
Peek: A Formally Verified Peephole
Optimization Framework for x86

Eric Mullen
University of Washington

emullen@cs.washington.edu

Zachary Tatlock
University of Washington

ztatlock@cs.washington.edu

Dan Grossman
University of Washington
djg@cs.washington.edu

Abstract
Peek is a first step toward adding support for assembly-level pro-
gram analyses, transformations, and optimizations in CompCert.
Currently, Peek focuses on x86 peephole transformations imple-
mented and verified in Coq. Peek is designed to provide a modular
interface requiring that each peephole optimization satisfy only lo-
cal correctness properties. Our primary result establishes that, as-
suming the C calling convention, any peephole optimization satis-
fying these local properties preserves global program meaning.

1. Overview
The CompCert C compiler [2] has consistently demonstrated in-
credible reliability in practice [1, 4] due to its end-to-end, machine-
checked correctness guarantee. This guarantee ensures that any out-
put assembly program will have the same behavior as the cor-
responding input source program. However, because each trans-
formation must be be proven correct in full formal detail, Com-
pCert currently lacks many common optimizations, especially for
assembly level programs. As a consequence, assembly programs
produced by CompCert are “frozen”: any unverified modification
to such programs invalidates the strong guarantees CompCert pro-
vides.

Low-level transformations are challenging because they must
account for machine-level details such as status flags, the calling
convention, and potential program-counter overflow. Furthermore,
low-level transformations cannot rely on later compiler passes to
clean up, and instruction addresses used in control flow are stored in
the same memory accessed by arbitrary read and write operations.

To explore low-level transformations in CompCert, we are de-
veloping Peek, a framework for reasoning about analyses and opti-
mizations over x86 programs. In this work, we briefly describe the
major components of Peek and how they can be composed to sup-
port an extensible peephole transformation system in CompCert.
Ultimately, we hope to use Peek to build many useful machine-
level extensions such as SIMD support, software fault isolation,
worst-case execution time guarantees, and modern superoptimizer
support. However, while Peek provides a first step in many of these
domains, there are still substantial challenges to address.

Peek comprises four major components: a liveness analysis, a
symbolic evaluator, a representation for peephole optimizations and
their local proofs, and a compiler pass to run such verified peep-
hole optimizations. We discuss the design tradeoffs and verifica-
tion challenges of each component, and report on insights gained
to mitigate the proof burden.

Liveness Analysis. Consider the simple peephole that changes
an addl instruction into leal. This is useful because it can increase
instruction level parallelism, as addl is executed in the ALU while
leal is executed by the memory unit. While these two instructions
make identical changes to all normal program registers, they do

not make identical changes to the CPU flags. Thus if an instruction
reads the flags immediately after this transformation and branches
on flag values, the transformation could change program behavior
and thus be incorrect. However, if we require every peephole to
leave all registers in identical states, almost no traditional peephole
transformations will be verifiable.

Instead of requiring full state equality, Peek requires only that
peepholes preserve the values of live registers. A live register is any
register that could contain a value that might influence program
behavior. To support this notion of peephole correctness, Peek
provides an x86-level liveness analysis over registers.

We built and verified a standard iterative liveness analysis over
CompCert x86 assembly, which produces a function from code
locations to sets of registers. Due to the representation of control
flow, we assume properties about the calling convention, such as
where calls and returns step, and what registers are live across calls
and returns. We define correctness of the liveness analysis as a
relation on states that preserves program behavior. That is, liveness
is correct if any two states that agree on live locations will produce
the same program behavior.

Rewrite. Traditionally, a peephole rewrite is a find pattern and
a replace pattern. The compiler searches out the find pattern, and
replaces it with the replace pattern [3]. Modern compilers typically
include a host of peephole optimizations, as there are many archi-
tectural details that are only exploitable at the assembly level. For
example, comparison elimination, or using the memory unit to per-
form integer addition using leal are examples of common peep-
hole optimizations that are simply not possible since the details that
allow them are both architecture dependent and hidden at higher
levels in the compiler.

In a verified compiler, we must prove that replacing the find
pattern with the replacement code does not change program behav-
ior. In Peek, a rewrite is represented as a dependent record. Cur-
rently, the find and replace patterns are simply lists of concrete
instructions. Similar to traditional peephole rewrites, these specify
the code to find, and the code to replace found code with. Liveness
restrictions in Peek encode assumptions about liveness of registers
at program locations where the rewrite will be valid. These live-
ness restrictions are represented by fields live in, live out, and
pres, which are simply lists of registers assumed to be live on in-
put, guaranteed to be live on output, and “don’t care” respectively.
The first two are liveness information for the rewrite, and the third
is a set of registers that neither list of instructions modifies. The
rewrite record also includes a measure, accompanied by a proof
that it decreases with every step of execution within the find pat-
tern. This guarantees that any execution does not diverge within
the peephole. The rest of the fields are proofs about the data, from
simple facts such as that neither list of instructions is empty, or that

1 2015/9/9



they have the same length1, to richer properties, such as execution
through either list of instructions preserves the values stored in the
registers in pres or that execution through the two different lists
of instructions produces the same values in the live out registers,
given identical starting values in the live in registers.

