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Abstract— General-purpose robots can perform a range of
useful tasks in human environments; however, programming
them to robustly function in all possible environments that
they might encounter is unfeasible. Instead, our research aims
to develop robots that can be programmed by its end-users in
their context of use, so that the robot needs to robustly function
in only one particular environment. This requires intuitive ways
in which end-users can program their robot. To that end, this
paper contributes a flow-based visual programming language,
called RoboFlow, that allows programming of generalizable
mobile manipulation tasks. RoboFlow is designed to (i) ensure
a robust low-level implementation of program procedures on
a mobile manipulator, and (ii) restrict the high-level program-
ming as much as possible to avoid user errors while enabling
expressive programs that involve branching, looping, and nest-
ing. We present an implementation of RoboFlow on a PR2
mobile manipulator and demonstrate the generalizability and
error handling properties of RoboFlow programs on everyday
mobile manipulation tasks in human environments.

I. INTRODUCTION

Robots that can assist humans in everyday tasks have the
potential to bring independence to persons with physical dis-
abilities, enable older adults to age in place, and improve the
quality of our lives. A key challenge in realizing such robots
is to program them to robustly function in the end-users’
unique environments. Useful robotic capabilities for mobile
manipulators such as fetching items1, baking cookies[7] or
setting up the table2, have previously been demonstrated;
however, the way that these demonstrations are realized is
not scalable. The reason is two-fold: (i) they only work
in the particular environment they are developed for, and
(ii) they require highly skilled developers experienced in
robotics to program them. Most robotics research targets
the first problem by aiming to develop universal or adaptive
capabilities that will work in all possible scenarios. This is
extremely challenging and has had limited practical success
so far. Instead, we aim to address the second problem. Our
goal is to develop robots that can be programmed by the
end-users after they are deployed in their context of use.

To that end, we seek to apply techniques from the field of
End-User Programming [5] (EUP) to robot programming.
Although there are various techniques in EUP that are
relevant for robot programming, the technique that has been
most popular in robotics is Programming by Demonstration
[5] (PbD). Our previous work explored the use of program
visualization [26] in conjunction with PbD, to improve the
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1Beer me Robot: http://youtu.be/c3Cq0sy4TBs
2PR2 Sushi challenge: http://youtu.be/NnfJUPz6__M

users’ mental model of what the robot learns from provided
demonstrations [2]. In this paper, we explore the use of
another powerful EUP technique called visual programming
[10]. We develop a visual programming language for mobile
manipulation tasks and propose a programming paradigm
that involves graphical interactions to edit program structure
and physical demonstrations to instantiate program proce-
dures. We demonstrate the expressivity of the language in
creating flexible programs that generalize across different
scenarios on a set of real-world mobile manipulation tasks
on a PR2 robot. We also evaluate program comprehension,
creation, and debugging though a small scale user study that
confirms the intuitiveness of the language.

II. RELATED WORK

End-User Programming (EUP) is an active research area
in human-computer interaction that aims to enable everyday
people, who are not professional software developers, to
create custom programs that meet their particular needs [24],
[21]. Popular examples of EUP include spreadsheets [27] and
webpage development [34]. Research in EUP has produced
many techniques such as domain-specific languages (DSLs)
[25], programming by example [23] or model-based devel-
opment [30]. This paper focuses on one such method called
visual programming [26], [18], [10] which has had the most
success in making programming accessible to non-technical
users [16], [31]. Previously, the EUP technique that has been
most popular in robotics is Programming by Demonstration
(PbD) [4]. PbD allows users to program new capabilities
on a robot by demonstrating the desired behavior [5], [3].
Most work in this area focuses on learning control-level skills
represented by cost functions [1] or policies/controllers that
map a state to an appropriate action [15], [8].

One line of work, motivated by the use of robots in pro-
gramming education, produced a set of visual programming
tools for toy robots [32], [33], [20]. The simplicity of the
robots used by these tools allows programming at a low-
level where individual sensory inputs can be tied directly to
actuators. This impedes their applicability to general-purpose
mobile manipulators like PR2. Another set of tools have
been developed for animating articulated robots, such as
the Aldebaran Nao3 or the MIT Media lab magician robot
[29]. These closely resemble a class of visual programming
languages, but they are intended for open loop robot motions
rather than mobile manipulation tasks that involve interacting
with the environment.

