Visual Robot Programming for
Generalizable Mobile Manipulation Tasks

Sonya Alexandrova, Zachary Tatlock and Maya Cakmak
University of Washington. Computer Science & Engineering
185 Stevens Way, Seattle, Washington, USA
{sonyaa,ztatlock,mcakmak}@cs.washington.edu

ABSTRACT

General-purpose robots present the opportunity to be pro-
grammed for a specific purpose after deployment. This re-
quires tools for end-users to quickly and intuitively program
robots to perform useful tasks in new environments. In this
paper, we present a flow-based visual programming language
(VPL) for mobile manipulation tasks, demonstrate the gen-
eralizability of tasks programmed in this VPL, and present
a preliminary user study of a development tool for this VPL.

Categories and Subject Descriptors

H.1.2 [Models and Principles|: User/Machine Systems—
human factors, software psychology

General Terms

Design, Human Factors

1. INTRODUCTION

It is unfeasible to fully program a robot before it is de-
ployed in its context of operation. Instead, we aim to develop
tools that enable intuitive, robust, and fast programming of
robots after deployment. To that end, we apply techniques
from the field of End-User Programming (EUP) to robot
programming. The goal of EUP is to enable users to create
programs that meet their particular needs without any tra-
ditional software development skills [4} [3]. In this paper, we
present an exploration of a powerful EUP technique called
visual programming languages (VPL) [1].

VPLs allow users to create or modify programs by graph-
ically manipulating a program. Several VPLs have been
developed for simple educational robots [5, [2]; however, the
level of abstraction for these VPLs is too low for program-
ming large-scale mobile manipulation tasks. In this paper we
present an initial exploration of a new VPL called RoboFlow
that is developed for programming real-world mobile manip-
ulation tasks on a high degree-of-freedom robot (PR2).

2. ROBOFLOW

RobotFlow is a flow-based VPL, similar to flow diagrams.
It uses a box-line representation. Boxes are procedures with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HRI ’15 Portland, OR, USA

Copyright 2014 ACM ...$15.00.

start stare

ol Q
S °-0am :
- o-a= -
| I I
Coe O ‘ ©) :
: °-0am
I Py []
- —O-am ’
(@ & (b) Sl

Figure 1: Sample programs in RoboFlow that demonstrate
(a) looping and (b) branching.

one input and multiple outputs. Lines represent flow of data
from the output of a box to the input of another box. It does
not involve control flow constructs such as while, instead al-
lowing loops through cycles in the flow graph. Each program
has a start terminal, procedures, at least one success end-
terminal and possibly failure end-terminals.

Based on the capabilities required for mobile manipula-
tion we include three types of procedures that control dif-
ferent actuators on the robot: (i) manipulation, (ii) naviga-
tion, and (iii) active perception (i.e. head movements). The
core is the operation, which is a low-level subroutine that
interacts with the actuators. The operation may have pre-
conditions to be checked before execution and post-conditions
to be checked after execution. A program can be abstracted
as a procedure by considering its start as input and its two
types of terminals as its two outputs.

Programming in RoboFlow. To program a task, users
first demonstrate one execution of the program. This is used
to automatically create a default linear program that has all
demonstrated procedures in a sequence, fails if any condition
is not met and succeeds only when the last procedure com-
pletes successfully. Users then edit the program structure
through a graphical interface. They can change the pro-
gram to repeat or skip certain parts of the default program
in some conditions. Users can also change object similar-
ity thresholds in order to allow demonstrated manipulation
procedures to be applied on different objects. Note that pro-
grams could also be created from scratch through RoboFlow,
but that requires a mechanism for instantiating each proce-
dure manually added to the program.

Example Programs. We present two example RoboFlow
programs. Fig. a) shows a basic looping program, such as
picking up objects and putting them in a box or stacking
cups. This program continues as long as suitable objects
are present. Fig. b) demonstrates branching: if an object

Table 1: Task metrics in the user study: completion time
(seconds) and the number of errors made in the task.

Participant Comprehension = Debugging Creation

time #err tlime #err time #err
P1 (Robo) 110 0 130 0 235 1
P2 (Robo) 255 0 245 0 245 1
P3 (Robo) 115 0 170 0 505 0
P4 (PL) 95 0 135 0 240 0
P5 (PL) 160 0 235 0 190 0
P6 (PL) 130 1 205 0 205 0
Average 144 0.16 187 0.00 270 0.33
St.dev. 59 0.41 49 0.00 117 0.52

is reachable by the right arm, pick it up, otherwise push it
right with the left arm until it becomes reachable. RoboFlow
features such as conditions, branching, nesting and looping
make it possible to generalize across object numbers, types
and conditions, while also handling dynamic changes in the
environment and errors.

