
99

Functional Programming for Compiling and Decompiling
Computer-Aided Design

CHANDRAKANA NANDI, University of Washinton, USA

JAMES R. WILCOX, University of Washinton, USA

PAVEL PANCHEKHA, University of Washinton, USA

TAYLOR BLAU, University of Washinton, USA

DAN GROSSMAN, University of Washinton, USA

ZACHARY TATLOCK, University of Washinton, USA

Desktop-manufacturing techniques like 3D printing are increasingly popular because they reduce the cost

and complexity of producing customized objects on demand. Unfortunately, the vibrant communities of early

adopters, often referred to as “makers,” are not well-served by currently available software pipelines. Users

today must compose idiosyncratic sequences of tools which are typically repurposed variants of proprietary

software originally designed for expert specialists.

This paper proposes fundamental programming-languages techniques to bring improved rigor, reduced

complexity, and new functionality to the computer-aided design (CAD) software pipeline for applications like

3D-printing. Compositionality, denotational semantics, compiler correctness, and program synthesis all play

key roles in our approach, starting from the perspective that solid geometry is a programming language.

Specifically, we define a purely functional language for CAD called λCAD and a polygon surface-mesh

intermediate representation. We then define denotational semantics of both languages to 3D solids and a

compiler from CAD to mesh accompanied by a proof of semantics preservation. We illustrate the utility of

this foundation by developing a novel synthesis algorithm based on evaluation contexts to “reverse compile”

difficult-to-edit meshes downloaded from online maker communities back to more-editable CAD programs.

All our prototypes have been implemented in OCaml to enable further exploration of functional programming

for desktop manufacturing.

CCS Concepts: • Theory of computation → Program semantics; • Software and its engineering →

Compilers;

Additional Key Words and Phrases: language design, denotational semantics, program synthesis, 3D printing

ACM Reference Format:
Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman, and Zachary Tatlock.

2018. Functional Programming for Compiling and Decompiling Computer-Aided Design. Proc. ACM Program.
Lang. 2, ICFP, Article 99 (September 2018), 31 pages. https://doi.org/10.1145/3236794

1 INTRODUCTION
Democratized computer-aided manufacturing has made available—at modest cost—design and

fabrication capabilities that were previously reserved for large-scale commercial applications.

Authors’ addresses: Chandrakana Nandi, University of Washinton, USA, cnandi@cs.washington.edu; James R. Wilcox,

University of Washinton, USA, jrw12@cs.washington.edu; Pavel Panchekha, University of Washinton, USA, pavpan@cs.

washington.edu; Taylor Blau, University of Washinton, USA, ttaylorr@cs.washington.edu; Dan Grossman, University of

Washinton, USA, djg@cs.washington.edu; Zachary Tatlock, University of Washinton, USA, ztatlock@cs.washington.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART99

https://doi.org/10.1145/3236794

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

https://doi.org/10.1145/3236794
https://doi.org/10.1145/3236794

99:2 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

u

wwwwwwwwwwwwww
v

Diff (

Scale (2.5, 2.5, 1) (
Cylinder(6)

)

Scale (1, 1, 0.9) (
Translate (0, 0, 0.5) (
Cylinder(50)

)

)

)

}

��������������
~

=

A computer-aided design program denotes a geometric object.

Desktop-class 3D printers, laser cutters, and computer numerical control mills affordably enable

educators, hobbyists, and researchers to rapidly prototype designs, manufacture tool parts, and

even create custom prostheses [The Future 2018]. 3D-printers in particular are now standard tools

in maker communities and may some day replace the need for small-scale manufacturing much as

conventional printers fundamentally changed the role of commercial printing shops.

However, despite the wide availability of hardware components at much lower costs than ever

before, the corresponding software pipeline does not sufficiently support even tech-savvy early

adopters. For democratized manufacturing techniques to reach their full potential, makers must be

able to design and manufacture a wide variety of objects on demand.

The current state of tools in this space expects users to compose idiosyncratic CAD packages that

are incompatible and whose interfaces are not clearly specified. Together with the fact that most

of these tools are also proprietary, it makes the design experience for novice users and hobbyists

unnecessarily awkward. The lack of specification also hampers efforts to build other tools that can

make CAD programming more accessible to amateur enthusiasts. For example, it would benefit

users to have tools for debugging their designs before printing to avoid waste of time and material,

optimizing them to find an equivalent but simpler program, doing program analysis to detect

violations of various geometric and physical properties, or synthesizing CAD programs for them

so that they do not have to program from scratch.

This paper takes preliminary steps toward addressing these challenges from a programming-

languages perspective. Our first contribution is based on the insight that the desktop manufacturing

pipeline is inherently compositional and functional in nature. We view this pipeline as a compilation

task by modeling 3D solid geometry as a purely functional programming language equipped with a

natural and tangible denotation to 3D solids. To relate this high-level CAD language to intermediate

mesh representations, we formalize the popular STL mesh format [Grimm 2004] as a low-level

language and define a meaning-preserving compiler from CAD programs to meshes. We have

designed and implemented a prototype of our declarative CAD language called λCAD that supports

3D primitives such as cubes, spheres, and cylinders; affine transformations such as translation,

scaling, and rotation; and binary or constructive solid geometry (CSG) operations such as difference,

intersection, and union. λCAD also supports standard functional features such as let bindings,

functions, recursion, and conditionals.

Having developed this foundation, we define compiler correctness in terms of solid geometry, and

provide a proof that our compiler is correct under this definition. Our approach toward formalizing

CAD and STL then leads to the other main contribution in this paper—the first synthesis algorithm

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:3

to our knowledge that converts meshes back into CAD programs, which we view as a reverse

compilation task. Given a surface mesh, our algorithm finds a CAD program, which, when compiled,

gives that mesh.

It turns out that reverse compilation may have the potential to solve a key problem for the

current state of the 3D-printer enthusiast community: Many hobbyists and makers lack the requisite

expertise to translate their ideas into CAD programs from scratch. To overcome this barrier, they

often download and print existing designs from online communities [GrabCAD 2018; Thingiverse

2018b] where experts share their work freely. These repositories distribute designs as polygon
meshes instead of CAD programs because CAD does not have standardized representations, so

meshes, in the standard STL format, are the cross-platform distribution language. However, users

are rarely able to customize designs shared as meshes [Alcock et al. 2016; Hudson et al. 2016]. Mesh

modification tools [Meshmixer 2018] are useful for only some types of low-level modifications, and

even then are difficult to use because they can easily break the model, thus making it invalid and

unprintable. In large part, this is because mesh models have had all high-level design information

“compiled away,” analogous to how program binaries have had high-level operations compiled

down to primitive machine operations.

Reverse compilation extracts high-level structural information from the design that enables

rich edits to the design, which would otherwise require tedious low-level edits directly on the

surface mesh. Our algorithm combines basic computational geometry with program synthesis to

elegantly search the space of possible CAD programs. It repurposes the traditional PL machinery of

evaluation contexts to guide the search of the synthesis algorithm toward the lowest-cost (ideally,

the most “human-editable”) CAD program.

We have implemented the synthesis algorithm in a prototype tool called ReIncarnate. We detail

three case studies that demonstrate our approach on samples selected from Thingiverse. They cover

three popular applications of desktop 3D printing: machine tools, household objects, and aesthetic

items designed by hobbyists. We give examples of modifications that are intractable to make in

mesh models but become simple at the CAD level.

Our implementation of the compiler and synthesis prototypes consists of about 20000 LOC of

OCaml
1
. As Section 4.3 describes, we leverage several features of OCaml to achieve simplicity and

modularity, while also laying the groundwork for further evaluation such as differential testing.

Ultimately, our vision is to use tools and techniques from functional programming to build a

new generation of tools that can enable non-expert end users to effectively work with desktop

manufacturing devices. This paper presents a first step in that direction by laying the programming

languages foundation necessary to approach the problem in a rigorous and principled way.

The rest of the paper is organized as follows: Section 2 presents a brief overview of 3D printing,

which is one of the most popular desktop class manufacturing techniques and the primary

motivation behind our synthesis tool. Section 3 describes a model of CAD programming as a

purely functional programming language equipped with a denotation to 3D solids. It also presents

a formalism of triangular polygon meshes along with a denotation to 3D solids. Section 4 presents

a meaning-preserving compilation algorithm from CAD to STL and a proof sketch for compiler

correctness. Section 5 presents our synthesis algorithm for reverse compiling STL to CAD, along

with a definition and proof of correctness which introduces the technique of “geometric oracles” to

reason about the algorithm. Section 6 presents a set of case studies demonstrating the feasibility of

these ideas by synthesizing editable CAD from unstructured STL objects selected from Thingiverse.

Section 8 describes key areas for future work. Section 9 concludes.

1
Our tool is available here: http://incarnate.uwplse.org/

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:4 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

Idea/spec

G-code

1. Design

2. Compile

to mesh 3. Slice

4. Compile

to G-code 5. Print

6. Iterate

Fig. 1. 3D printing workflow depicting the 6 steps described in Section 2.1.

2 3D PRINTING BACKGROUND ANDMOTIVATION
Among various desktop-class manufacturing devices, 3D printers are the most widely adopted

due partly to the fact that they are relatively safer to use compared to desktop versions of other

devices such as laser cutters and CNC mills. Figure 1 shows a 3D printing workflow, which typically

comprises six steps: (1) design, (2) compile to mesh, (3) slice, (4) compile to G-code, (5) print, and

(6) iterate.

2.1 3D printing as Compilation
Just as programmers rarely write assembly directly, users of 3D printers do not write direct

instructions for the motors. They instead produce them via compilation from a high-level design

based on a specification or idea, created in a computer-aided design (CAD) software such as

OpenSCAD [OpenSCAD 2018], Rhino [Rhinoceros 2018], or SketchUp [SketchUp 2018]. This

compilation process is complex and, similar to classical compilers, typically proceeds through a

sequence of intermediate languages that we now describe.

After designing a model, the next step is to compile it to a surface mesh representation. A surface

mesh is a triangulation of the surface of the 3D object represented by the design. The third step

slices the mesh into 2D layers that are stacked on top of each other during the printing phase.

The next step generates G-code, which is similar to assembly-level instructions for manufacturing

devices [Smid 2003]. The G-code is then interpreted by printer firmware to control the print (much

as Postscript can be sent directly to many 2D printers).

In most desktop-class 3D printers, a spool feeds filament (typically a plastic) into an extruder,
which heats and melts the filament before extruding it through a nozzle onto a print bed. It is this
extruder that is controlled by the G-code, via low-level commands that actuate stepper motors to

move the print head in any of three dimensions.

After completing the printing step, the user compares the output with the original specification

and decides to either iterate over the above steps or terminate the process. Designing a CAD model

is analogous to writing a program in a high level programming language. Converting it to a 3D

mesh is similar to an intermediate representation. Slicing it and generating G-code is analogous to

generating assembly. Viewing this workflow as a compiler has multiple advantages. It brings the

formalisms of programming languages theory to bear, which in turn helps in reasoning about the

correctness of the pipeline. It also supports the implementation of additional tools that can make

these systems more accessible to end users (see Section 2.2).

2.2 Synthesis Example
Consider the model of a hexagonal candle holder from Thingiverse [Thingiverse 2018a] shown in

Figure 2a. Like most models shared in online repositories, it is shared as a mesh. (Figure 2b shows

the rendering of the mesh.) Figure 2c shows a very small snippet from the mesh showing just one

face and its normal direction vector. The full mesh is made of 548 triangular faces and is about 4000

lines long in the STL format. This vast sea of triangle vertices does not explicitly convey structural

information about the object’s shape.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:5

(a) Candle holder. (b) Rendered mesh.

facet normal 0.866025 0.5 0
outer loop

vertex 1.0 0.0 1
vertex 0.5 0.866025 0
vertex 0.5 0.866025 1

endloop
endfacet

(c) Snippet from the STL mesh.

Fig. 2. Candle holder from Thingiverse [Thingiverse 2018a] after printing, a 3D rendering of its STL mesh,
and a snippet from the STL mesh showing one triangular face. Each face is represented by three vertices and
a normal vector that points outward from the 3D object.

Diff (

Scale (4.0, 4.0, 2.0) (
Cylinder(6)

)

Scale (2.0, 2.0, 3.0) (
Translate (0, 0, 0.3) (
Cylinder(50)

)

)

)

(a) λCAD program for candle holder.

