
cl[il += b[il; 2 i+
i++; }
} bl[i] += alil;
c[i] += b[il;
| i+

ri:=0 ]
ali] += 1;
7 ali+1] += 1;
b[i] += alil;
1) { while (i <n-1-1) {
ali+1+1] += 1;
} « Sa[I] bli+1] += a[i+1];
— 82 — C[l] += b[l],
it++
}
c[i]l += blil;
it
i b[i] += alil;
c[i] += blil;
L i++ J

Figure 6. Two successive applications of the rewrite rule from Fidaire

running analyses on the transformed program to determitteeif
transformation can safely be performed.

The second part of software pipelining, shown in Figure 3,
simply reorders statements. This optimization uses a new &f
meta-variableS1[ I ]. In this caseS; is a program fragment with
a hole init, and fills in the hole. TheS,[ I ] pattern is interpreted
as follows:S;1 matches any single-entry-single-exit piece of code
that contains direct uses of a variaftleout no modifications of.

In such caseS; gets matched to the code, but with holes wherever
I occurs, so tha$: [ I+1 | represents the original statement with
replaced byl+1. The fact thafl is not modified inS; and thatS,
captures all uses dfallows us to treat such statements as function
calls from a verification point of view.

The side condition in Figure 3 uses a new fact calleinmute

ized programs equivalent. To achieve this, we developedla te
nique called Parameterized Equivalence Checking (PECptra
eralizes traditional TV techniques to the setting of parameed
programs.

There are two simple observations that intuitively exphatmy
techniques from translation validation can be generaliagzhram-
eterized programs. The first observation is that if a proghag-
mentS in the original program executes in a program statand
the same program fragmefitexecutes in the transformed program
in the same state, then we know that the two resulting states are
equal. This shows that we can reason about state equalityieve
we don’t know what the program fragments are. The second-obse
vation is that when proving equivalence, we are usuallyréasted
in some key invariants that justify the optimization. Theigit is

which holds when two statements can be re-ordered. There arethat the semantic meaning of the side condition capturessaly

a variety of ways of implementing such a predicate when the
compiler runs, for example the Omega test [21], or more gelyer
dependence analysis [18]. We also show in Section 6 how we can
express a version dtommutethat can be written more easily in
Rhodium, and thus proved correct automatically.

To ease presentation of how our software pipelining optmiz
tion operates, Figure 5 uses a single rewrite rule to sunzeahnie
effect of running the transformation from Figure 2 followyglthe
one from Figure 3. We show in Figure 6 how two applications of
this single rewrite rule performs software pipelining om eMam-
ple. At each step, we show wh8§ andS. are instantiated with.

If there were more statements in the loop, the transformdtimm
Figure 5 could be applied more times, wii ranging over one
additional statement each time.

2.2 Proving Correctness of Software Pipelining

Our goal is to show that the software pipelining optimizatierit-

ten in our language is correct, once and for all, before itvene

run once. To do this, we must show that each of the rewritesrule
from Figures 2 and 3 satisfy the following property: givee #ide
conditions, the original parameterized program and thestoamed
parameterized program have the same behavior. To illesthat
salient features of our approach, we show how we can prove the
first and more complicated part of software pipelining, nigntiee
rewrite rule from Figure 2.

Parameterized Equivalence Checking.Translation validation
(TV) is a technique that has been used to prove equivalengmef
gram fragments. Traditionally, TV is applied while the calap
is running, and so TV proves concrete, fully specified prowa
equivalent. In our setting, we are attempting to prove patam

when these key invariants can be propagated throughoaetrstats
that are not fully specified. For example, if the correctnafsan
optimization really depends dhnot being modified in a region of
code, the side condition will allow us to know this fact, ahdg
reason abouf across such unknown statements.

Bisimulation relations. PEC proves equivalence usibisimula-
tion relations which are defined in terms of the more basic concept
of correlation relations A correlation relation is a set of entries,
where each entry relates a program point in the original naimg
with a corresponding program point in the transformed paogr
Each correlation relation entry also has a predicate ttditates
how the state in the original program is related to the sthtae
transformed program at that point. A bisimulation relati®isim-
ply a correlation relation that satisfies the property that predi-
cate on any entry in the relation implies the predicate opralies
reachable from it.

The PEC approach works in two steps. In the first step we
generate a correlation relation. In the second step, wekdhére
generated correlation relation has all the propertiesiredto be a
bisimulation relation, and if not, we iteratively strengthit until it
does.

Figure 7 shows the control flow graph (CFG) of the original and
the transformed programs in our example, along with theetarr
tion relation that our approach generates. The entriesingiation
are labeled A through G, and each entry has a predicate asswci
with it. These predicates operate over the program stateand
o2 of the original and transformed program. To make the natatio
cleaner, we use some shorthand notation. For exarfipleneans
eval(o1, E). Using this notation, the predicate at edge D states that
(1) the two programs states andos are equal, (2] < E holds



(0,=0,) N
(0,=0,) A(I,=0)A(I,=0) \\\
(0,=0,) A (I,<E,)

(0,=0,) A (I,<E;) A(I,<E,-1)
(0,=0,) A(I,<E;) A(I,<E;)
(0,=0,) A(I,<E;) A(I,2E,-1)

(0,=0,)

O MmMODpDO ® >

Figure 7. CFGs of running example with the correlation relation

in o1 and (3)I < E — 1 holds ino». In this example, our approach
would determine that the generated correlation relation fact a
bisimulation relation and as a result does not need to bagitre
ened.