Symbolic Evaluation. As mentioned earlier, Peek users must
prove that the find and replace patterns preserve program behav-
ior when used as a rewrite rule. We give users the ability to symbol-
ically evaluate snippets of code, in order to let them prove that two
snippets produce the same values for all possible executions. We
expose two main functions: sym exec, which takes a piece of code
and produces a symbolic state, and sstate inst, which takes a
symbolic state and a concrete state, and instantiates the symbolic
state with the concrete state as a seed. The main correctness the-
orem we prove is correspondence of concrete program execution
with symbolic execution followed by instantiation.

In addition, we provide functionality to reason about execution
of instructions that can trap. For example, integer division will
raise an exception if the divisor is zero. We provide a notion of
preconditions on concrete program states, which hold if and only
if a state is able to step through a particular piece of code. In
addition to making the user prove that the find and the replace
pattern generate the same values in the same live registers, we force
the user to prove that the precondition for the find pattern executing
to completion holding implies that the precondition for the replace
pattern holds.

Currently our symbolic evaluator supports only non-jump in-
structions, and does not support any instructions which access
memory. The extension to support memory operations will be easy,
but extending to support jumps will require significant engineering
effort. However, most traditional peephole optimizations are over
straight-line code.

Rewrite Engine. Peek provides a rewrite engine, a compiler
pass to perform a single peephole rewrite on code as it is being com-
piled. Peek matches the find pattern of the rewrite code, checks if
the location is a valid location to perform the rewrite, and performs
the rewrite.

A potential rewrite location is a position in the code where
we’ve found the list of instructions we are looking for, and we
are considering replacing it with our list of instructions we replace
things with. However, we need to know a few more facts about
this location before we can perform the rewrite. We must know
that the set of labels that occur in jumps and labels outside the
rewritten region are entirely distinct from the set of labels that occur
within jumps and labels within the find pattern and the replace
pattern. Finally we must make 3 checks with the calculated liveness
information for the function we are rewriting within:

1. the live in set must be a subset of the actual liveness infor-
mation calculated for the beginning of the potentially rewritten
region.

2. the actual liveness for the exit of the potentially rewritten region
must be a subset of the union of the live out and pres sets.

3. Finally, if a register is in the pres set, it must be either marked
live at both the entry and exit, or at neither the entry nor the exit.

If a location satisfies all of these criteria, it is a proper rewrite
location.

The main proof of correctness for the rewrite engine is the
bisimulation correspondence proof between the original program
and the transformed program. It follows in a style similar to other
parts of CompCert. Our match states relation has 4 constructors,
outside, entry, inside, and external, corresponding to states

1 In practice, the same length restriction can be subverted by inserting or
removing nop instructions

outside the transformed region (or in a function which wasn’t
transformed), states at the entry of a transformed region, states
inside (not at the entry of) a transformed region, and states within
an external function.

Ongoing Work. One of the biggest challenges, establishing that
an assembly program adheres to the C calling convention, is still
unverified. This includes two separate kinds of facts about calls and
returns. First, that all return instructions step to the instruction after
a call, and all calls step to the beginning of a function. Second,
that the callee save registers are the correct liveness information
at a call instruction, and the callee save registers along with any
result register(s) are the correct liveness information at a return
instruction. Note that the calling convention is obeyed for all code
generated by Compcert, but expressing the x86-level invariants and
checking that they hold for an x86 program is non-trivial, but a
necessary (and often unstated) correctness criterion for peephole
optimization. For example, one function invocation doesn’t access
another’s stack frame. We currently state but admit this sort of
information.

Rewrites also must currently specify precisely the operand reg-
isters for each instruction: e.g. we look for addl %eax, %edx, not
for any addl instruction. In the future we hope to parameterize
these and extend the matcher, thus making each transformation ap-
ply more broadly.

Throughout CompCert, there are quite a few languages. The se-
mantics for every langauge within CompCert is defined over the
same values. They are typed values, which are either integers,
longs, pointers, floating point, or undefined. While this is a con-
venient representation for reasoning over C semantics, a bit-based
representation at the assembly level would be useful for two rea-
sons. First, it would more accurately reflect what the processor ac-
tually does, and thus we could have greater confidence in its cor-
rectness. Second, we would be able to verify more peephole opti-
mizations if in the semantics, assembly instructions computed over
untyped bits, instead of typed values. Currently, Peek cannot turn
integer addition of 0 to a register into a nop, since integer addi-
tion of 0 to a floating point value is undef, whereas nop leaves the
floating point value untouched.

The current CompCert x86 semantics is sound but imprecise –
as uncomfortable as it is to “change the semantics” as we grow the
set of peephole optimizations, not doing so is limiting optimization
opportunities that are completely valid

Preliminary Results. We are just starting to implement a set of
peephole optimizations and apply them to benchmarks. On one of
our microbenchmarks, replacement of two leal instructions with
addl instructions yielded a speedup of 1.76x for this benchmark.
Currently, our CompCert pass to apply rewrites does not signifi-
cantly impact CompCert runtime, though we have only run the pass
with a small small set of peepholes to date.

Acknowledgments
This work was supported in part by NSF grant 1219172.

References
[1] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence

modulo inputs. PLDI ’14, 2014.
[2] X. Leroy. Formal certification of a compiler back-end, or: programming

a compiler with a proof assistant. POPL ’06, 2006.
[3] W. M. McKeeman. Peephole optimization. Commun. ACM, July 1965.
[4] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding

bugs in C compilers. PLDI ’11, 2011.

2 2015/9/9