Diff (

Scale (4.0, 4.0, 2.0) (
Cylinder(6)

)

Scale (2.5, 2.5, 3.5) (
Translate (0, 0, 0.3) (

Cylinder(50)
)

)

)

(b) Edited λCAD program in blue.

Fig. 3. λCAD program for the hexagonal candle holder in Figure 2, and example of a modification that changes
the dimension of the hole (in blue). The hexagonal outer part is represented by Cylinder(6) (a cylindrical
prism with 6 sides), and the hole is represented by Cylinder(50) (approximation of a cylinder using
50 sides). As shown, in λCAD this edit is done by changing the scaling factor for the cylindrical hole.

A user may want to make different modifications to the model. For example, they may wish

to (1) change the depth/width of the candle hole, (2) tilt the hole (to make a holder for other

items), (3) change the shape of the hole from a cylinder to a star-like prism or a cuboid, or (4)

make a larger holder for two candles by combining two copies of the object. Making these edits

to the mesh is non-trivial because the user must maintain certain geometric well-formedness

constraints in order to ensure that the model is printable. On the other hand, having access to a

higher-level representation of the model that contains more structural information such as any

CAD representation would make these tasks quite easy. Figure 3a shows the code for this model in

our language, λCAD. It shows that to make this model, one can create a 6-sided prism primitive

(Cylinder(6)) and subtract a (high-degree approximation of a) cylindrical hole (Cylinder(50))
from its center. With access to this program, editing it is straightforward. Figure 3b shows a

modification to the model that changes the dimensions of the hole; an example of a modification

requested by a user on the Thingiverse website [Thingiverse 2018a].

To summarize, (1) designing 3D models in CAD from scratch is difficult but editing an existing

CAD program is relatively easy, and, (2) sharing models in a standardized mesh format makes them

more accessible to users but editing them is difficult and even impossible in some cases. Based on

these two observations, we came up with an alternate strategy that has the best of both worlds: We

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:6 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

C ::= Mesh M
| Empty
| Cube
| Cylinder N
| . . .

| Affine R3x3 R3 C
| Binop op C C

M ::= (R3,R3,R3)*

op ::= Union
| Inter
| Diff

J Mesh m K = Jm K

J Empty K = {}

J Cube K = (0, 1)3

J Affine p q c K = {pv + q | v ∈ J c K}

J Binop o c1 c2 K = J c1 K Jo K J c2 K

J Union K = ∪ J Inter K = ∩ J Diff K = \

Fig. 4. CAD syntax and semantics. CAD programs denote to regular open sets in R3. Affine transformations
are given by an invertible 3× 3matrix and translation vector. Binary operators denote to set operations. Mesh
denotation is detailed below.

describe the first synthesis algorithm (Section 5) that automatically finds a CAD program from a

surface mesh. This approach gives the users a high level CAD program to get started with, prevents

them from having to make tedious mesh modifications while still allowing them to download mesh

models from the internet.

3 FORMALIZING CAD ANDMESH
CAD and mesh can be viewed as two fundamentally different ways of representing an object

in 3D space. While CAD representations are based on solid geometry, mesh representations are

based on surface geometry. Any translation between these two conceptually different approaches

requires finding a way to map the concepts from one to the other. To that end, this section presents

the syntax and denotational semantics for two languages for 3D modeling, λCAD, a high-level
functional programming language, and Mesh, an intermediate surface representation based on

industry-standard formats.

3.1 λCAD Language
We designed and implemented λCAD, a functional programming language with primitives for

representing and manipulating geometric objects. Since the other features are standard, this section

focuses on the syntax and semantics of the geometric fragment of the language.

Figure 4 shows the syntax of the geometric core of λCAD. It supports (1) 3D primitives such

as Cube and Cylinder , (2) affine transformations such as translation (Translate), rotation about

X, Y, and Z axes (RotateX , RotateY , RotateZ), uniform and non-uniform scaling (Scale), and, (3)
set-theoretic operations: Union, Difference, and Intersection. The primitives represent 3D shapes

with unit measures. For example, Cube has all sides of unit length and the bottom left corner at the

origin, (0, 0, 0). Cylinder(n) is an n-sided prism with unit radius and height whose base is centered

at the origin. Note that, as presented, all primitive objects are piecewise linear, thus requiring

curves to be approximated. Truly curved primitives are interesting and possible, but complicate

the semantics, compilation, and synthesis approaches discussed in this paper. The possibility of

developing a compositional notion of equality between piecewise-linear approximations to curves

in a way that supports correctness proofs for compilation and synthesis is a significant challenge

left for future work. In this paper, we represent curves using approximations—for example, to

represent a cylinder we set n = 50 in Cylinder(n). All the affine transformations are represented

using an invertible 3 × 3 matrix and a 3D vector in the core CAD syntax in Figure 4. λCAD also

supports user-provided raw meshes using the Mesh construct.

Figure 4 describes a denotational semantics for CAD that maps each object to the set of 3D points

inside it. The primitive Empty maps to the empty set, while Cube maps to the set of all points whose

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:7

x, y, z ∈ R

pt ∈ point
::= (x, y, z)

f ∈ Face
::= (pt, pt, pt)

m ∈ Mesh
::= f *

(a) Syntax of Mesh.

r ∈ R
d ∈ Direction
d ::= (r , r , r)
h ∈ HalfLine
h ::= (pt,d)

Midpoint : Face → point
Norm : Mesh × Face → {L,R}

On : Mesh × Face → bool

(b) Mesh functions used in the compiler (Figure 9).

Fig. 5. Syntax and auxiliary definitions for mesh. In Figure 5b, Midpoint is the centroid of a face. A point is
On a face if it is coplanar with the face, and is in the interior of the face or on one of its edges.

x , y, and z values lie in (0, 1). Other primitives are similarly straightforward. Affine transformations

are denoted by applying the transformation to every point in the denotation of e . The denotation
of Union (e1, e2) is the union of the denotations of e1 and e2. Intersection and difference are similar.

3.2 Surface Mesh
A surface polygon mesh is a geometric representation of the surface of an object in 3D space using

vertices, edges, and faces. The faces of a mesh are typically convex polygons. In this paper, we

formalize triangular meshes as shown in Figure 5a. A mesh is a list of faces, each of which is a

triangle represented by its three vertices. This simple and flat representation is as expressive as

other representations [Grimm 2004] yet serves as a high-level executable specification, which could

be used, for example, to differentially test against more sophisticated implementations such as STL

and OFF [Grimm 2004; OFF 2018]. Section 3.2.2 describes how we use normals to determine which

side of a triangular face is inside/outside a 3D object.

3.2.1 Valid Mesh. In order for a 3D CAD model to be printable, the mesh should be valid. Invalid
meshes can have a variety of problems such as zero volume, holes, and dangling faces, which make

them unfit for printing. A valid 3D mesh is one that satisfies the following invariants:

• no overlapping or intersecting faces

• no edges that occur in an odd number of faces

• not open, i.e. should not have holes (or missing faces). This happens if an edge is on an odd

number of faces.

Figure 6 shows 2D analogues of some invalid meshes. We use 2D in the figure for simpler

visualization. In 2D, the faces are segments instead of triangular planes. The analogue of edges in
2D are the vertices. The first figure in Figure 6 shows a 2D mesh that is open. This can happen

when a vertex appears in an odd number of segments. The second figure is another example of an

invalid mesh with a lone face. The 3D analogue of this is a mesh with an extra triangular face. The

third figure is an example of a mesh with zero area. An example of this in 3D would be a mesh

with just one triangular face, which would have zero volume.

3.2.2 Sides of a Mesh. Knowing the vertices of the faces of a mesh is not sufficient to determine

the “inside” and “outside” of the shape. This information is given by normal vectors for each face of

a mesh, which are unit vectors orthogonal to the face that point toward the outside of the shape. We

use L (left) and R (right) to indicate the two possible directions for normals (Figure 5b), depending

on whether the left-hand or right-hand rule should be used on the given face. Typical industrial

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:8 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

(a) 2D model with missing face. (b) 2D model with extra face. (c) Flat 2D model with zero area

Fig. 6. Analogues of ill-formed meshes in 2D (used for simpler visualization). A 2D face is a line segment
whereas a 3D face is a triangular plane. Thus, a missing face in 3D would be a missing triangle, an extra face
would be an extra triangle, and a mesh with zero volume would be a plane.

formats store normal vectors in the representation of each face [Grimm 2004], but for conceptual

parsimony, we instead compute normals as required using global properties of the mesh.

Specifically, in a valid mesh, the normal vectors can be computed once we have a way of

determining whether a point is inside or outside the mesh. For this, we use the well-known method

of casting rays [de Berg 1997]. A ray, or halfline, h is represented by a starting point, pt and a

direction, d , as shown in Figure 5b. A point is inside a 3D mesh if there is a good halfline starting at

the point that crosses an odd number of faces of the mesh (Figure 7). A good halfline is one that

does not intersect the mesh at its vertices or edges. An important result is that many good halflines

exist for any point not on the boundary of the mesh (Theorem 1).

Theorem 1. For any valid meshm and point pt not on the boundary ofm, almost all directions d
result in good halflines (that is, all directions outside a set of measure 0 result in good halflines).

Proof. The edges and vertices ofm, when projected onto a unit sphere around pt, form a set of

measure 0. Any direction d on the sphere outside of this set forms a good halfline for pt. □

It is also essential that the choice of halfline does not matter in a valid mesh (Theorem 2).

Theorem 2. For any valid meshm, point pt not on any face ofm, and good halflines h1 and h2
each starting at pt, the halfline h1 intersectsm an odd number of times if and only if h2 intersects
m an odd number of times.

Proof. First, note that there exists a plane containing h1 and h2. The intersection of this plane

and the mesh is a simple 2D polygonm2 (the mesh is valid so faces do not intersect) containing pt
(since both h1 and h2 contain pt). We must show that h1 and h2 intersectm2 with equal parity. As

shown by, for example, Hormann and Agathos [Hormann and Agathos 2001], this parity is equal

to a formula over the angles betweenm2’s edges, and must thus be the same for h1 and h2. □

We can now compute normals for a face using any test point pt in the interior of f (we use

Midpoint(f) in our implementation). Consider any good halfline h for pt. If h crossesm an odd

number of times, then h lies on the same side of f as the outward-facing normal. Otherwise, it is

on the opposite side.

This technique also determines a denotational semantics for meshes that denotes a mesh to the

set of points inside it, thus enabling easy comparison with the denotation of CAD objects. Figure 7

defines this semantics based on face and halfline intersection. The intersection of a face and a

halfline can have three outcomes: (1) None indicates that the face and the halfline do not intersect

at any point, (2) InteriorPt indicates that the halfline goes through the face at exactly one point

in its interior, and (3) Other indicates all other possible interactions of a face and a halfline: they

are coplanar and the halfline goes through an edge or a vertex of the face. InsideVia(m, pt, d)
is a predicate that defines when pt is inside the mesh m: if there exists a direction d, such that for

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:9

intersect : Face × HalfLine → {None, InteriorPt,Other}

InsideVia(m, pt,d) : Mesh × point × Direction → bool
InsideVia(m, pt,d) = let h = (pt,d) in

{ f | f ∈m ∧ intersect(f ,h) = Other} = ∅

∧ |{ f | f ∈m ∧ intersect(f ,h) = InteriorPt}| mod 2 = 1

J · K : Mesh → P(point)
Jm K = {pt | ∃d . InsideVia(m, pt,d)}

Fig. 7. Semantics of Mesh using intersection of faces with halflines (rays).

the halfline h = (pt, d), (1) there is no face in m that results in an Other intersection with h, and
(2) h crosses the mesh at an odd number of faces, then pt is inside the mesh, m.

4 3D PRINTING AS COMPILATION
This section presents a meaning-preserving compiler that generates a triangular mesh from λCAD.
The compiler’s specification is given in terms of the geometric denotational semantics of the source

and target languages. The straightforward compilation algorithm described here is used in some

form or another in all industrial CAD tools. Our contributions are (1) to formalize it in terms of

structural recursion and denotational semantics, which enables (2) a proof of correctness.

Figure 9 defines the compiler as a recursive function on the syntax of the CAD program. The

output of compiling a Mesh m construct is the underlying mesh,m. Compiling an Empty CAD

model simply generates an empty mesh. The mesh for Cube is as defined in Figure 9. Since we use

pre-defined meshes to approximate curves in this paper, the output of compiling them is simply

the corresponding pre-defined mesh. For affine transformations, the compiler generates the mesh

by applying the transformation to the result of the recursive call.