Generating a correlation relation. To generate the correlation re-
lation, our PEC algorithm first adds edge A with predicate=

o2; this indicates that we can assume the program states aaé equ
at the top of the code. It also adds edge G with predieate: o»;

this indicates that we must establish that the program state
equal after the two programs execute. To generate the poibts
tween, our algorithm traverses both programs in paral@hfthe

top entry. Each time a statement is reached 8ke S1, andS.,

the algorithm finds the corresponding point in the other paoy
and adds a relation entry between the two statements wifhréu-
cateo; = o2 (since this is the only mechanism we have to preserve
equivalence of arbitrary statements). Finally, our aldponifor gen-
erating a correlation relation strengthens the predicategacach
side of a branch with the branch condition, which leads tovtre
ious conditions relatind andE in Figure 7. This allows entries in
the bisimulation relation to encode information about wiranch
conditions they are under.

Strengthening the correlation relation. Once a correlation rela-
tion is generated, our PEC algorithm checks whether or ristait
bisimulation relation, and if not, iteratively strengtlseit In par-
ticular, we must show that the predicate at a given entryrengt
enough to imply the predicates at all entries reachable ftoffo
achieve this, our approach traverses the two programs adl@lar
starting at each correlation relation entry to find the neachable
entries. Then, for each discovered path between a cooelegia-
tion entry X and another entry”, our algorithm asks a theorem
prover to show that, if the two programs start executing{ain
states wher&X’s predicate holds, an¥l is reached, thel™'s pred-
icate holds.

In our example from Figure 7, the paths that our algorithm
would discover between correlation relation entries arokaws:
AtoB,BtoC,CtoF,CtoD,DtoE,EtoD, EtoF, and Fto G.

As an example, for the B-C path, our tool would ask a theorem
prover to show that, for anyy andos: if (1) o1 = o2 holds and

(2) the original program executéSo; assume(I < E)] and (3) the
transformed program executy], theno, = o2 A eval(o1,I) <
eval(o1, E) will hold after the two statements have executed. In
this case, the implication follows immediately from thesume
and the fact tha8o produces the same program state if started in
the same program state. If for some path pair X to Y, the inaibo
does not hold (this is not the case in Figure 7), our algoritfould
strengthen the condition at X with the weakest preconditibtihe
condition at Y. Using such iterative strengthening, ouroathm
tries to convert the original correlation relation into gibiulation
relation.

Our algorithm must also prune infeasible paths when it peréo
the checks. For example, when starting at F, it is impossédnlthe
original program to stay in the loop — it must exit to G. Our cker
can determine this from the predicate at F. In particular, énde
be the original values df andE at F (in eithefo; or o2 since they
are equal). The value does not change through the loop as stated
by the side conditions. If the original program chooses &y &t
the loop, theassume(I < E) would give usi + 1 < e (where the
“+1” comes from the increment df and the fact tha8, does not
modify I). This would be inconsistent with the assumption from F
stating that > e — 1, and thus the path is pruned.

2.3 Benefits or our approach

Our PEC approach has several benefits over previous teawtigu
proving optimizations correct in a fully automated way SEIPEC
can prove the correctness of complex rewrite rules oncearallf
something that previous systems like Rhodium were not atdet
This allows us to implement and prove many more optimization
correct, as discussed in Section 7, thus improving the sfatiee
art of the set of optimizations that can be proved automitioace
and for all.

Second, because parameterized programs can contain toncre
statements, PEC can in fact prove fully concrete programs/eq
alent (with no side conditions provided). In this settingr #EC
technique subsumes many previous approaches to transiaiio
idation, for example the relation approach of Necula [19] #re
permute approach of Zuak al.[6].

Finally, PEC enables a new staged paradigm for optimization
verification: we can use PEC to check as many of the optinaizati
as possible before they are run. For those optimizationswha
can't prove correct once and for all, we can use PEC again when
the compiler is running to perform translation validation e
concrete input/output pairs.

3. Parameterized Equivalence Checking

We now describe our approach in more detail. Our goal is tavsho
that two parameterized progranis and P> are equivalent under
side conditionsp. We represent each prografhas a Control Flow
Graph (CFG), which we denote hy In particular, we assume that
m1 is the CFG of the original program, and is the CFG of the
transformed program. Each node in a CFG is a program location
and edges between program locations are labeled with statem
We user; and.s to denote the entry locations of, w2, andei, €2
to represent the exit locations of, .

Given a program state, we use the notation (o) to represent
the program state after executingstarting in stater.

DeFINITION 1 (Equivalence)Given two programs; and s, we
definer; to be equivalent tar; if for any program stater, we have
w1 (o) = m2(0).

The above definition of equivalence allows us to use our apéim
tions anywhere inside in a program: by establishing progstate
equivalence, we guarantee that the remainder of the progriaen



the optimization, runs the same way in the original and thasy
formed programs. We can model observable events such as IO us
ing heap updates. For example, a capptantf can just append its
arguments to a linked list on the heap. In this setting, opragch
guarantees that the order of 10 events is preserved.

The statements in our CFGs are taken from a concrete program-
ming language of statements, extended with meta-variables
main components of our approach do not depend on the choice of
the concrete language of statements that we start with:lahis
guage can for example include pointers, arrays, and fumctdis.

We do however make one exception to this rule: we assume the ex
istence ofassume statements. In particular, we model conditionals
usingassume Statements on the edges that flow away from a branch
location (as shown for example in Figure 7). We also ass€ume
statements to insert the information from side conditiane the
original or transformed program as needed, so that our taol c
reason about the side conditions. The choice of concretpitage
only affects the semantics of statements, which is entimabglu-
larized in a function calledtep (which we have already seen). The
only part of the system that knows abaup is the theorem prover,
which is given background axioms about the semantics oftiost
tions (so that it knows for example hda+ updates the store). All
other parts of the system tredep as a black box.