3. USER STUDY

We present a pilot user study that explores the compre-
hension, debugging, and creation of programs in RoboFlow.

Procedure. Participants are introduced to the RoboFlow
GUI through an example. The experimenter introduces the
three types of procedures explaining their operation and
demonstrates adding them to the program. Participants
do not instantiate procedures, but choose among existing
instantiations (e.g. “pick up small object with left arm” or
“look at the table”). The experimenter then creates a sample
program demonstrating how links are created and edited.
In the comprehension task, participants are shown a pro-
gram (Fig.[[(a)) and are asked to describe how the program
would behave. Their description is timed and recorded. In
the debugging task participants are given a default program
that is automatically created from a single demonstration
(Fig. [[[c)). The desired program behavior is described and
participants are told to modify the program so it would be-
have as intended. The default program is missing an edge
that results in repeating the pushing procedure until the ob-
ject is reachable by the right arm. Participants need to cor-
rect that edge. In the creation task participants create a pro-
gram from scratch for a described behavior: robot searches
for a particular object around the lab and picks it up when it
is found. At the end, we conduct a semi-structured interview
with the participants to get their feedback on RobotFlow.

3.1 Findings

Our user study included 6 participants (5 male and 1 fe-
male, ages 24-28). Three were roboticists and three were
programming languages experts. Although RoboFlow is in-
tended for a diverse group of users, initial evaluation was
restricted to these extreme user types, as their insights can
be valuable in improving RoboFlow before a large scale user
study. Table [I] summarizes the metrics from the user study.

Overall performance. After only a four minute tutorial
on RoboFlow, all users completed each task in a few min-
utes, making very few mistakes. One of the programming

languages experts misunderstood the relationship between
looking (changing head pan and tilt) and object detection
during the Comprehension test. Two of the robotics ex-
perts made small mistakes during the Creation test where
their program instructed the PR2 to continue searching for
an object even after the specified task required failure. Note
that out of all 18 tests, only one instance of misunderstand-
ing arose. We conclude that many programmers will find
RoboFlow to be highly intuitive. Furthermore, with the ex-
ception of one test, all tasks were completed in roughly four
minutes or less. The one exception (P3, Creation) was an
outlier as that user decided to recreate their program when
it was nearly complete to “make the line layout more clear”.

Difference between tasks. As expected, the Comprehen-
sion, Debugging, and Creation tasks were ordered by amount
of time required to complete the task. However, this com-
parison is not conclusive, as it does not take into account the
difference between the programs in each task. The creation
task also involves more mechanical steps (dragging tokens
into the program and connecting them) whereas debugging
involves just a few edits on an existing program. Hence, im-
provements on the editor that streamline mechanical tasks
could reduce the gap between the two tasks.

Difference between two user types. While the task
metrics show similar quantitative performance for the two
groups, their approach to solving the various tasks was dis-
tinct. The robotics experts tended to describe their rea-
soning in real world terms as they worked the tasks, using
phrases like “When the robot moves between tables, if it en-
counters an obstacle, then the whole task should fail”. In
contrast, the programming language experts often focused
on invariants arising from the path constraints required to
reach a certain procedure in the program graph, e.g. “At this
point I know the object cannot be present since all paths to
this node establish and maintain that invariant.”

4. CONCLUSION AND FUTURE WORK

Our user study yielded promising results, showing that
RoboFlow is intuitive. Next, we plan to evaluate RoboFlow
as a complete system (including procedure instantiation)
with a larger population of non-programmers.

5. REFERENCES

[1] M.M. Burnett. Visual programming. Wiley
Encyclopedia of FElectrical and Electronics Engr., 1999.

[2] S.H. Kim and J.W. Jeon. Programming lego
mindstorms nxt with visual programming. In Control,
Automation and Systems, 2007. I[CCAS’07.
International Conference on, 2468-2472. IKEE, 2007.

[3] A.J. Ko, B.A. Myers, and H. H. Aung. Six learning
barriers in end-user programming systems. In Visual
Languages and Human Centric Computing, 2004 IEEE
Symposium on, pages 199-206. IEEE, 2004.

[4] H. Lieberman, F. Paterno, M. Klann, and V. Wulf.
End-user development: An emerging paradigm.
Springer, 2006.

[5] F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada.
Thymio ii, a robot that grows wiser with children. In
Advanced Robotics and its Social Impacts (ARSO),
2018 IEEE Workshop on, pages 187-193. IEEE, 2013.

	INTRODUCTION
	ROBOFLOW
	User study
	Findings

	CONCLUSION AND FUTURE WORK
	References