4.1 Compiling CSG Operations and Mesh Splitting
To translate the set-theoretic binary operations, the compiler uses corresponding functions on

meshes, mBop(Union)(m1,m2), mBop(Difference)(m1,m2), and mBop(Intersection)(m1,m2), shown

in Figure 9. These operations are non-trivial for overlapping meshes, since the faces of the resulting

mesh are a complex subset of a refinement of both input meshes. If two input faces overlap, then

some parts of each face may be discarded in the output, while other parts remain. Care is required

to preserve the mesh invariants defined in Section 3.2.1.

The set-theoretic mesh operations first split the input meshes, defined by the relation split (used

in Figure 9) that takes two potentially intersecting meshes and returns two equivalent meshes

that intersection only at vertices and edges. The operation split preserves the semantics of the

meshes, as proved in Theorem 4. The functions mBop(Union)(m1,m2), mBop(Difference)(m1,m2),

and mBop(Intersection)(m1,m2) then determine which faces from the split meshesm′
1
andm′

2
should

be kept in the final mesh and which ones should be discarded.

mBop(Union)(m′
1
,m′

2
) keeps faces from m′

1
that are outside m′

2
as well as faces from m′

2
that

are outsidem′
1
. For faces fromm′

1
that are also onm′

2
(on is defined in Figure 5b), if the face has

the same normal, then it is kept, otherwise it is discarded. This is illustrated (in 2D) in Figure 8.

mBop(Difference)(m′
1
,m′

2
) keeps faces fromm′

1
that are outsidem′

2
, faces fromm′

2
that are insidem′

1
.

For faces fromm′
1
that are also onm′

2
, if the face has the same normal (L or R), then it is discarded,

otherwise it is kept. mBop(Intersection)(m′
1
,m′

2
) keeps faces fromm′

1
that are insidem′

2
, faces from

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:10 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

∪ =

(a) Keeping a common edge during mesh union.

∪ =

(b) Removing a common edge during mesh union.

Fig. 8. Examples (in 2D) demonstrating when common faces are retained or removed by mBop(Union).

m′
2
that are insidem′

1
. For faces fromm′

1
that are also onm′

2
, if the face has the same normal (L or

R), then it is kept, otherwise it is discarded.

Definition 3. If fi is a face on m1 that overlaps with some face on m2, split splits fi in to

fi1, fi2, ..., fin such that

n⋃
j=1

fi j = fi and

n⋂
j=1

fi j = ∅.

Theorem 4 (Mesh splitting correctness). Given two valid meshes,m1 andm2, split (m1,m2,m
′
1
,m′

2
)

is a relation such that:

Jm1 K = Jm′
1
K and Jm2 K = Jm′

2
K

Proof. We prove Jm1 K = Jm′
1
K; the proof for the second part is similar. Let pt be an arbitrary

point. We show pt ∈ Jm1 K ⇐⇒ pt ∈ Jm′
1
K. Consider any halfline h that is good for pt andm′

1

(such a halfline exists by Theorem 1), and consider the points of intersection between h and the

two meshesm1 andm
′
1
. By definition, split ensures that the intersection of split faces are disjoint,

so each point of intersection between h andm1 lies on exactly one face ofm′
1
. Conversely, split also

ensures that the union of split faces give the original face, so each intersection point between h
andm′

1
also lies on a face ofm1. Thus the intersection points along h are exactly the same form1

andm′
1
. □

4.2 Compiler Correctness
Our definition of compiler correctness is based on the denotational semantics we described in

Section 3. Specifically, we prove that the compiler returns a mesh with the same denotation as

the input CAD program. For binary operations, we provide the proof for union. The cases for

intersection and difference are similar and hence omitted.

Theorem 5 (Compiler correctness). For all CAD expressions e , J compile(e) K = J e K.

Proof. By induction on e . We show a few representative cases.

Case Empty:

J compile(Empty) K = J [] K By definition of compile().
= ∅ By definition of mesh J K.
= J Empty K By definition of CAD J K.

Case Cube:

J compile(Cube) K = Jmcube K By definition of compile().
= J Cube K By Lemma 6.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:11

compile(Mesh m) =m, compile(Empty) = [], compile(Cube) =mcube

C2 = [((0, 0), (1, 0), (1, 1)), ((0, 0), (0, 1), (1, 1))]

mcube = [f (j,C2) | f ∈ [ix , iy , iz], j ∈ [0, 1]]

ix , iy , iz : R2 → R3

ix (x0, (a,b)) = (x0,a,b)

iy (y0, (a,b)) = (a,y0,b)

iz (z0, (a,b)) = (a,b, z0)

compile(Affine p q c) = mapvertex (λv . pv + q) (compile(c))

compile(Binop o c1 c2) = mBop(o)(compile(c1), compile(c2))

mBop(Union)(m1,m2) = letm′
1
,m′

2
s.t., split (m1,m2,m

′
1
,m′

2
) in

[f ∈m′
1
| ∄d . InsideVia(m′

2
,Midpoint(f),d)] ++

[f ∈m′
2
| ∄d . InsideVia(m′

1
,Midpoint(f),d)] ++

[f ∈m′
1
| On(m′

2
, f) ∧ Norm(m′

1
, f) = Norm(m′

2
, f)]

mBop(Difference)(m1,m2) = letm′
1
,m′

2
s.t., split (m1,m2,m

′
1
,m′

2
) in

[f ∈m′
1
| ∄d . InsideVia(m′

2
,Midpoint(f),d)] ++

[f ∈m′
2
| ∃d . InsideVia(m′

1
,Midpoint(f),d)] ++

[f ∈m′
1
| On(m′

2
, f) ∧ Norm(m′

1
, f) , Norm(m′

2
, f)]

mBop(Intersection)(m1,m2) = letm′
1
,m′

2
s.t., split (m1,m2,m

′
1
,m′

2
) in

[f ∈m′
1
| ∃d . InsideVia(m′

2
,Midpoint(f),d)] ++

[f ∈m′
2
| ∃d . InsideVia(m′

1
,Midpoint(f),d)] ++

[f ∈m′
1
| On(m′

2
, f) ∧ Norm(m′

1
, f) = Norm(m′

2
, f)]

Fig. 9. Representative cases of CAD-to-Mesh compiler. Midpoint, On and Norm are as defined in Figure 5b.

Case Affine p q e ′: Letm′
represent compile(e ′).

J compile(Affine p q e ′) K = J mapvertex (λv . pv + q) (m
′) K By definition of compile().

= {pv + q | v ∈ Jm′ K} By Lemma 7.

= {pv + q | v ∈ J e ′ K} By induction hypothesis.

= J Affine p q e ′ K By definition of CAD J K.

Case Union e1 e2: Letm1,m2 represent compile(e1) and compile(e2) respectively.

J compile(Binop Union e1 e2) K = J mBop(Union)(m1,m2) K By definition of compile().
= Jm1 K ∪ Jm2 K By Lemma 8.

= J e1 K ∪ J e2 K By induction hypothesis.

= J Union e1 e2 K By definition of CAD J K.
□

Lemma 6. Jmcube K = JCube K

Proof. (⊆) Suppose pt ∈ Jmcube K. Then there exists d such that InsideVia(m, pt,d). Let h be

the half-line from pt in direction d . Sincemcube is convex, there is exactly one face through

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:12 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

pt

h

(a) Before

pt

h

(b) After

Fig. 10. Examples demonstrating (in 2D) several cases in the proof of Lemma 8.

which h passes. Let f0 be this unique face and consider the intersection of f0 and h. Since h
intersectsmcube exactly once, h must leave the cube at f0. So just before leaving the cube at

f0, h is inside the cube. Unless pt ∈ Cube, h would leave the cube again.

(⊇) Suppose pt ∈ J Cube K. If pt is on the boundary of Cube, say on face f , then let d be the

outward-facing normal of f , so that h = (pt,d) intersectsmcube exactly once. On the other

hand, suppose pt is in the interior of Cube. Then choose d = (0, 0, 1), somewhat arbitrarily.

Again, h = (pt,d) intersectsmcube exactly once.

□

Lemma 7. For all meshesm and invertible affine transformations given by p and q,

{pv + q | v ∈ Jm K} = J mapvertex (λv . pv + q)m K.

Proof. Let pt be arbitrary.

pt ∈ {pv + q | v ∈ Jm K} ⇐⇒ p−1(pt − q) ∈ Jm K
⇐⇒ ∃d . InsideVia(m,p−1(pt − q),d)
⇐⇒ ∃d ′. InsideVia(mapvertex (λv . pv + q)m, pt,d ′)

⇐⇒ pt ∈ J mapvertex (λv . pv + q)m K
□

Lemma 8. For all meshesm1 andm2,

J mBop(Union)(m1,m2) K = Jm1 K ∪ Jm2 K.

Proof. Letm3 = mBop(Union)(m1,m2) and let pt be an arbitrary point. We show pt ∈m3 ⇐⇒

pt ∈ Jm1 K ∨ pt ∈ Jm2 K. Consider a ray h that intersects only interior points of the faces ofm1

andm2 (and thus also ofm3). It suffices to show that h crosses an odd number of faces inm3 iff it

crosses an odd number of faces ofm1 or an odd number of faces ofm2.

Subdivide h into n contiguous regions hi , separated by h’s intersections withm1 andm2, which

we call crossing points. The first region, h0, starts at infinity and proceeds to the first crossing point.

Each subsequent pair of regions is divided by a crossing point on the face of one or several ofm1,

m2, andm3. These crossing points are not considered to be included in any regions. Finally, the

region hn−1 ends at pt, which is considered a part of that region, since it is not itself a crossing

point.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:13

Sincem1 andm2 are split, each hi is entirely inside or outside ofm1 andm2. Since each face of

m3 is a face of eitherm1 orm2, each region hi is also entirely inside or outside ofm3. We now show

that hi is insidem3 iff it is insidem1 or insidem2. We proceed by induction on i:

Case i = 0: The statement follows since h0 is the infinitely long region, which lies outside all

three meshes.

Case i + 1: Consider the crossing that happens between hi and hi+1. There are 16 cases in total,

depending on whether hi and hi+1 lie inside or outside ofm1 andm2. We illustrate four typical

cases. A 2D example is described in Figure 10.

Case hi outsidem1 andm2; hi+1 insidem1 but outsidem2: Consider the face f that divides

hi andhi+1. The case hypothesis implies that f is a face ofm1 but notm2. This further means

that f is entirely outside ofm2, and so f is also a face ofm3 by definition of mBop(Union).
Thus h also crossesm3 at f , and so hi+1 is insidem3.

Case hi insidem1 but outsidem2; hi+1 inside bothm1 andm2: The crossing face f is a face

ofm2, which is entirely insidem1, and thus not included inm3. Inductively, hi is insidem3,

and since f is not inm3, hi+1 is also insidem3.

Case hi inside bothm1 andm2; hi+1 outside bothm1 andm2: The crossing face f is a face of

bothm1 andm2, and f ’s normals with respect to each mesh point in the same direction.

Further, these normals are on the same side of f as pt. Thus f is a face ofm3. Inductively,

hi is inm3, and so it crosses out ofm3 for hi+1.
Case hi insidem1 but outsidem2; hi+1 insidem2 but outsidem1: The crossing face f is a face

of bothm1 andm2, but the normals point in opposite directions. Inm1, the outward normal

is on the same side as pt, while form2 it is on the opposite side. Thus, no copy of the face

appears inm3. Inductively, hi is inm3, and since the crossing face is not inm3, hi+1 is as
well.

The remaining cases are similar.

□

4.3 Implementation and Challenges
Implementing the CAD compiler required several nontrivial computational geometry routines,

which involved issues from 3D geometry as well as numerical computing. This section describes

some design decisions targeted at reducing the burden of implementing the compiler.

4.3.1 1D→ 3D. Problems that arise in 3D geometry often have analogous problems in lower

dimension. Understanding which parts of the problem cut across all dimensions versus those that

arise only in 3D helped us develop clean solutions that are as dimension-agnostic as possible. To

that end, we first implemented a 1D CAD compiler, then moved on to 2D and finally to 3D. λCAD
supports all three dimensions. An example of a dimension agnostic concept in our compiler is

the technique for compiling CSG operations in Section 4.1. On the other hand, the technique for

finding the intersection of a face and a halfline in Section 3.2.2 is a geometric operation, which is

more complex in 3D where faces are triangular planes and halflines are 3D rays than in 2D where

faces are 2D segments and halflines are 2D rays.