Bisimulation relations. Our approach is based on using a bisim-
ulation relation to relate the execution of the originalgnam and
the transformed program. Before defining what a bisimutetéia-
tion is, we first define a more basic concept, which is a cdiogla
relationR. A correlation relatiorR is a set of triples of the form
(11,12,%), wherel; is a location inmy, I2 is a location inr2, and

1 is a formula relating the program states/a@andl,. In partic-
ular, ¥ is a formula overr; ando, the states in the original and
transformed program respectively.

Sincew is a predicate with free variables and o2, we can
use) as a function from two program states to booleans. We use
the notation € R to mean(l,_,-) € Ror (,l,-) € R, where_
is a wildcard that pattern matches anythingl ¥ R, we say that
[ occurs inR. We define a relation— 7% which is the successor
relation on CFGs, except that it skips locations noRinin order
to define just one relation—x for both CFGsm; and w2, we
assume without loss of generality that the two CFfzsand 7
have disjoint locations. With this assumptiop>x is defined as:

I 2% ' holds iffl € R andl’ € R and there is path in the
CFG ofm; or w2 from [ to !’ such that none of the locations on the
path, except end points, occuri

Simulation and bisimulation relations are correlatioratieins
with some additional properties. Below we define these imelat
by adapting previous work [17] to the setting of CFGs.

DEFINITION 2 (Simulation Relation)A correlation relationR is
a simulation relation forry, 2 iff it satisfies the following proper-
ties:

1. (L17L2,0'1 = 0'2) S Rand(61,6270'1 = 0’2) eER

2. foranyly, Ih, 12, p1, v, if (I, 12,¢) € R andly 25 I} then
there existg), v’, p2 such that(l;, 15, v') € R andls 22 1}
andVo1, 02 . Y(01,02) = ' (step(o1, p1), step(o2,p2)).

DEFINITION 3 (Bisimulation Relation) A correlation relationR
is a bisimulation relation forry, 2 iff R is a simulation relation
for 1, m2 andR ! is a simulation relation forrs, 1, whereR !
is defined by(l1, l2,v) € Riff (I2,11,4) € R~

THEOREM1 (Bisimulation Equivalence)if there exists a bisimu-
lation relation betweemnr; andw, thenm; andr, are equivalent.

function PEC(m1, w2, ¢)
let (77, m5) := Permute(m1, w2, @)
let R := Correlate(ry, m5)
return Check(R, 71, T3, @)

Figure 8. Parameterized Equivalence Checking

The conditions from Definition 2 are the base case and the in-
ductive cases of a proof by induction showing thais equivalent
to 2. Thus, a bisimulation relation is a witness that two CFGs are
equivalent. Our approach is based on the above theoremrtin-pa
ular, our general approach is to try to infer a bisimulatielation
to show thatr; andr, are equivalent.

Architectural overview. Figure 8 shows the pseudo-code of our
PEC approach. There are three steps: the Permute modu@othe
relate module and the Checker module. The Permute modue run
as a pre-processor before we use our main bisimulatiordbase
proach. The Permute module applies a general form of thelerm
theorem that has been used in translation validation of aip
mizations [6], but it does so on parameterized programsrAfte
Permute module has run, the Correlate and Checker module-imp
ment our bisimulation approach. In particular, the Coteelaod-

ule first generates a correlation relati@from the two CFGsr;
andm. The Checker module then makes sure that the properties
from Definitions 2 and 3 hold, possibly strengthening thatieh

in order to guarantee property 2. The next three sectionsegpa-

per describe each of the modules in our system. We first descri
the Correlate and Checker modules, which are at the heanrof o
approach, and then move on the Permute module, which acts as a
preprocessing step.

4. Correlate module

To prove that two parameterized programs are equivalenapur
proach attempts to discover a bisimulation relation bebwbem.
To do this, the Correlate module computes a correlatiortiogla
which will then be strengthened to a bisimulation relatigntie
Checker module.

Two kinds of locations int; andw, are particularly important
while constructing the correlation relatid®: locations that imme-
diately precede a statement meta-variable, the set of whéctie-
note Lg, and locations that immediately precede @asume, the
set of which we denoté 4. We define the—s and— 4 relations to
be the successor relation in the CFG, but skipping over ntidgs
are not inLgs or La, respectively. We assume that the two CFGs
w1 andme have disjoint locations, which means we can use a sin-
gle version ofLs that applies to both CFGs (and similarly fbr).
More precisely: (1§ —s I’ holds iff I’ € Ls and there exists a
path froml to I’ in m; or w2 with no intermediate locations ihg,
and (2)1 % 4 I’ holds iff p is a path fromd to !’ in 71 or 72 that has
no intermediate locations ihs andl € La U {¢1,t2}.

Using these definitions, the correlation relation that wapote
is the smallest relatio® such that:

R(ti,t2,01 = 02) AR(€e1,€2,01 = 02) )
Vi, 1o, 10,15 .
R(l1,l2, -)A
li =s i Nle =g IbA | = R(11, 15, Condlf, 15))
( /17l,2) # (61762)
&)

where Cond1,l2) = Pos{l1) A Pos(lz) A o1 = o2

and POS(Z) = V{l/ﬂAl} SP(p7 true)



1. function Check(R, w1, w2, ¢)

2 let R :== RU{(t1,t2,01 = 02), (€1,€2,01 = 02)}
3. let (71, 75) := InsertAssumes(m1, w2, @)

4, let P := ComputePaths(R, 71, 75)

5 if P = Fail then return Fail

6 let C := GenerateConstraints(P)

7 return SolveConstraints(C,R)

8. function ComputePaths(R, w1, m2)

9. letP:=0

10. for each (i1,12,%) € R

11. for eachpi, 1} such that; 2% 14 do

12. for each ps, I3 such thals =2 15 do

13. if —Infeasible(p1, p2, )