1-dimensional CAD. : 1D CAD objects are simply line segments represented by 1D end points. The

only affine transformations in 1D are translation and scaling. The binary set-theoretic operations

are analogous in all dimensions. A 1D CAD compiler compiles a 1D CAD program to generate a

1D mesh. Figure 11 shows a 1D CAD program and the corresponding mesh. Segment represents a
unit segment starting at 0 and ending at 1. A face of a 1D mesh is merely a 1D point. As explained

in section 3.2, a valid 1D mesh should not have repeating faces or odd number of faces.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:14 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

1D 2D 3D

Translate (5)
(Scale (7) Segment)

Union
Square
(Translate (−0.5,−0.5) Square)

Union
Cube
(Translate (0, 0.5, 0.5) Cube)

Fig. 11. Examples of 1D, 2D, 3D CADs and meshes. In order to keep the figures simple, the axes are not shown
to intersect at the origin.

2-dimensional CAD. : 2D CAD objects include rectangles, squares, circles, triangles etc. In 2D,

affine transformations include those from 1D (i.e. translation and scaling, but with 2D vectors)

together with rotations about the origin. A 2D mesh consists of faces that are line segments ending

in vertices. Figure 11 shows a 2D CAD program and the mesh generated by our compiler.

3-dimensional CAD. : In 3D, rotations about many different axes are possible. In our implementa-

tion, we provide convenient syntax for rotating about the coordinate axes, rotateX, rotateY,
rotateZ. Translation and scaling are obviously possible, but using 3D vectors. Figure 11 shows a

3D CAD program and the corresponding triangular mesh.

4.3.2 Fully Functorial Design. We designed our compiler infrastructure in a hierarchical manner

using a fully functorial approach which allows us to swap out components of the compiler with

other implementations. OCaml’s module system facilitated this design decision. This is particu-

larly useful for differential testing our compiler against other solid geometry based tools such

as OpenSCAD [OpenSCAD 2018], swapping our geometry module with another computational

geometry library for comparison, and in tackling numerical issues. The geometric functionalities

in our compiler and synthesis implementation are conceptually designed to execute using real

numbers. Since reals are only approximated by floating point numbers, running these routines

using floating point often leads to rounding errors due to semantic mismatch between floats and

reals, and undecidable branching. We implemented several number systems with varying levels

of accuracy and were able to use them interchangeably as and when required. All modules are

functorized over a number system, whose signature contains basic arithmetic, square root, and

trigonometric operations. We have implemented this signature using floating points, arbitrary pre-

cision number systems such as MPFR [Fousse et al. 2007; Zimmermann 2010], and exact arithmetic

(see Section 8.1).

5 SYNTHESIZING EDITABLE CAD BY REVERSE COMPILATION
To demonstrate how the foundations established in previous sections can help develop better tools

for desktop-manufacturing users, we describe a novel algorithm for “reverse compiling” meshes to

CAD programs that recaptures the high-level structure of a design. In this section we show how

our CAD and mesh formalizations suggest a natural search strategy for synthesis. In Section 6

we detail case studies that demonstrate the promise of this approach: once meshes are reverse

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:15

Mesh

synth

Diff (
Scale (2, 2, 2) (
Cylinder(6)

)

Cylinder(50)
)

edit

Diff (
Scale (2, 2, 2) (
Cylinder(3)

)

Cylinder(50)
)

print

Fig. 12. Synthesis workflow: starting with a mesh for a 3D model, our synthesis tool can reverse engineer a
CAD program, which can be easily edited to get a different 3D model.

E ::= [·] | Affine R3×3 R3 E | Binop op E C | Binop op (Mesh m) E

S ::= A | Binop (Union | Diff) S S A ::= P | Affine R3×3 R3 A P ::= Cube | Cylinder N | . . .

c →p c
′

E[c] →c E[c
′] Cube →p Mesh mcube

mapvertex (λv . pv + q)m =m
′

Affine p q (Mesh m) →p Mesh m′

mBop(o)(m1, m2) =m
′

Binop o (Mesh m1) (Mesh m2) →p Mesh m′

m →Ω c

E[Mesh m] →s E[c]

p ∈ Ωprim(m)

Mesh m →Ω p

(m1,m2) ∈ Ωadd(m)

Mesh m →Ω Binop Union (Mesh m1) (Mesh m2)

(m1,m2) ∈ Ωsub(m)

Mesh m →Ω Binop Diff (Mesh m1) (Mesh m2)

Fig. 13. Representative cases of small step CAD compilation (→c , left) and synthesis (→s , right) with
evaluation contexts and synthesis target language (E, S).

compiled to CAD, many edits which would be tedious or prohibitively difficult at the mesh level

become trivial. For example, Figure 12 shows an example of creating a triangle candle holder by

starting with a hexagonal one in mesh form, synthesizing CAD, then tweaking the number of sides

in Cylinder(n) before printing the desired object.

To develop our synthesis algorithm, we first rephrase our CAD compiler as an equivalent small-

step relation using evaluation contexts and then “flip the arrows” to formalize possible reverse

compilations. The resulting synthesis relation captures the fact that many distinct CAD designs

may compile down to the same mesh, leading us to introduce a notion of geometric oracles which
model the mesh-level heuristics necessary to guide synthesis toward more-editable CAD programs.

Following the synthesis relation, our algorithm provides a principled approach to reverse compiling

meshes to CAD and enables proving properties of the algorithm as well as clearly delineating the

role of heuristics. We assign specifications for the oracles and prove that our synthesis algorithm is

correct, i.e., that it preserves semantics. Throughout the section we note key design insights specific

to the CAD domain that focus the heuristics and shrink the search space to speed up synthesis.

5.1 Specifying Reverse Compilation
Just as in traditional compilation, translating a CAD program to a mesh loses source-level informa-

tion. For example, consider the intersection of two cylinders placed side-by-side to form a rounded

lozenge in Figure 14a. The resulting mesh only contains fragments of the cylinder primitives the

programmer originally specified, yet intuitively we expect synthesis to “figure it out”.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:16 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

To both make this goal precise and support reasoning by induction on the synthesis search space,

we first rephrase our CAD compiler as a small step relation →c in Figure 13 which satisfies the

property

c →∗
c Mesh m ⇐⇒ compile(c) =m

At this point, we could specify the target of synthesis as the inverse of →c
∗
. However, a key

component of any mesh-to-CAD synthesis algorithm will be heuristics which infer information lost

during compilation. To support reasoning about heuristics’ role in synthesis, we instead define the

synthesis relation →s on the right of Figure 13. The geometric oracle Ωprim provides the base case

for synthesis by directly recognizing meshes that correspond to a sequence of affine transformations

applied to a primitive, while Ωadd and Ωsub indicate when a mesh can be generated by unioning or

differencing two “simpler” meshes:

c ∈ Ωprim(m) =⇒ Jm K = J c K
(m1,m2) ∈ Ωadd(m) =⇒ Jm K = J Binop Union (Mesh m1) (Mesh m2) K
(m1,m2) ∈ Ωsub(m) =⇒ Jm K = J Binop Diff (Mesh m1) (Mesh m2) K

Assuming these oracle specifications, Mesh m→∗
sc implies compile(c) = m. Also, in principle,

there exist oracles such that compile(c) = m implies Mesh m→∗
sc . However, synthesis does not

assume that its input was generated by our compiler; in fact, we intend synthesis to work for

meshes obtained from arbitrary sources like online repositories and 3D scanners. In such cases, it

is impossible to know what CAD operations (if any) were used to generate the input model.

Synthesis is inherently under-constrained since there is never a unique CAD program that

compiles to a given mesh, e.g., for all c , J c K = J Binop Union c c K. Furthermore, for any mesh

m, there is a trivial “complete” synthesis strategy: simply map each face ofm to the base of an

appropriate inward-facing tetrahedron and take the intersection of the resulting set of tetrahedrons.

Such approaches are clearly undesirable as they fail to recover any of the higher-level structure of

the original design. To address this, synthesis depends on a ranking function c1 ≤edit c2 to capture

the notion that c2 is “more editable” than c1. In general, the right choice for ≤edit will depend on

how a user wants to customize a given design, but we have found that program size serves as a

good default proxy.

Another challenge is the branching factor in the search space of CAD programs. To help mitigate

this issue we restrict the target language of synthesis to the subset S in Figure 13 where only

union and difference CSG operations are allowed and are above all affine transformations which

in turn are above all primitives. Intuitively, these restrictions are mild since intersections A ∩ B
can be equivalently expressed as differences A − (A − B) and affine transformations distribute

through CSG operations. Two key benefits of this approach are that it focuses the search space

by eliminating many equivalent candidates and also suggests a high level strategy composing the

primitive, additive, and subtractive oracles. One downside is that CAD programs where affine

operations have all been distributed down below CSG operations can be substantially larger; we

have found that a simple post-pass to factor out repeated affine operations can often address this

issue. Furthermore, once a mesh has been synthesized up to the CAD level, traditional syntax-based

synthesis techniques [Bornholt et al. 2016; Phothilimthana et al. 2016; Solar-Lezama 2008] could be

applied to further improve editability and optimize other constraints.

Given these definitions and design considerations, we can prioritize some general guidelines for

mesh-to-CAD synthesis algorithms with oracles Ω:

Correct: Synthesis must preserve semantics, J synthΩ(m) K = Jm K.
Useful: Synthesis should strive to generate editable CAD models, i.e., maximize ≤edit.

Predictable: Synthesis should be deterministic in that synthΩ(compile(synthΩ(m))) = synthΩ(m).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:17

(a) Information lost in compilation. (b) Composition depends on context.

Fig. 14. Figure 14a shows how compiling a CAD to a mesh leads to loss of high level structural information
(the fact that the lozenge shape is obtained by intersecting two cylinders). Figure 14b shows how evaluation
context can be used to synthesize the union of two spheres.

synthΩ(m) = searchΩ([Mesh m], [], fuel)

searchΩ(cs, fs, 0) = max≤edit (fs ++ cs)

searchΩ([], fs, fuel) = max≤edit fs

searchΩ(c :: cs, fs, fuel) =
let E[Mesh m] = focus(c) in

let ps = map (λc . E[c]) Ωprim(m) in

let as = map (λ(m1,m2). E[Binop Union (Mesh m1) (Mesh m2)]) Ωadd(m) in

let ss = map (λ(m1,m2). E[Binop Diff (Mesh m1) (Mesh m2)]) Ωsub(m) in

let (fs′, cs′) = partition (λc . c ∈ S) (ps ++ as ++ ss) in

let cs′′ = fold schedule cs cs′ in

searchΩ(cs′′, c :: fs′ ++ fs, fuel − 1)

Fig. 15. Core synthesis algorithm.

Complete: ≤edit should prefer CAD models without embedded meshes (e.g., in S).

5.2 Algorithm
Algorithm 15 shows our synthesis strategy synthΩ(). The core searchΩ function maintains a worklist

of candidate CAD programs reachable from the input mesh by the →s relation. In each iteration, it

pops the most promising candidate c from the front of the worklist, focuses on a particular meshm
within c , applies oracles in Ω tom to generate new candidates, and schedules those candidates in
the worklist. The algorithm is bounded by a fuel parameter to ensure termination and once it runs

out or no candidates remain, searchΩ returns the most editable result according to ≤edit.

Our synthesis algorithm is designed to bemodular: it is straightforward to implement and add new

oracles to synthesize a greater variety of CAD programs and control the search by modifying the

fuel, focus, schedule, and ≤edit parameters. Belowwe describe strategies for effectively implementing

geometric oracles and setting these parameters. Since this the goal of this section is to demonstrate

the utility of our programming language foundation for CAD, we describe geometric heuristics at

a high level.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:18 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

Ωprim. This oracle recognizes meshes that can be generated by CAD programs in language

A from Figure 13, i.e., a sequence of affine transformations applied to a basic primitive. This is

straightforward when the mesh corresponds to a primitive in language P, but is more challenging

for meshes which correspond to rotated, translated, scaled, or skewed versions of a primitive. In

such cases, the oracle implementation canonicalizes the input mesh and compares it to canonicalized

versions of primitives. If a match is found, it reorients the mesh using the inferred canonicalization

parameters and returns the result. We describe canonicalization in more detail in Section 5.4.1.