14. if (11,15, - ) € R then return Fail
15. P =P U{(l,l2,p1,p2,11,15)}

16. return P

17. function Infeasible(p1, p2, ¥)
18. return ATP(—(SP(p1, ) A SP(p2,))) = Valid

19. function GenerateConstraints(P)

20. letC:=0

21. for each (11,12, p1, p2,11,13) € P do

22. C:=CU{X(, 15) = PWP(p1llp2, X7 1))}
23. return C

24. function SolveConstraints(C, R)

25. let soln:= map from constraint vars to formulas
26. foreach (I,1',¢) € R dosoln( X ;1)) == 1

27. let worklist:= C

28. while worklist not emptydo

29. let [X, = PWP(p1||p2, &y)] := worklistremove
30. let F := [soln(X,) = PWP(p1||p2, soln(X,))]

31. if ATP(F) # Valid then

32. if © = (t1,¢2) then return Fail

33. soIn( ;) := soln(X;) A PWP(p1]|p2, Soln(X,))
34. worklist := worklist U

35. {ceCle=[.=PWP(_, X))}

36. return Success

Figure 9. Pseudo-code for the Checker module

Here Cond(l1, l2) computes the formula over; and o, that
should hold whenr; and 72 are at locationd; and I, respec-
tively. Within Cond the predicaté®os{!) is the disjunction of the
strongest post conditions with respect e over pathsp for
which there exists somié such that’ 2 4 1.

The Correlate function from Figure 8, which is the core of
the Correlate module, computes the correlation relationgughe
above definition. In particular, it starts with an empty tiela, and
first applies Formula (1) to correlate the entry and exit isodéen
ititeratively applies Formula (2) until no more entries ¢eradded.

5. Checker module

The pseudo-code for the Checker module is shown in Figure 9.

The checker performs the following five steps: first, it makese
that the entry and exit locations are related with full sedeal-
ity (line 2); then it inserts assume statements into theiraigand
transformed programs corresponding to the side condithmatsare
given in the rewrite rule (line 3); then it computes the pédtls
tween entries in the correlation relation, doing path prgrany-
where possible (line 4); using the computed paths it geesmset

of constraints that the final correlation relation mustsgtto be
a bisimulation relation (line 6); finally it solves the geatd con-
straints using a fixed point computation (line 7). We descghch
of these steps in more detail.

InsertAssumes.The InsertAssumes function inserts the side con-
dition assumptions into the original and transformed peiots in
the form ofassume statements. Amssume Statement takes as ar-
gument a predicate over the program statbat occurs at the point
where the assume holds. To ease presentation, we make bile sim
fying assumption thap = ¢1QL; A ... A p,@L,, (our implemen-
tation handles the general case). For each side conditipme
define[¢;] to be a predicate over that directly encodes the side
condition’s meaning provided by the optimization writeheh for
each¢;QL;, we find the location’; in either the original or the
transformed program, and insessume ([¢;]) at that location.

ComputePaths.The ComputePaths function computes the set of
pathsP between entries of the correlation relati@n The function
starts by initializing the set of paths to the empty set (BheThen,
for each correlation relation entrfl1,l2,v) € R, it finds the
reachable program pointé andl5 in each program that are in the
correlation relation (lines 10-12). It does so using theZs '
relation introduced in Section 3, which states thatcurs inR, I’
occurs inR, and there is a CFG path from [ to I’ where none
of the locations in the path, except for the end points, odgur
‘R. For each pair of pathg;, p» that are foundComputePaths
checks if the paths are infeasible by calling thfzasible function.
Infeasible first computes the strongest postconditiorpofandp,.

If an automated theorem proveATP) can show that the two
post-conditions are inconsistent, then the combinatidhage two
paths is infeasible, and can be pruned. Theeasible function
performs the pruning that was intuitively described forsb&ware
pipelining example in Section 2.2. If the paths are feasiold an
entry(l1, 13, _) existsin the correlation relation, then the two paths
are added t@, along with the beginning and end points (line 15).

GenerateConstraints. Once the set of paths in the correlation
relation have been collected, ti&nerateConstraints function
computes the set of constrairitg¢hat our correlation relation must
satisfy to be a bisimulation relation. For eath!’, - ) € R,
we define a constraint variabl¥; ;/y that represents the formula
in the correlation relation relatinggand i’. Then, for each path
between two entries in the correlation relation (line 21§ add
a constraint stating that the predicate at the beginningp@foath
must imply the predicate at the end of the path (line 22). \Wieess
this condition using the weakest precondition computaBo¥P,
which is a parallel version of the regular weakest precdomlit

The main challenge in expressing this weakest precondision
that the traditional formulation of weakest preconditicepends
on the structure of the statements being processed. As k, liesu
is difficult to use this definition for statements lil8y and S, in
our parameterized programs, because the precise struttimrese
statements is not known. To address this challenge, we usigean
nate yet equivalent definition of weakest precondition. dntipu-
lar, consider the traditional weakest precondition corapan, and
assume that the predicate we are computing is a function rom
gram states to booleans. Then the traditional weakest pd#am
WP can be expressed as:

WP(S,9)(0) = ¢(step(a,S))

If we assume that the program statés simply a free variable in
the predicate), thenWP can be expressed as:

WP(S, ¢) = ¢[o — step(o, S)]



Generalizing this to two parallels paths in two differeno{pr
grams, the predicates now have free variableand oz, and we
can expres®WP as follows:

PWP(pi1lp2,¢) = ¥[o1 = step(o1,p1), 02 — step(oa, p2)]