To implement mesh matching, we designed recognizers for the basic primitives in P. These
recognizers use geometric properties of the corresponding primitive 3D solids. For example, in order

to recognize a cuboid, we check that the mesh is composed of 6 face groups (sets of adjacent faces
with equivalent normals), and use the normals of each group to invert any affine transformations

which may have been applied to the underlying Cube primitive. To recognize spheroids, we similarly

check for (potentially multiple) centroids that have equivalent distances to the faces of the mesh.

Similarly, for cylinder and hexagon, we partition the mesh into face groups and use normals to

heuristically invert affine transformations.

Ωadd. We experimented with several mesh splitting strategies for this oracle, and ultimately

settled on three high level strategies. Disjoint split partitions the mesh by connected components.

Convex split identifies a splitting based on rings of coplanar gradient changes. Group split identifies
common features between face groups, e.g., being parallel/orthogonal, and separates the mesh

along those boundaries.

Ωsub. Given a mesh m, this oracle searches for a bounding mesh that snugly contains m and

returns the bound and its difference withm. In our current implementation, we limit bounding

meshes to those corresponding to CAD primitives. This can be relaxed, and we have observed

examples where it would be useful to recursively synthesize more complex bounds, e.g., using

convex hull.

Scheduling. To effectively navigate the exponential synthesis search space, the function searchΩ
prioritizes meshes in its worklist deemed more likely to lead to editable CAD programs. As one

example from our current implementation of the schedule parameter, we detect when newly

generated candidates have meshes of higher overall complexity than where they started and insert

such candidates later in the worklist.

focus. In general, a CAD program can match many evaluation contexts. For compilation, only

one of these will leave a redex in the context’s hole, but for synthesis we may choose any context

that places a mesh in the hole. focus examines the full CAD program c and decomposes it to select

the most promising mesh. In our current implementation, meshes are selected based on number of

face groups and their height in the CAD syntax tree. Focusing has a significant impact on synthesis

performance, and more work is needed to characterize the tradeoff between more spending more

time to accurately select the most promising mesh and quickly exploring many candidates. We

speculate that the tradeoff is actually dynamic in the sense that it often seems to depend on the

depth of a mesh within the CAD program.

5.2.1 Context and Sharing. The context of a mesh plays a critical role in synthesis. For example,

consider the case of a union of two overlapping spheres
2
in Figure 14b. Ωadd will use convex

splitting to break union into two truncated spheres. No affine transformation of a primitive can

match a truncated sphere. Without evaluation context, synthesis would at best be able to return

the union of the two meshes of the truncated spheres. However, in context, using full spheres to

2
As mentioned in Section 3.1, this paper approximates curves. To represent the sphere, we use a predefined mesh.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:19

match the truncated spheres works correctly. This is because when we union the complete spheres,

the parts of the spheres that are “lost” inside each other are correctly compiled, as we explained in

Section 4.

Another important implementation technique is sharing common structure among evaluation

contexts to limit memory usage. While the worklist may grow exponentially, we can efficiently

represent its contents by reusing common prefixes of each generated evaluation context across the

explored programs.

5.3 Synthesis Correctness
We briefly sketch the correctness of our synthesis algorithm below and defer evaluating other

criteria to the case studies in the following section. One property we rely on is that for any CAD

programs c1 and c2 and evaluation context E, J c1 K = J c2 K implies JE[c1] K = JE[c2] K by the

compositional definition of J K.

J synthΩ(m) K = Jm K. We first show that Mesh m →∗
s c implies Jm K = J c K. To get a strong

enough induction hypothesis we generalize to prove that c →∗
s c

′
implies J c K = J c ′ K, and proceed

by induction on the derivation.

Base Case: For 0 steps, c = c ′ and the goal trivially holds.

Inductive case: c →s c ′′ →∗
s c

′
.

By inversion, c = E [Mesh m] and c ′′ = E [c∗] for some CAD c∗.
By the induction hypothesis, J c ′′ K = J c ′ K.
To show J c K = J c ′ K, it is sufficient to establish J c K = J c ′′ K. This follows from case analysis

on the synthesis step, the oracle specifications, and the compositional definition of J K.
Now J synthΩ(m) K = Jm K follows from the invariant that all CAD programs in the worklist

during search are reachable under the synthesis relation and the fact that the result of synthesis is

drawn from the worklist.

□

5.4 Implementation and Challenges
We implemented our synthesis tool, ReIncarnate to work with the compiler tools we built in

Section 4.3. Due to our full functorial design strategy (Section 4.3.2), we were able to implement

synthesis as an extension to the existing system by making Synthesis a functor over NumSys,
Geometry, Mesh and CAD.

5.4.1 Canonicalization and Re-orientation. In order to match a mesh to a primitive (from a list of

predefined primitives) in an arbitrary location and orientation in 3D space, Ωprim performs canoni-

calization, which is a series of affine transformations applied at the mesh level. This normalizes a

mesh with respect to affine transformations—for a mesh,m, and an arbitrary sequence of affine

transformations, given by a matrix p and translation vector q, canonicalize m = canonicalize
(pm + q). The order in which the series of affine transformations in canonicalization are applied is

important due to the non-commutativity of affine transformations. The first step in canonicalization

is to identify three mutually perpendicular axes ofm. We do this by identifying three orthogonal

directions along which the sum of the areas of the faces is the largest. We call these three axes,

xo , yo , and zo the object coordinate system. We already know the orthogonal coordinates of the

Cartesian coordinate system: x = (1, 0, 0), y = (0, 1, 0), and z = (0, 0, 1) (we call this the world
coordinate system). canonicalize solves a linear system of equations using Euler angles [Kim

2013] to find three rotations, about x , y, and z that can align the world coordinate system to the

object coordinate system. Note that this is the opposite of our goal—we want to align the object

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:20 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

coordinate system to the world coordinate system. canonicalize does this by using the angles

obtained from Euler equations, but applying them in the reverse order, and negating the value. If

the Euler angles are rx , ry , and rz , then after canonicalizing with respect to rotation, the new mesh

is:

mr = rotateX(−rx) (rotateY(−ry) (rotateZ(−rz)m))

After the axes are aligned, the next step is to scale the mesh to unit dimensions. canonicalize
does this by first computing the dimensions of the bounding box ofmr , (dx ,dy ,dz) and scaling it

by the reciprocal of the dimensions:

ms = scale(1/dx , 1/dy , 1/dz)mr

The final step of canonicalization is to place the center ofms at the origin by translation by
finding the bounding box ofms and translating the mid point along each dimension to (0, 0, 0). If
cx , cy , and cz are the centers along x , y, and z respectively, then

mcanonicalized =mt = translate(−cx ,−cy ,−cz)ms

Canonicalization is used for primitive matching. Once a primitive p is matched, to synthesize

the correct CAD, p has to be re-oriented to the original location in 3D space. For this, the algorithm

applies the above affine transformations to p in the order:

p ′ = rotateZ(rz)(rotateY(ry)(rotateX(rx)(scale(dx ,dy ,dz) p)))

The last step is to translate the scaled and rotate primitive, p ′ to the right coordinates. The

distance to be translated is the distance between the center of compile(p ′) and the center of the

original meshm: (c
p′
x , c

p′
y , c

p′
z) − (cmx , c

m
y , c

m
z).

por iented = translate((c
p′
x , c

p′
y , c

p′
z) − (cmx , c

m
y , c

m
z)) p ′

The elegance of canonicalization and reorientation for primitives is that it pushes the affine

transformations to the leaves of the AST. This makes the rest of synthesis simpler because it

saves us from finding canonical orientations of arbitrary binary combinations of CAD programs.

This design decision was based on the key insight that while the order of application of affine

transformations cannot be changed within themselves, when affine transformations appear with

binary transformations, they can be pushed inside the binary operations.

5.4.2 A Concrete Instance of the Synthesis Algorithm. Following is a concrete example of how the

ReIncarnate algorithm in Figure 15 works. Consider the meshm of the model in Figure 16 showing

a hexagonal prism in arbitrary location in 3D space. Initially, fuel is greater than 0 and the worklist,

cs has one candidate, Mesh m. Consequently,m is the mesh in focus. From Figure 15, we can see

that the algorithm will attempt to apply all three oracles tom. Ωprim will canonicalize the mesh and

apply the primitive recognizers. Figure 16 (second figure) shows the canonicalized mesh. Since this

already matches with an affine transformed primitive (Cylinder(6)), ps will be a list containing
the corresponding λCAD program. This program is shown in Figure 16. Next, the other two oracles,

Ωadd and Ωsub will also be applied. Ωadd will return the original candidateMesh m since none of the

splitting strategies will generate two sub-meshes fromm. Ωsub will return the same result as Ωprim
since in this case, the snuggest fitting bounding primitive is the affine transformed hexagonal prism.

Hence, as will contain Meshm and ss will contain the same λCAD program as ps. The algorithm
will concatenate ps, as and ss and remove duplicates before applying the partition function. This

will split the list into two parts: fs′ will contain the λCAD program shown in Figure 16, and cs′

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:21

Translate(2.4, 0.8, 5.2) (
RotateZ(80.5) (
RotateY(−40.5) (
RotateX(−124.7) (
Scale(2.0, 1.7, 1.0) (

Cylinder (6))))))

Fig. 16. Canonicalization and λCAD synthesis of arbitrary object in 3D space.

will contain the remaining program, i.e. the result of applying Ωadd, which is the original program,

Mesh m. Before scheduling the next mesh to focus on, the algorithm checks whether any of the

current candidates were already explored in the previous step. In this case, Mesh m has already

been explored, so it will be removed from the list of candidates. At this point, cs′′ thus is an empty

list. Therefore, according to the third line in Figure 15, it will now apply max≤edit to fs. Since fs
contains only one λCAD program (shown in Figure 16), this will be the output of synthesis.

5.4.3 Simplify. We implemented a recursive simplification algorithm, that, given a CAD AST,

traverses it to remove redundant nodes. Synthesis can return CAD programs that have redundant

nodes in the AST. For example, Binop Union c c is equivalent to c for any CAD program c . To remove

such redundant nodes, the CAD program is passed on to simplify as the final step. For primitives

shapes, simplify simply returns the same node. For nodes that are affine transformations, simplify
compiles the child node and if the mesh thus obtained is the same as the mesh with the affine

transformation, then simplify removes the affine node. For binary operations, simplify compiles

the left child first. If the mesh obtained is the same as the mesh with the binary operation, then

simplify returns the left child. If not, it tries the same with the right child. If that fails, then simplify
will return the original AST with the binary operation node. Since simplify compiles the child

nodes in every recursive step, it can slow down the performance of the synthesis algorithm for

very large ASTs. That is why ReIncarnate only uses simplify on the final λCAD program and not at

the intermediate stages of synthesis.

6 CAD SYNTHESIS CASE STUDIES
We demonstrate three case studies on which we ran ReIncarnate. Two of the case studies are

downloaded from Thingiverse and one is our own design (Table 1). They are representative of

three of the most common tasks end users of 3D printers typically tend to design for: tools parts,

household items, and hobbyist designs [Alcock et al. 2016]. In order to evaluate ReIncarnate’s

output, we define six tasks:

• scale components of a model, for example a hole inside a bigger part.

• translate components of a model with respect to each other.

• rotate a model as a whole or part of it about one or more axes.

• combine two models or add a new component to an existing model.

• remove a component from a model.

• change # sides in a regular polygon primitive. This could be for example changing a hexagonal

prism to a cylinder or a pentagonal prism.

We give examples of editing tasks from the above categories for each case study to discuss the

relative difficulty at both λCAD and mesh levels. Our overall conclusion is that editing a model

after generating λCAD using ReIncarnate is always easier or the same level of difficulty as editing

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:22 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

Table 1. Summary of case studies.

Benchmark Source Category

ICFP original hobby

Candle holder Thingiverse household

Hex wrench holder Thingiverse tool

1 Diff (
2 Translate(1.5, -1.9, 0.5) (
3 Scale(3.0, 6.0, 1.0) (
4 Translate(-0.5, -0.5, -0.5) (
5 Cube
6)
7)
8)
9 Union (
10 Translate(2.5, -2.0, 0.5) (
11 Scale(1.0, 4.0, 1.0) (
12 Translate(-0.5, -0.5, -0.5) (
13 Cube
14)
15)
16)
17 Translate(0.5, -2.0, 0.5) (
18 Scale(1.0, 4.0, 1.0) (
19 Translate(-0.5, -0.5, -0.5) (
20 Cube
21)
22)
23)
24)
25)

Fig. 17. λCAD program for I synthesized by ReIncarnate. Rendered λCAD programs for ICFP and CFP.

the corresponding mesh using mesh editing tools. In several cases, editing the mesh model is as

difficult as manually editing the triangular faces which is usually not recommended.