SolveConstraints.Once the set of constraints have been generated,

the SolveConstraints function tries to solve these constraints iter-
atively by starting with the correlation relatidR, and iteratively
strengthening the conditions in the relation until all tle@straints
are satisfied. In particulagolveConstraints maintains a magoln
that maps each constraint variable to the formula we cuyresst
sociate the variable with. TreInmap is initialized with the predi-
cates from the correlation relation (line 26plveConstraints also
maintains a worklist of constraints to be processed, wtscimii
tialized with all the constraints (line 27). While the wdshtlis not
empty, SolveConstraints removes a constraint from the worklist
(line 29), and if the constraint is not satisfied (line 31xtiength-
ens the left-hand side of the implication in the currenttyst! solu-
tion (line 33), and adds to the worklist all the constraiiEtneed
to be checked again because of the strengthening (line 3®. O
subtlety is that we cannot strengthen the relation at they @oints

L1, t2. If we ever try to do this, we indicate a failure (line 32). Be-
causeSolveConstraints is trying to compute a fixedpoint over the
very flexible but infinite domain of boolean formulas, it magtn
terminate. However, as our experiments show in Sectiongrao-
tice SolveConstraints quickly finds a fixed point.

6. Permute module

Our main technique for PEC relies on a bisimulation apprdach
prove equivalence. However, the bisimulation approachsbase
known limitations. In particular, bisimulation relatioase not well
suited for proving the correctness of non-structure présgtrans-
formations, which are transformations that change the i@t
order of code across loop iterations. Previous work on lading
validation has devised a technique calleermute [33] for han-
dling such transformations on concrete programs. We hasgted
this technique to the setting of parameterized programs.

Our version ofPermute runs as a pre-pass to our bisimulation
relation approachPermute looks for loops in the original and
transformed programs that it can prove equivalent, anchiphes
it can, it replaces them with a new fresh variaBlevhich will then
allow the bisimulation relation part of our PEC approachete that
they are equivalent.

OurPermute algorithm tries to find a general nested loop of the
following form, where we use!;, to denote a total order oh

for i1 € It by < do

for i, € I, by <y, do
B(i17"' 77'7L) ;
where I is the domain of the index variable

The relation<; represents the order in which the index variable
i; is traversed. The above general nested loop can be repdsent
more compactly as follows:

for i€l by <y do B(i) ;

I=Lix---xI, and
\/ iy ik—1) = (s Jk-1) Ak <1 Jk

The relation< 7 above is the lexicographic order dn

Our algorithm tries to find a loop structure as above in thg-ori
inal program and in the transformed program, and for each suc
pair, it tries to show that the following loop reorderingriséorma-
tion is correct:

for i, € I by < do B(z_f)
L . ®3)
for i € I» by < do B(F(iz))

The above transformation may change the order of the index
variables by changing the domain to 5 and the relat|0n<I
to <z and also possibly changing the Ioops body by applylng a

linear transformation fronB (i1 ) to B(F (iz)).

To show that the above transformation is correct, we need to
ensure that the transformed loop executes the same instahitee
loop body in an order that preserves the body’s behaviorrdero
to define the conditions under which this happens, we firshdefi
when two program fragments commute.

DEFINITION 4 (Commute)We say two program fragmentS;

and S commute, writter; ~ Ss, if starting from an arbitrary
initial state, the resultant state of executiSg and thenS; is the
same as executing, and thensS;.

We can now guarantee that the original and transformed loops
are equivalent by requiring the following properties tochol

1. There exists a 1-1 correspondence betwieeand /.

2. For everyiy,is € I, if B(i1) executes beforé3(is) in the
original program and3 (i) executes befor& (i, ) in the trans-
formed program the®(i:) and B(i2) commute, i.eB(i1)
B(iz)

~
~

The first property & above can be established by showing tleat th
linear functionF : I — 1 is a bijective function, i.eF is
one-to-one and onto. This in turn can be guaranteed by dgfinin
an inverse functio”~* : I; —» I. The above observations are
summarized in the following Permute Theorem.

THEOREM2 (Permute)A loop reording transformation of the
form shown in Formulg3) preserves semantics if the following
hold:

1. Vis eIy, F(is) eI,

2. Vi el. F~(i1) € I

3. Visel  iy=F Y (F(i3))

4. Vi el. i1 = F(F~'(iy))

5. Viii| €. i1 <p i AFTY) < F7U(i)
— B(i1) ~ B(i])

Theorem 2 was introduced and proved in previous work [33,
21, 23]. The Permute module tries to apply Theorem 2 by asking
an automated theorem prover to discharge the precondibitine
theorem assuming the side conditions given in the transttom.

As an example, consider the simple loop interchange opditioiz
shown in Figure 10. For clarity and ease of explanation, the e
ample is simplified here to have constant bounts, /1, L2, U2)
instead of arbitrary expressions. However, our tool chéo&snore
general version of this example.



for (I := Lp; I<Uyq; Iv+ ) {
(J = Lo; J < Ugy; J++) {
L1 . S[ ]
}
}
g
for (J := L2; J < Ug; J++) {
for (I := Li; I < Uy; Iv+) {
S[T,J]
}
}
where VK, L. (K#IAL#J)=
DoesNotModifyS[ I,J |, S| K,L ))QL; A
DoesNotModifyS| K, L ],S[ J],)QL; A
DoesNotinterfereS[ I,J |, S| K, L |)@QL,

fact DoesNotModifyS1, Sz2)
has meaningstep (o, S2)|3, = step(step(o, S1),S2)|§,

fact DoesNotInterfer€Sq, S2)
has meaningstep(o, Sz2)|3, = step(step(o, Sz2),81)|3,

Figure 10. Loop Interchange

The Permute module first transforms the original and trans-
formed programs into our canonical representations ofdotp
particular, the original program is summarized as