6.1 ICFP
This model (shown in Figure 17) was entirely generated by our tools. We designed it in λCAD,

compiled it to STL using our compiler (the mesh has approx. 150 faces), and then synthesized a

λCAD program using ReIncarnate. The synthesized programs for the individual letters I, C, F,
P are 25, 16, 23, and 23 LOC respectively. The synthesized CAD program for the model ICFP has 89

LOC. Figure 17 shows the λCAD program for I synthesized by ReIncarnate.

• Remove: Consider the task of removing a letter from the model. For example, one can remove

the I to model the acronym for Call For Papers shown in Figure 17. Figure 19 shows the

λCAD program for CFP that we obtained by editing the program ReIncarnate synthesized for

ICFP. The program is a union of the three letters. Since all the letters are separated, this task

should also be relatively easy to perform at the mesh level.

• Translate: Consider an edit where the user wants to increase the spacing between all the

letters uniformly. After running ReIncarnate on the mesh, this task is easy: one needs to

simply change the translation vector that is used to separate the letters. At the mesh level,

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:23

1 Diff (
2 Translate(0, 0, 0.5) (
3 Scale(2, 1.732, 1) (
4 Translate(-0, -0, -0.5) (
5 Scale(0.5, 0.57, 1.0) (
6 Cylinder(6)
7)
8)
9)
10)
11 Translate(0.0, 0.0, 0.55) (
12 Scale(1.0, 0.998, 0.9) (
13 Translate(-0.0, -0.0, -0.5) (
14 Scale(0.5, 0.5, 1.0) (
15 Cylinder(50)
16)
17)
18)
19)
20)

(a) Synthesized λCAD for the candle holder. (b) Rendered hex holder.

Fig. 18. Figure 18a shows the λCAD program that ReIncarnate synthesized for the candle holder [Thingiverse
2018a]. Figure 18b shows the hex wrench holder from Thingiverse [Thingiverse 2018c].

this seemingly simple task can get confusing and tedious because the user has to drag the

letters around to make the spacing uniform.

6.2 Candle Holder
Our next example is the candle holder (shown in Figure 2 in Section 2) that we downloaded from

Thingiverse [Thingiverse 2018a]. This model is available in STL format, and also in a specific CAD

format [Rhinoceros 2018], which is only useful for users who have that CAD package. From a

mesh with hundreds of triangular faces, ReIncarnate produced a 20 line CAD program shown in

Figure 18a.

• Comments from users [Thingiverse 2018a] indicate that they were unsuccessful in modifying

the mesh model to scale it only along z-axis using mesh editing tools—it would also change

the x and y dimensions. From the user’s comment, it seems like even though in theory

this task is possible using mesh editing tools [Blender 2018; Meshmixer 2018], it is much

more tedious than editing the λCAD model where it is as simple as adding a scale affine

transformation with the right vector (Figure 3).

• Rotating part of the mesh such as the cylindrical hole (about any axis perpendicular to the

length of the cylinder) is as difficult as editing the mesh manually because it causes the

triangular faces of the hole and the base to intersect with one another, thereby breaking the

mesh. This task can be easily done at the λCAD level using RotateX, RotateY.
• Due to the same reason as above, combining the outer polygons to make a bigger base for

more than one candle is nearly impossible at the mesh level but very easy at the λCAD level

(using the Union operation).

• Changing the number of sides on the outer polygon is trivial at the λCAD level (it only

requires a single character change to the argument n of Cylinder(n)) but as difficult as

manually editing the triangular faces at the mesh level.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:24 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

6.3 Hex Wrench Holder
We were inspired to synthesize the CAD program for a hex wrench holder [Thingiverse 2018c] by

a hobbyist maker who downloaded a hex wrench holder mesh and 3D printed it only to find that

his hex wrenches did not fit right due to the holes being oriented differently from the shape of his

wrenches. The hobbyist tried to used a mesh editing tool to rotate the holes but it was impossible

to do this edit because the triangulation of the mesh would break. We synthesized λCAD for the

holder using ReIncarnate. The entire λCAD program has 196 LOC (the mesh has over 500 faces).

Figure 19 shows a part of the λCAD program.

• One can use RotateZ(θ) as shown in Figure 19 to rotate the holes easily in λCAD, but at the
mesh level, it is very difficult.

• Scaling the holder holes is yet another task that is very tedious at the mesh level, especially

if it is non-uniform. It has the same problem as rotation in that it causes the mesh to break

due to intersections between faces.

• Adding or removing a hole are both very easy at the λCAD level because it requires one to

simply scale the cuboidal base of the holder and either subtract another hexagonal prism

(adding a hole) or union the model with a hexagonal prism of the right dimensions (removing

a hole). These tasks while not impossible at the mesh level, are extremely tedious.

Synthesizing λCAD for this model opens up directions for future work on CAD synthesis.

Figure 18b shows that the holes in the hex holder are all made using the same λCAD primitive, but

they are separated by some distance and are scaled differently. ReIncarnate can be extended using

classic program synthesis techniques [Bornholt et al. 2016; Phothilimthana et al. 2016] to detect

such repetitions and optimize the generated λCAD programs.

7 RELATEDWORK
To the best of our knowledge, this is the first work that (1) relates the semantics of CAD and surface

meshes using programming-languages techniques and (2) uses program synthesis for reverse

engineering CAD from surface meshes. There are numerous examples from other fields such as

human computer interaction, computational geometry, mechanical engineering, computer vision,

and design, that have explored 3D models, mesh generation, slicing, and user interfaces to help

mitigate current limitations in 3D printing. Below we highlight examples from other communities

working on desktop manufacturing. We also provide an overview of state-of-the-art in program

synthesis research.

7.1 Compilers for 3D Printing
Sutherland’s Sketchpad [Sutherland 1964], invented in the 1960s, is one of the first computer-aided

design tools. It revolutionized the field of graphical user interfaces and computer-aided simulations.

Since then, numerous CAD tools have been developed [Rhinoceros 2018; SketchUp 2018; Solidworks

2018]. Unfortunately, many of these are proprietary and do not provide clear semantics, so it is

difficult to reason about them formally.

The core CAD components of λCAD are similar to OpenSCAD [OpenSCAD 2018], which is

a popular programmatic CAD tool in the 3D design sharing community [Thingiverse 2018b].

OpenSCAD builds on the CGAL [CGAL 2018] computational geometry library. There are other

programmatic CAD languages such as ImplicitCAD [ImplicitCAD 2018] which is implemented

in Haskell. ImplicitCAD is similar to OpenSCAD but provides more functionality. Our language

and formalism inherits certain restrictions that are also present in OpenSCAD such as lack of

direct support for fillets. Unlike our tool, both OpenSCAD and ImplicitCAD lack formal semantics

for reasoning about CAD programs. We show that functional programming techniques can be

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:25

Synthesized λCAD for hex holder:

1 Diff (
2 Translate(65.0, 15.0, 2.5) (
3 Scale(130.0, 30.0, 5.0) (
4 Translate(-0.5, -0.5, -0.5) (
5 Cube
6)
7)
8)
9 Translate(5.0, 23.0, 2.5) (
10 Scale(2.0, 1.7, 0.5) (
11 Cylinder(6)
12)
13)
14 ...)

Adding rotation about Z on line 9:

1 Diff (
2 Translate(65.0, 15.0, 2.5) (
3 Scale(130.0, 30.0, 5.0) (
4 Translate(-0.5, -0.5, -0.5) (
5 Cube
6)
7)
8)
9 RotateZ(15.0) (
10 Translate(5.0, 23.0, 2.5) (
11 Scale(2.0, 1.7, 5.0) (
12 Cylinder(6)
13)
14)
15)
16 ...)

λCAD synthesized for ICFP after removing I:

1 Union (
2 Union (
3 (* C *)
4 Diff (
5 Translate(2.0, 0.5, 0.5) (
6 Translate(-0.5, -0.5, -0.5) (
7 Cube))
8 Translate(2.175, 0.5, 0.5) (
9 Scale(0.65, 0.5, 1.0) (
10 Translate(-0.5, -0.5, -0.5) (
11 Cube))))
12 (* F *)
13 Diff (
14 Translate(3.5, 0.5, 0.5) (
15 Translate(-0.5, -0.5, -0.5) (
16 Cube))
17 Diff (
18 Translate(3.6, 0.4, 0.5) (
19 Scale(0.8, 0.8, 1.0) (
20 Translate(-0.5, -0.5, -0.5) (
21 Cube)))
22 Translate(3.4, 0.5, 0.5) (
23 Scale(0.4, 0.2, 1.0) (
24 Translate(-0.5, -0.5, -0.5) (
25 Cube))))))
26 (* P *)
27 Diff (
28 Translate(5.0, 0.5, 0.5) (
29 Translate(-0.5, -0.5, -0.5) (
30 Cube))
31 Union (
32 Diff (
33 Translate(5.15, 0.15, 0.5) (
34 Scale(0.7, 0.3, 1.0) (
35 Translate(-0.5, -0.5, -0.5) (
36 Cube)))
37 Empty)
38 Diff (
39 Translate(5.05, 0.65, 0.5) (
40 Scale(0.5, 0.3, 1.0) (
41 Translate(-0.5, -0.5, -0.5) (
42 Cube)))
43 Empty))))

Fig. 19. The top left code fragment is part of the λCAD program for the hex holder synthesized by ReIncarnate.
The bottom left code fragment shows an edit to a hole in the hex wrench holder by rotating the hole by 15
degrees about the z-axis on line 9. The λCAD program on the right shows the model for CFP that can be
obtained from the λCAD program of ICFP synthesized by ReIncarnate by deleting the I. This program is the
simply the union of the three letters.

extended to provide a rigorous foundation for reasoning about the implementation and composition

of CAD tools. Several projects have investigated 3D-printing performance. WirePrint [Mueller et al.

2014a] and faBrickator [Mueller et al. 2014b] show how non-uniform height slicing and hybrid

build approaches can expedite rapid prototyping. OpenFab [Vidimče et al. 2013] is a framework

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:26 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

for specifying material and texture properties for 3D printing with the help of a domain-specific

language. Several projects have developed CAD compilers for unconventional tasks like automated

knitting [McCann et al. 2016]. There are also design tools to use 3D printing for modifying existing

objects [Chen et al. 2015, 2016] and tools that allow users to correct for measurement errors in CAD

models [Kim et al. 2017]. Dumas et al. [Dumas et al. 2015] proposed a texture-synthesis technique

that can be used to synthesize texture based on input patterns. Schulz et al. [Schulz et al. 2014]

have designed a system that lets casual users design 3D models by example. They first create a

database of design templates based on designs by experts, and then let users choose a template and

change the parameters. We have previously proposed using PL techniques for 3D-printing, but

presented only a preliminary vision without results [Nandi et al. 2017].

7.2 Analysis of CAD Models
CAD models can be analyzed before printing to check for structural defects using properties

related to materials and geometry [Stava et al. 2012; Zhou et al. 2013]. There are interactive

interfaces [McCrae et al. 2014] that let user specify functional parts and provide real-time simulations

visualizing stress. Print orientation is a well studied area that focuses on statically analyzing CAD

models for maximizing mechanical strength [Umetani and Schmidt 2013]. Other constraints to

optimize for could be minimal material usage. Patching existing prints [Teibrich et al. 2015]

and analyzing strength properties at the CAD level [Galjaard et al. 2015] are two techniques to

accomplish this. Smooth surface finish is another interesting requirement. Delfs et al. [Delfs et al.

2016] developed a tool that achieves smooth surfaces by optimizing the orientation of the part

during printing. Krishnamurthy et al. [Krishnamurthy and Levoy 1996] introduced a technique that

uses b-splines to smooth models at the mesh level. This work has witnessed tremendous application

in the graphics community for rendering 3D characters.

7.3 Recreating CAD Models
There are several tools for reverse engineering CAD from 3D scans [Geomagic Design X 2018;

Powershape 2018; SpaceClaim 2018]. The goal of these tools is to help experts manually (re-)create a

CAD design. These tools enhance the traditional CAD workflow primarily by enabling an engineer

to “snap" features and dimensions to points from a scan or mesh. Some of these tools also attempt

to detect some features and suggest possible primitives (which is similar to the role of Ωpr im in

our synthesis algorithm) or detect coplanar features. Since these tools are proprietary, few details

about their implementations are available. These tools are designed to be interactively driven by

an expert CAD engineer and do not produce full CAD programs from meshes.

Thingiverse Customizer [Thingiverse 2018d] is a tool that allows one to modify 3D models

uploaded on Thingiverse. It is however only useful for models that include the underlying CAD file.

The majority of Thingiverse models do not have an accompanying CAD file, and consist only of

mesh-level information in the form of STL files. Customizer cannot reverse engineer CAD programs

from the STL meshes, which is the novelty of ReIncarnate.

7.4 Applications
Desktop-class 3D printing has started to reach mainstream adoption. Its applications are not only

confined to rapid prototyping, and printing tool parts and aesthetic models. The accessibility

community has started to use democratized manufacturing to make society more inclusive for

people with disabilities [Baldwin et al. 2017; Banovic et al. 2013; Guo et al. 2017; Hofmann et al.

2016b; Hofmann 2015]. The Enable community [The Future 2018] uses 3D printing to print custom

prosthesis. This has a huge impact in the developing world where doctors and medical facilities are

not available in abundance [Hofmann et al. 2016a].

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:27

7.5 Program Synthesis
Program synthesis is applied to a wide range of applications such as super optimizations for

low power spatial architectures [Phothilimthana et al. 2014, 2016], education [Alur et al. 2013]

and end-user programming [Wang et al. 2017]. Program synthesis can be inductive or deductive.

Inductive syntax-guided program synthesis techniques [Solar-Lezama 2008] fall into the following

categories: (1) enumerative search [Udupa et al. 2013], (2) stochastic search [Schkufza et al. 2013], (3)

symbolic [Jha et al. 2010]. The main components of these techniques are: a specification that is used

to guide the synthesis, a search algorithm to find a candidate program that satisfies the specification,

and a feedback mechanism to efficiently prune the search space. In deductive synthesis [Joshi et al.

2002], the specification is a reference implementation and the synthesis algorithm finds an optimal

program that is equivalent to the specification on all inputs.

Our synthesis algorithm can be viewed as a reverse-compilation process that starts with a mesh

representation of a 3D model as a specification, and searches for a CAD representation of the

same. The oracles described in Section 5.2 navigate the search in the right direction. Unlike both

traditional deductive and inductive synthesis, neither meshes nor CAD programs take inputs or

produce outputs.

8 FUTUREWORK
In this section we briefly survey some opportunities for future work to build upon our programming-

languages foundation for 3D printing tools. We focus on numeric and computational geometry

challenges to improving mesh-to-CAD synthesis in particular and discuss some directions for

exploring further stages of the 3D printing software pipeline.

8.1 Exact Arithmetic
One challenge to implementing the semantics described in Sections 3.1 and 3.2 is the need to

implement mathematical operations such as square roots and trigonometric functions. Standard

floating-point arithmetic and its inherent rounding error is unattractive for reasoning about numer-

ical equivalence [Goldberg 1991; Panchekha et al. 2015]. However, standard exact approaches such

as rational arithmetic lack support for trigonometric functions, which are essential in geometry.

We have started to investigate the problem of accurate mathematical computation based on the

insight that most angles in CAD programs are rational multiples of π . Such values are algebraic, so

can be represented in a splitting field [Artin 2011] of the rational numbers with exact operations

and decidable equality/inequality. We can choose a representation of the splitting field where any

number is represented by the field size n, integer coefficients ai and denominator d , representing
the value

1

d

n−1∑
i=0

ai cos
πi

2n

We implemented a prototype of arithmetic operations over these values, including decidable

ordering and equality functions, and symbolic square root and arctangent functions, all free from

any rounding error. With an overhead of roughly 600×, these exact operations are substantially

slower than floating-point operations, but competitive with arbitrary-precision packages. Thanks

to our fully-functorial design, users can choose whether to use floating-point or exact arithmetic

for their CAD programs, depending on whether speed or high assurance is more important to

them. Independently from its benefit to users, this design also allowed us to easily test and debug

floating-point code. As a result, though our CAD compiler carries weaker guarantees when run

in floating-point mode, we have fairly high confidence that the code is correct. In the future, we

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

99:28 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

would like to pursue this direction further and investigate ways to make the number system more

complete and performant.

8.2 Hull
Computing the convex hull of an object can be added as a built-in unary operator in CAD, and it is

a useful one provided by various other tools. The λCAD implementation already has support for

convex hull, but it causes a number of semantic complications that we have not yet fully investigated.

Notably, the denotation of the hull operation is not compositional — we need to “inspect” the object

whose hull is being computed for things like minimal and maximal points in various dimensions.

Semantically this is no problem since we can specify such points with existential quantifiers, but

the connection to how hull is compiled is much more subtle. Conversely, our current synthesis

procedure never uses hull. Hull is a powerful primitive, and it is unclear in what situations its use

helps or hinders producing editable CAD objects.

8.3 Challenges in Computational Geometry
Implementing computational geometry involves numerous challenges relating to robustness and

performance [Demmel and Hida 2004]. Many of these challenges are due to numerical precision

problems [Shewchuk 1997] and as mentioned in Section 8.1, we have started some preliminary

investigation in this direction. However, this work’s main focus has been on using programming

languages to address orthogonal issues of formal specification, correctness and synthesis for CAD.

These ideas generalize beyond the details of specific computational geometry techniques and can

serve as a foundation for future research.

8.4 Compiling down to G-code
Section 2 described that after compiling a CAD program to a mesh, there are two more main

compilation steps: slicing and generation of G-code. We have implemented prototypes of both but

have not yet proven correctness in terms of semantics. Slicing inherently introduces approximation

via discretization since each slice must have a small but nonzero height. Also, not all approaches to

slicing produce achievable print strategies due to issues like gravity and the size of the printer.

9 CONCLUSIONS
We presented a functional-programming approach to designing and implementing computer-aided

design tools. We formalized CAD and surface mesh and provided denotational semantics to both.

We implemented a compiler for the semantics and sketched its correctness. We proposed a synthesis

technique that uses reverse engineering and geometric oracles to provide CAD programs from

surface meshes and showed that it works on real surface meshes downloaded from one of the most

popular online repositories for 3D models (Thingiverse). We are optimistic that programming-

language semantics can continue to provide clarity and functionality in this space, positively

affecting an emerging area of computing with potential for mass adoption.

ACKNOWLEDGMENTS
Thanks to Sarah Chasins, Martin Kellogg, Stuart Pernsteiner, Talia Ringer, Jared Roesch, Ben

Sherman, Remy Wang, and Doug Woos for their feedback on early drafts of the paper. We thank

John Toman for useful advice on the artifact. We thank Eva Darulova and MaxWillsey for numerous

stimulating technical conversations. We are grateful to the anonymous reviewers for providing

valuable comments.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:29

REFERENCES
Celena Alcock, Nathaniel Hudson, and Parmit K. Chilana. 2016. Barriers to Using, Customizing, and Printing 3D Designs on

Thingiverse. In Proceedings of the 19th International Conference on Supporting Group Work (GROUP ’16). ACM, New York,

NY, USA, 195–199. https://doi.org/10.1145/2957276.2957301

Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. 2013. Automated Grading of DFA

Constructions. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI ’13). AAAI
Press, 1976–1982. http://dl.acm.org/citation.cfm?id=2540128.2540412

M. Artin. 2011. Algebra. Pearson Prentice Hall. https://books.google.com/books?id=S6GSAgAAQBAJ

Mark S. Baldwin, Gillian R. Hayes, Oliver L. Haimson, Jennifer Mankoff, and Scott E. Hudson. 2017. The Tangible Desktop:

A Multimodal Approach to Nonvisual Computing. ACM Trans. Access. Comput. 10, 3, Article 9 (Aug. 2017), 28 pages.
https://doi.org/10.1145/3075222

Nikola Banovic, Rachel L. Franz, Khai N. Truong, Jennifer Mankoff, and Anind K. Dey. 2013. Uncovering Information

Needs for Independent Spatial Learning for Users Who Are Visually Impaired. In Proceedings of the 15th International
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’13). ACM, New York, NY, USA, Article 24, 8 pages.

https://doi.org/10.1145/2513383.2513445

Blender. 2018. Blender. (2018). https://www.blender.org/.

James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing Synthesis with Metasketches. SIGPLAN Not.
51, 1 (Jan. 2016), 775–788. https://doi.org/10.1145/2914770.2837666

CGAL. 2018. CGAL. (2018). https://www.cgal.org.

Xiang ‘Anthony’ Chen, Stelian Coros, Jennifer Mankoff, and Scott E. Hudson. 2015. Encore: 3D printed augmentation of

everyday objects with printed-over, affixed and interlocked attachments. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference, SIGGRAPH ’15, Los Angeles, CA, USA, August 9-13, 2015, Posters Proceedings. 3:1.
https://doi.org/10.1145/2787626.2787650

Xiang ‘Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman, Stelian Coros, and Scott E. Hudson. 2016. Reprise: A

Design Tool for Specifying, Generating, and Customizing 3D Printable Adaptations on Everyday Objects. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016, Tokyo, Japan, October 16-19, 2016.
29–39. https://doi.org/10.1145/2984511.2984512

M. de Berg. 1997. Computational Geometry: Algorithms and Applications. Springer. https://books.google.com/books?id=

_vAxRFQcNA8C

P. Delfs, M. T̈ows, and H.-J. Schmid. 2016. Optimized build orientation of additive manufactured parts for improved surface

quality and build time. Additive Manufacturing 12, Part B (2016), 314 – 320. https://doi.org/10.1016/j.addma.2016.06.003

Special Issue on Modeling & Simulation for Additive Manufacturing.

James Demmel and Yozo Hida. 2004. Fast and Accurate Floating Point Summation with Application to Computational

Geometry. Numerical Algorithms 37, 1 (01 Dec 2004), 101–112. https://doi.org/10.1023/B:NUMA.0000049458.99541.38

Jérémie Dumas, An Lu, Sylvain Lefebvre, Jun Wu, and Christian Dick. 2015. By-example Synthesis of Structurally Sound

Patterns. ACM Trans. Graph. 34, 4, Article 137 (July 2015), 12 pages. https://doi.org/10.1145/2766984

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann. 2007. MPFR: A Multiple-

precision Binary Floating-point Library with Correct Rounding. ACM Trans. Math. Softw. 33, 2, Article 13 (June 2007).
https://doi.org/10.1145/1236463.1236468

Salomé Galjaard, Sander Hofman, and Shibo Ren. 2015. New Opportunities to Optimize Structural Designs in Metal by Using
Additive Manufacturing. Springer International Publishing, Cham, 79–93. https://doi.org/10.1007/978-3-319-11418-7_6

Geomagic Design X. 2018. Geomagic Design X. (2018). https://www.3dsystems.com/software/geomagic-design-x.

David Goldberg. 1991. What Every Computer Scientist Should Know About Floating-point Arithmetic. Comput. Surveys 23,
1 (March 1991), 5–48. http://doi.acm.org/10.1145/103162.103163

GrabCAD. 2018. GrabCAD. (2018). https://grabcad.com/.

T. Grimm. 2004. User’s Guide to Rapid Prototyping. Society of Manufacturing Engineers.

Anhong Guo, Jeeeun Kim, Xiang ‘Anthony’ Chen, Tom Yeh, Scott E. Hudson, Jennifer Mankoff, and Jeffrey P. Bigham. 2017.

Facade: Auto-generating Tactile Interfaces to Appliances. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17). ACM, New York, NY, USA, 5826–5838. https://doi.org/10.1145/3025453.3025845

Megan Hofmann, Julie Burke, Jon Pearlman, Goeran Fiedler, Andrea Hess, Jon Schull, Scott E. Hudson, and Jennifer Mankoff.