I ={(i,j) | i € [L1,U1],j € [Lz2, U]}
and B((4,7)) = S[1,j]
and =<5 is the lexicographic order ofy

and the transformed program is represented as
I = {(i,j) |i € [L2,Uz],j € [L1, U]}
and B((4,7)) = S[j,i]
and =<5 is the lexicographic order ofy

Since there is one loop in the original program and one in the

transformed progranRermute tries to prove them equivalent. In
order to apply the Permute Theorem, our tool needs to infer th
two mapping functiong” andF~!, and prove properties 1 through
4 of Theorem 2.Permute infers these functions automatically
using a simple heuristic that runs a range analysis overrigaal
and transformed programs, and uses the results of the upder a
lower bounds on index variables to infét and F~'. For our
loop interchange optimization, our tool automaticallyeirsf that
the two functions aref'((4, 7)) = (j,4), andF~'((4,5)) = (J, ).
Our heuristic infers the appropriate mapping functions lirtre
optimizations that we have tried (see Section 7). Howeveralso
provide the ability for the programmer to providieandF~* in the
case where our heuristic cannot find appropriate functions.

The purpose of the side conditions of loop interchange is-to a
low the theorem prover to show property 5 of Theorem 2. One op-
tion for expressing the side condition is to use @@mmutefact
from Figure 4, which gives us a predicate very close to pityper
5 directly, and then use a heavyweight analysis when the com-
piler runs to establis€ommutgfor example a theorem prover, the
Omega test [21], or more generally dependence analysik AB]
other option, which we use in Figure 10 to illustrate the ity
of our approach, is to use a more syntactic definition of commu
tativity, using two new factdDoesNotModifywhich holds when a
statement does not modify the variables or heap locaticatsatin

Lo Uses | Time | # ATP

Optimizations
permute | (secs)| calls

Category 1
Copy propagation No 1 3
Constant propagation No 1 3
Common sub-expression elim No 1 3
Partial redundancy elimination  No 3 13
Category 2
Loop invariant code hoisting No 8 25
Conditional speculation No 2 14
Speculation No 3 12
Category 3
Software pipelining No 5 19
Loop unswitching No 16 94
Loop unrolling No 10 45
Loop peeling No 6 40
Loop splitting No 15 64
Loop alignment Yes 1 5
Loop interchange Yes 1 5
Loop reversal Yes 1 5
Loop skewing Yes 2 5
Loop fusion Yes 4 10
Loop distribution Yes 4 10

Figure 11. Optimizations proven correct using PEC. Category 1:
expressible and provable in Rhodium; Category 2: provable i
Rhodium, but our version is more general and easier to expres
Category 3: not expressible or provable in Rhodium.

other may read, anBoesNotInterferewhich holds when a state-
ment does not modify the variables or heap locations thathano
may write to. The notationr; |* represents the statg projected
onto the variables and heap locations tBamodifies if it exe-
cutes starting in state.. The benefit of using the more syntactic
DoesNotModifyand DoesNotlnterferdacts is that they can more
easily be implemented using simple Rhodium dataflow funetio
which in turn can be proved correct automatically. In thig/wae
will know that the computed facts when the compiler runs intpée
semantic meanings that our PEC technique assumed whemg@rovi
the correctness of loop interchange once and for all.

7. Evaluation

We implemented PEC in 2,408 lines of OCaml using the Simplify
theorem prover [5] to realize th&TP module from Figure 9.

Figure 11 lists a selection of optimizations that we proved c
rect using our implementation. For each optimization wetlie
time it took to carry out PEC and the number of queries to the th
orem prover. To be clear about our contribution compared¢éo t
Rhodium system for automatically proving optimizationsreot,
Figure 11 partitions the optimizations into three categgri

Category 1: Optimizations that were also expressed and proved
correct in Rhodium, and whose PEC formulation is equivatent
the Rhodium formulation.

Category 2: Optimizations that could have been expressed and
proved correct in Rhodium, but our versions are much more gen
eral than the Rhodium version, and also much easier to exffes
example, in the case of loop invariant code hoisting, PEGpcave

the correctness of hoisting loop-invariant branches on ergire
loops, while the Rhodium version could only hoist loop-in&at
assignments. Furthermore, these optimizations are musibrda
express in our PEC formulation because of our explicit sttppo



for many-to-many rewrites. In contrast, implementing ehegti-

mizations in Rhodium would require an expert to carefullgfcr
sequences of local statement rewrites that achieves theded ef-
fect. For example, moving a statement in Rhodium requirssrta
ing a duplicate copy of the statement at the target locagind then
removing the original statement in a separate pass.

Category 3: Optimizations that cannot be proved correct, or even
expressed, in Rhodium. Our support for many-to-many rewrit
rules makes it easy to express these optimizations, and e t
nigue is general enough to handle their correctness proofs.

The trusted computing base for our system includes: (1) the
PEC checker, comprising 2,408 lines of OCaml code (2) the Sim
plify automated theorem prover, a widely used and well tetie-
orem prover, and (3) the execution engine that will run thg-op
mizations. Within the execution engine, the trust can béhéir
subdivided into two components. The first component of the ex
ecution engine must perform the syntactic pattern matckdng
rewrite rules, and apply rewrite rules when they fire. Thist pa
is always trusted. The second component of the executiomeng
must perform program analyses to check each optimizatzidés
conditions in a way that guarantees their semantic meahiage
our system offers a choice. These analyses can either hedrus
and thus implemented inside the compiler using arbitrardyn-
plex analyses, or untrusted and implemented using a prpgaifié
analysis system like Rhodium.

8. Execution Engine

We implemented a prototype execution engine in 383 lines of
OCaml code that runs optimizations checked by PEC. Although
PEC can be applied to any intermediate representation fashwh
we can compute weakest preconditions, our prototype exscut
engine transforms programs written in a C-like intermedian-
guage including arrays and function calls. Using this pxqie, we
were able to run all the optimizations described in previses-
tions. Even though our execution engine is a prototype, ritaie
strates how our optimizations can be incorporated into apilem

and also shows that the optimizations we checked execute-as e
pected.

Our execution engine is embodied in a function callegbly,
which takes as input a program a transformation rulgP; =
P, where ¢], and a profitability heuristip, and returns a trans-
formed program. Thedpply function first uses pattern matching
to find all locations in the program where the patteri#®; occurs.
Then for each match that is foundpply evaluates the side condi-
tion ¢ to make sure that the match is valid. Our current prototype
checks side conditions conservatively using read/write $®r ex-
ample, to guarantee that a statementloes not modify another
statement,, we check that¥riteSet(s1) N ReadSet(s2) = 0.

For each match that is found where the side condition holds,
Apply builds a substitutior® that records information about the
match: 0 maps the free variables iR; to concrete fragments of
p, and it also records the location where the match occurred in
p. Apply collects the resulting substitutiosinto a set©, and
then it calls the profitability heuristig with © as a parameter. The
role of the profitability heuristig is to select from the se&b of
all substitutions that have been found (representing allpthssi-
ble applications of the transformation rule) those sulistins that
it wants to apply. Because all the substitution®imepresent cor-
rect transformations, it does not matter which subset tbétpbil-
ity heuristic chooses, and so the profitability heuristin parform
arbitrary computation without being trusted. The aboveraagh
to profitability heuristic uses the generate-and-test @ggr pre-
sented in the Cobalt system [14]. Alternatively, an exexugn-
gine could also employ the more demand-driven approachiased

function SwPipe(p) =

let p’ == Apply(p, t1, psw)
if (p’ = p) then p’ elseSwPipe( Apply(p’, t2, \x.x))

Figure 12. Implementation of Software Pipelining usintpply.

the Rhodium system [15], where side conditions directleiréd
profitability facts, thus constraining which matches anglesed.

Once the profitability heuristic has selected the set of tsubs
tutions it wants to apply, thelpply function performs the corre-
sponding transformations. If the profitability heuristéturns sub-
stitutions that overlap in the program fragments they matobn
the Apply function picks an order to apply the substitutions in, and
only applies a substitutiofi if no previously applied substitution
has transformed elements mentioned.in

As an example, Figure 12 shows a functiwPipe that uses
Apply to perform software pipelining. We uge to represent the
first part of software pipelining (the transformation frongre 2),
and ¢, to represent the second part (the transformation from Fig-
ure 3). TheSwPipe function usesd pply to repeatedly apply: and
t>. The software pipelining profitability heuristjg., is applied af-
ter t; has run. In our prototype, we have chosen to implempent
by selecting matches that reduce the number of dependdneies
tween instructions in loop bodies. On¢ghas fired, we need to
apply t; on the result before doing another iteration of software
pipelining. As a result, the profitability heuristic for is the iden-
tity function, which simply selects all the matches.

9.

Translation Validation. Our approach is heavily inspired by the
work that has been done on translation validation [20, 196221,
12]. However, unlike previous translation validation aggmhes,
our equivalence checking algorithm addresses the challehigga-
soning about statements that are not fully specified. Asidtresir
approach is generalizatiorof previous translation validation tech-
niques that allows optimizations to be proved correct omzefar
all. Furthermore, because our PEC approach can handleetencr
statements as well as parameterized statements, it subsnars/
of the previous approaches to translation validation, f@meple
the relation approach of Necula [19] and the permute appro&c
Zucket al.[6, 33].

Proving loop optimizations correct. Our approach to reasoning
about loop reordering transformations by having a singtenaal
representation for all these transformations is similathtotrans-
lation validation work of Zuclet al. [6] and the legality check ap-
proach of Kelly et al. [9]. However, both these approachefopm
runtime validation of concrete programs instead of oncefandll
reasoning about parameterized programs.

Automated correctness checking of optimizationsAs with our
PEC algorithm, the Cobalt [14] and Rhodium [15] systems hfe a
to check the correctness of optimizations once and for allvéver,
Cobalt and Rhodium only support rewrite rules that tramafaisin-
gle statement to another statement, thus limiting the kafdspti-
mizations they can express and prove correct. Our PEC agiproa
can handle complex many-to-many rewrite rules explicaliow-

ing it to prove many more optimizations correct.

Human-assisted correctness checking of optimization®\ sig-
nificant amount of work has been done on manually proving- opti
mizations correct, including abstract interpretation43 the work

on the VLISP compiler [7], Kleene algebra with tests [10],rma
ual proofs of correctness for optimizations expressed rimptaal

Related work



logic [26, 13], and manual proofs of correctness based on par

tial equivalence relations [1]. Analyses and transfororatihave
also been proven correct mechanically, but not autométicle
soundness proof is performed with an interactive theoreongor
that requires guidance from the user. For example, YounpHa2
proven a code generator correct using the Boyer-Moore éneor
prover enhanced with an interactive interface [8]. As aeotx-
ample, Cacherat al.[2] show how to specify static analyses and
prove them correct in constructive logic using the Coq pra®f
sistant. Via the Curry-Howard isomorphism, an impleméaoiaof
the static analysis algorithm can then be extracted fronpthef
of correctness. Leroy’'s Comcert project [16] has also usschdar
technique to manually develop a semantics preservingnaptig
compiler for a large subset of C. The Comcert compiler presid
an end-to-end correctness guarantee, and does not just ¢ocu
optimizations, as we do in our approach. Tris&tnal. has also
proved that certain translation validators are corrececmud for
all, but here again by implementing the proof manually [Z, th
all these cases, however, the proof requires help from tee s
contrast to these approaches, our proof strategy is futiynaated
but trusts that the side conditions are computed corredtignithe
compiler executes.