2016a. Clinical and Maker Perspectives on the Design of Assistive Technology with Rapid Prototyping Technologies. In

Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’16). ACM, New

York, NY, USA, 251–256. https://doi.org/10.1145/2982142.2982181

Megan Hofmann, Jeffrey Harris, Scott E. Hudson, and Jennifer Mankoff. 2016b. Helping Hands: Requirements for a

Prototyping Methodology for Upper-limb Prosthetics Users. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16). ACM, New York, NY, USA, 1769–1780. https://doi.org/10.1145/2858036.2858340

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

https://doi.org/10.1145/2957276.2957301
http://dl.acm.org/citation.cfm?id=2540128.2540412
https://books.google.com/books?id=S6GSAgAAQBAJ
https://doi.org/10.1145/3075222
https://doi.org/10.1145/2513383.2513445
https://www.blender.org/
https://doi.org/10.1145/2914770.2837666
https://www.cgal.org
https://doi.org/10.1145/2787626.2787650
https://doi.org/10.1145/2984511.2984512
https://books.google.com/books?id=_vAxRFQcNA8C
https://books.google.com/books?id=_vAxRFQcNA8C
https://doi.org/10.1016/j.addma.2016.06.003
https://doi.org/10.1023/B:NUMA.0000049458.99541.38
https://doi.org/10.1145/2766984
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1007/978-3-319-11418-7_6
https://www.3dsystems.com/software/geomagic-design-x
http://doi.acm.org/10.1145/103162.103163
https://grabcad.com/
https://doi.org/10.1145/3025453.3025845
https://doi.org/10.1145/2982142.2982181
https://doi.org/10.1145/2858036.2858340

99:30 C.Nandi, J. R. Wilcox, P. Panchekha, T. Blau, D. Grossman, Z. Tatlock

Megan Kelly Hofmann. 2015. Making Connections: Modular 3D Printing for Designing Assistive Attachments to Prosthetic

Devices. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’15).
ACM, New York, NY, USA, 353–354. https://doi.org/10.1145/2700648.2811323

Kai Hormann and Alexander Agathos. 2001. The Point in Polygon Problem for Arbitrary Polygons. Comput. Geom. Theory
Appl. 20, 3 (Nov. 2001), 131–144. https://doi.org/10.1016/S0925-7721(01)00012-8

Nathaniel Hudson, Celena Alcock, and Parmit K. Chilana. 2016. Understanding Newcomers to 3D Printing: Motivations,

Workflows, and Barriers of Casual Makers. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA, 384–396. https://doi.org/10.1145/2858036.2858266

ImplicitCAD. 2018. ImplicitCAD. (2018). http://www.implicitcad.org/.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided Component-based Program Synthesis.

In Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE ’10). ACM, New

York, NY, USA, 215–224. https://doi.org/10.1145/1806799.1806833

Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-directed Superoptimizer. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and Implementation (PLDI ’02). ACM, New York, NY, USA,

304–314. https://doi.org/10.1145/512529.512566

Jeeeun Kim, Anhong Guo, Tom Yeh, Scott E. Hudson, and Jennifer Mankoff. 2017. Understanding Uncertainty inMeasurement

and Accommodating its Impact in 3DModeling and Printing. In Proceedings of the 2017 Conference on Designing Interactive
Systems, DIS ’17, Edinburgh, United Kingdom, June 10-14, 2017. 1067–1078. https://doi.org/10.1145/3064663.3064690

P. Kim. 2013. Rigid Body Dynamics for Beginners: Euler Angles & Quaternions. CreateSpace Independent Publishing Platform.

https://books.google.com/books?id=bJEengEACAAJ

Venkat Krishnamurthy and Marc Levoy. 1996. Fitting Smooth Surfaces to Dense Polygon Meshes. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). ACM, New York, NY, USA, 313–324.

https://doi.org/10.1145/237170.237270

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica K. Hodgins.

2016. A compiler for 3D machine knitting. ACM Trans. Graph. 35, 4 (2016), 49:1–49:11. https://doi.org/10.1145/2897824.
2925940

James McCrae, Nobuyuki Umetani, and Karan Singh. 2014. FlatFitFab: Interactive Modeling with Planar Sections. In

Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14). ACM, New York,

NY, USA, 13–22. https://doi.org/10.1145/2642918.2647388

Autodesk. Meshmixer. 2018. Autodesk. Meshmixer. (2018). http://www.meshmixer.com/.

Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, and Patrick

Baudisch. 2014a. WirePrint: 3D Printed Previews for Fast Prototyping. In Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology (UIST ’14). ACM, New York, NY, USA, 273–280. https://doi.org/10.1145/2642918.

2647359

Stefanie Mueller, Tobias Mohr, Kerstin Guenther, Johannes Frohnhofen, and Patrick Baudisch. 2014b. faBrickation: Fast 3D

Printing of Functional Objects by Integrating Construction Kit Building Blocks. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA, 3827–3834. https://doi.org/10.1145/2556288.

2557005

Chandrakana Nandi, Anat Caspi, Dan Grossman, and Zachary Tatlock. 2017. Programming Language Tools and Techniques

for 3D Printing. In 2nd Summit on Advances in Programming Languages (SNAPL 2017) (Leibniz International Proceedings
in Informatics (LIPIcs)), Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 10:1–10:12. https://doi.org/10.4230/LIPIcs.SNAPL.2017.10

OFF. 2018. OFF Files. (2018). http://www.geomview.org/docs/html/OFF.html.

OpenSCAD. 2018. OpenSCAD. (2018). http://www.openscad.org/.

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically Improving Accuracy for

Floating Point Expressions. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’15). ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/2737924.2737959

Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah Chasins, and Rastislav Bodik. 2014.

Chlorophyll: Synthesis-aided Compiler for Low-power Spatial Architectures. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA, 396–407.

https://doi.org/10.1145/2594291.2594339

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. 2016. Scaling Up Superoptimiza-

tion. SIGPLAN Not. 51, 4 (March 2016), 297–310. https://doi.org/10.1145/2954679.2872387

Powershape. 2018. Powershape. (2018). https://www.autodesk.com/products/powershape/overview.

Rhinoceros. 2018. Rhinoceros. (2018). https://www.rhino3d.com/.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization. SIGPLAN Not. 48, 4 (March 2013),

305–316. https://doi.org/10.1145/2499368.2451150

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

https://doi.org/10.1145/2700648.2811323
https://doi.org/10.1016/S0925-7721(01)00012-8
https://doi.org/10.1145/2858036.2858266
http://www.implicitcad.org/
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/512529.512566
https://doi.org/10.1145/3064663.3064690
https://books.google.com/books?id=bJEengEACAAJ
https://doi.org/10.1145/237170.237270
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2642918.2647388
http://www.meshmixer.com/
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2556288.2557005
https://doi.org/10.1145/2556288.2557005
https://doi.org/10.4230/LIPIcs.SNAPL.2017.10
http://www.geomview.org/docs/html/OFF.html
http://www.openscad.org/
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2594291.2594339
https://doi.org/10.1145/2954679.2872387
https://www.autodesk.com/products/powershape/overview
https://www.rhino3d.com/
https://doi.org/10.1145/2499368.2451150

Functional Programming for Compiling and Decompiling Computer-Aided Design 99:31

Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech Matusik. 2014. Design and Fabrication

by Example. ACM Trans. Graph. 33, 4, Article 62 (July 2014), 11 pages. https://doi.org/10.1145/2601097.2601127

J.R. Shewchuk. 1997. Adaptive precision floating-point arithmetic and fast robust geometric predicates. 18 (10 1997),

305–363.

SketchUp. 2018. SketchUp. (2018). http://www.sketchup.com/.

P. Smid. 2003. CNC Programming Handbook: A Comprehensive Guide to Practical CNC Programming. Industrial Press.

https://books.google.com/books?id=JNnQ8r5merMC

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. Dissertation. University of California, Berkeley.

Solidworks. 2018. Solidworks. (2018). http://www.solidworks.com/.

SpaceClaim. 2018. SpaceClaim. (2018). http://www.spaceclaim.com/en/Solutions/ReverseEngineering.aspx.

Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress Relief: Improving Structural Strength

of 3D Printable Objects. ACM Trans. Graph. 31, 4, Article 48 (July 2012), 11 pages. https://doi.org/10.1145/2185520.2185544
Ivan E. Sutherland. 1964. Sketch Pad a Man-machine Graphical Communication System. In Proceedings of the SHARE Design

Automation Workshop (DAC ’64). ACM, New York, NY, USA, 6.329–6.346. https://doi.org/10.1145/800265.810742

Alexander Teibrich, Stefanie Mueller, François Guimbretière, Robert Kovacs, Stefan Neubert, and Patrick Baudisch. 2015.

Patching Physical Objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology
(UIST ’15). ACM, New York, NY, USA, 83–91. https://doi.org/10.1145/2807442.2807467

Enabling The Future. 2018. Enabling The Future. (2018). http://enablingthefuture.org.

Thingiverse. 2018a. Hexagonal Candle Holder. (2018). https://www.thingiverse.com/thing:756968.

Thingiverse. 2018b. Thingiverse. (2018). http://www.thingiverse.com/.

Thingiverse. 2018c. Ultimate 22 Hex-Wrench Holder. (2018). https://www.thingiverse.com/thing:1752602.

Thingiverse. 2018d. Welcome To Customizer. (2018). https://www.thingiverse.com/customizer.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin, and Rajeev Alur. 2013.

TRANSIT: Specifying Protocols with Concolic Snippets. SIGPLAN Not. 48, 6 (June 2013), 287–296. https://doi.org/10.
1145/2499370.2462174

Nobuyuki Umetani and Ryan Schmidt. 2013. Cross-sectional Structural Analysis for 3D Printing Optimization. In SIGGRAPH
Asia 2013 Technical Briefs (SA ’13). ACM, New York, NY, USA, Article 5, 4 pages. https://doi.org/10.1145/2542355.2542361

Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. OpenFab: A Programmable Pipeline for

Multi-material Fabrication. ACM Trans. Graph. 32, 4, Article 136 (July 2013), 12 pages. https://doi.org/10.1145/2461912.

2461993

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly Expressive SQL Queries from Input-output

Examples. SIGPLAN Not. 52, 6 (June 2017), 452–466. https://doi.org/10.1145/3140587.3062365
Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case Structural Analysis. ACM Trans. Graph. 32, 4, Article 137

(July 2013), 12 pages. https://doi.org/10.1145/2461912.2461967

Paul Zimmermann. 2010. Reliable Computing with GNU MPFR. In Proceedings of the Third International Congress Conference
on Mathematical Software (ICMS’10). Springer-Verlag, Berlin, Heidelberg, 42–45. http://dl.acm.org/citation.cfm?id=

1888390.1888400

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 99. Publication date: September 2018.

https://doi.org/10.1145/2601097.2601127
http://www.sketchup.com/
https://books.google.com/books?id=JNnQ8r5merMC
http://www.solidworks.com/
http://www.spaceclaim.com/en/Solutions/ReverseEngineering.aspx
https://doi.org/10.1145/2185520.2185544
https://doi.org/10.1145/800265.810742
https://doi.org/10.1145/2807442.2807467
http://enablingthefuture.org
https://www.thingiverse.com/thing:756968
http://www.thingiverse.com/
https://www.thingiverse.com/thing:1752602
https://www.thingiverse.com/customizer
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/2499370.2462174
https://doi.org/10.1145/2542355.2542361
https://doi.org/10.1145/2461912.2461993
https://doi.org/10.1145/2461912.2461993
https://doi.org/10.1145/3140587.3062365
https://doi.org/10.1145/2461912.2461967
http://dl.acm.org/citation.cfm?id=1888390.1888400
http://dl.acm.org/citation.cfm?id=1888390.1888400

	Abstract
	1 Introduction
	2 3D Printing Background and Motivation
	2.1 3D printing as Compilation
	2.2 Synthesis Example

	3 Formalizing CAD and Mesh
	3.1 CAD Language
	3.2 Surface Mesh

	4 3D Printing as Compilation
	4.1 Compiling CSG Operations and Mesh Splitting
	4.2 Compiler Correctness
	4.3 Implementation and Challenges

	5 Synthesizing Editable CAD by Reverse Compilation
	5.1 Specifying Reverse Compilation
	5.2 Algorithm
	5.3 Synthesis Correctness
	5.4 Implementation and Challenges

	6 CAD Synthesis Case studies
	6.1 ICFP
	6.2 Candle Holder
	6.3 Hex Wrench Holder

	7 Related work
	7.1 Compilers for 3D Printing
	7.2 Analysis of CAD Models
	7.3 Recreating CAD Models
	7.4 Applications
	7.5 Program Synthesis

	8 Future Work
	8.1 Exact Arithmetic
	8.2 Hull
	8.3 Challenges in Computational Geometry
	8.4 Compiling down to G-code

	9 Conclusions
	Acknowledgments
	References