Languages for expressing optimizationsThe idea of analyz-
ing optimizations written in a specialized language wasomnt
duced by Whitfield and Soffa with the Gospel language [30]nia
other frameworks and languages have been proposed foifyspeci
ing dataflow analyses and transformations, including 8Ha],
System-Z [31], languages based on regular path queries 48]
temporal logic [26, 13]. None of these approaches addresges
mated correctness checking of the specified optimizations.

10. Conclusion

[9] Wayne Kelly and William Pugh. Finding legal reorderingnsfor-
mations using mappings. lranguages and Compilers for Parallel
Computing 1994.

[10] Dexter Kozen. Kleene algebra with testACM Transactions on
Programming Langauges and Systed®(3):427-443, 1997.

[11] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. Autechat
refinement checking of concurrent systemslG@AD, 2007.

[12] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. Vailigghigh-level
synthesis. IrComputer Aided Vefification (CAVJ008.

[13] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Chanst
Frederiksen. Proving correctness of compiler optimizegiby
temporal logic. IPPOPL, 2002.

[14] Sorin Lerner, Todd Millstein, and Craig Chambers. Autiically
proving the correctness of compiler optimizations PloDI, 2003.

[15] Sorin Lerner, Todd Millstein, Erika Rice, and Craig @hizers. Au-
tomated soundness proofs for dataflow analyses and trametions
via local rules. InPOPL, 2005.

[16] Xavier Leroy. Formal certification of a compiler backek or:
programming a compiler with a proof assistantP@PL, 2006.

[17] R. Milner. Communication and concurrencyPrentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[18] S. Muchnick. Advanced Compiler Design And Implementation
Morgan Kaufmann Publishers, 1997.

[19] G. Necula. Translation validation for an optimizingnapiler. In
PLDI, June 2000.

[20] A. Pnueli, M. Siegel, and E. Singerman. Translatioridatlon. In
TACAS 1998.

[21] William Pugh. The omega test: a fast and practical ieteg
programming algorithm for dependence analystommunications
of the ACM 8:4-13, 1992.

We developed and implemented Parameterized Equivalence [22] Martin Rinard and Darko Marinov. Credible compilationin

Checking (PEC), a technique for automatically proving mfta-

tions correct once and for all. PEC works by proving transfar

tions correct on parameterized programs, thus genergliziavi-

ous translation validation techniques and adapting thepndeide

once and for all correctness proofs. Furthermore, our usexof
pressive many-to-many rewrite rules and a robust proofniecie

enables PEC to automatically prove correct optimizatibashave
been difficult or impossible to prove in previous systems.

References

[1] Nick Benton. Simple relational correctness proofs fatis analyses
and and program transformations. ROPL, 2004.

[2] David Cachera, Thomas Jensen, David Pichardie, and Rlal.
Extracting a data flow analyser in constructive logicEROPR 2004.

[3] Patrick Cousot and Radhia Cousot. Abstract interpi@iatA unified
lattice model for static analysis of programs by constorctor
approximation of fixpoints. I#?OPL, 1977.

[4] Patrick Cousot and Radhia Cousot. Systematic desigmagfram
transformation frameworks by abstract interpretatioP@PL, 2002.

[5] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorenovar
for program checking.Journal of the Association for Computing
Machinery 52(3):365-473, May 2005.

Benjamin Goldberg, Lenore Zuck, and Clark Barrett. Itite loops:
Practical issues in translation validation for optimiziogmpilers.
Electronic Notes in Theoretical Computer Scient82(1):53-71,
May 2005.

[7] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a verified
implementation of SchemeLisp and Symbolic Compucatip8(1-
2):33-110, 1995.

M. Kauffmann and R.S. Boyer. The Boyer-Moore theoremvpro
and its interactive enhancemer@omputers and Mathematics with
Applications 29(2):27-62, 1995.

[6

—_

[8

-

Proceedings of the FLoC Workshop Run-Time Result Verifigati
July 1999.

[23] Martin C. Rinard and Pedro C. Diniz. Commutativity ayss$: a new
analysis framework for parallelizing compilers. Ph.DI, 1996.

[24] Hanan Samet. Proving the correctness of heuristiagtiymized
code.Commun. ACM21(7):570-582, July 1978.

[25] Ganesh Sittampalam, Oege de Moor, and Ken Friis Largetre-
mental execution of transformation specificationsP®PL, 2004.

[26] Bernhard Steffen. Data flow analysis as model checkirg.
Theoretical Aspects of Computer Scigneelume 526 ofLecture
Notes in Computer Sciencpages 346-364. Springer-Verlag,
September 1991.

[27] Steven W. K. Tjiang and John L. Hennessy. Sharlit — a fool
building optimizers. IPLDI, 1992.

[28] Jean-Baptiste Tristan and Xavier Leroy. Verified vatidn of lazy
code motion. IFPOPL, 2008.

[29] Jean-Baptiste Tristan and Xavier Leroy. Formal vesiiion
of translation validators: a case study on instruction dualieg
optimizations. InPLDI, 2009.

[30] Deborah L. Whitfield and Mary Lou Soffa. An approach fapkring
code improving transformation&CM Transactions on Programming
Languages and Systeni®(6):1053-1084, November 1997.

[31] Kwangkeun Yi and Williams Ludwell Harrison 1ll. Autonia
generation and management of interprocedural progranysesl
In POPL, 1993.

[32] William D. Young. A mechanically verified code genenatdournal
of Automated Reasoning(4):493-518, December 1989.

[33] Lenore Zuck, Amir Pnueli, Benjamin Goldberg, Clark Bat,
Yi Fang, and Ying Hu. Translation and run-time validationladp
transformationsForm. Methods Syst. De27(3):335-360, 2005.