3http://www.aldebaran.com/en
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Another related line of work is has been focused on the
use of software engineering methods, particularly around a
series of workshops on DSLs for robotics. Some example
languages from this community include Robot Scene Graphs
[6] or a DSL for pick-and-place [9]. Work by Kress-Gazit
et al. uses formal verification techniques for low-level robot
programs [22]. Finally, most related to our system in terms
of application and purpose, is a system developed by Nguyen
et al. for the PR2 robot called RCommander [28]. While the
functionalities provided by RoboFlow and RCommander are
similar, RoboFlow has a simpler and much more restricted
programming interface and is formalized as a programming
language.

III. VISUAL PROGRAMMING FOR MOBILE MANIPULATION

In visual programming users create or modify programs
by manipulating a graphical representation of the program.
A visual programming language (VPL) is a programming
language in which visual expressions (e.g. spatial relation-
ships between tokens on a 2D screen) have significance in
the meaning of the program [10]. There are several types of
VPLs, differing based on how they exploit visual expression,
such as form-based [12], flow-based [19], or rule-based [16]
VPLs. Existing VPL research greatly informs its application
to new problem domains such as robotics. However, in
developing a VPL for robot programming, we face the chal-
lenge of specifying a language that appropriately balances
intuitiveness, scalability, and robust implementation on a
robot. The approach we take with RoboFlow is to maximally
constrain the language to keep it as simple as possible at the
high level, to ensure intuitiveness. Nonetheless, the language
needs to be expressive enough to capture useful tasks. We
focus on a rich but structurally constrained task domain,
explained in the following.

A. Task domain

RoboFlow targets tasks that involve configuring everyday
objects within a known environment. A large set of orga-
nizing tasks in human environments (often specified with
verbs such as straighten, pick up, put away, organize, tidy,
or clear out) simply involve reconfiguring objects within
the environment [13]. For example, the task straighten
counters involves placing dirty dishes in the dishwasher,
perishable food in the fridge, and clean dishes, tools, and
condiments in their respective cupboards or drawers. Such
tasks require a small number of low-level capabilities on a
robot including identification, localization, and manipulation
of objects and autonomous navigation. Nonetheless, there
are many different such tasks and each task has a unique
instantiation in every home. We exploit the common structure
of these tasks to specify a compact and extensible VPL that
allows programming unique programs tailored to a particular
environment.

B. Language specification

Programming languages are specified by their syntax
(form of the language) and semantics (meaning of the

language). A visual programming language is a language
whose semantically-significant syntax includes visual expres-
sions [10]. VPLs exploit familiar visual representations to
ensure intuitiveness; for example, arrows are often used to
indicate flow of information in one direction. The VPL used
in this paper is a flow-based VPL [19], similar to popularly
known flow diagrams or control flow graphs. Based on
the task structure that the language is intended to support
(Sec. III-A), we propose the following syntax to keep the
language as simple as possible.

• We use a box-line representation. Boxes are procedures
or functions with inputs and outputs. Lines represent
flow of data from the output of a box to the input of
another box.

• We use a pure data flow model, with no control flow
constructs such as while or repeat. We allow itera-
tions/loops through cycles in the flow graph.

• We only allow selector functions, i.e. functions that have
one input and multiple outputs.

• Outputs/inputs (i.e. lines) do not carry semantic in-
formation (they are on or off); instead semantics are
embedded in the box structure.

The formal syntax and semantics of RoboFlow is shown
and explained in Fig. 1.

An important decision in the design of the VPL is the
choice of procedures (i.e. boxes) available to users. These
need to ensure a robust implementation on the robot, while
being intuitive for users. Based on the capabilities required
for our task domain (Sec. III-A), we constrain available
procedures to three types robot actions that independently
control different groups of actuators on the robot: (i) manip-
ulation, (ii) navigation, and (iii) active perception (i.e. head
movements). Each procedure type has a fixed structure. The
core is the operation, which is a low-level subroutine that
interacts with the actuators. The operation may have pre-
conditions to be checked before it is executed and post-
conditions to be checked upon completion of the operation.
This is a common action representation for robots in the
planning literature [17]. The three types of procedures are
as follows (illustrated in Fig. 2(a-c)).

1) Manipulation procedures: These actuate the robot’s
arms to interact with objects in the environment. We rep-
resent manipulation actions as a sparse sequence of end-
effector poses relative to landmarks (objects or detectable
markers). These actions are programmed by demonstration.
Our previous work has demonstrated this simple representa-
tion captures a wide range of manipulation actions, from a
simple pick-up-place, to complex bi-manual or constrained
grasps and non-prehensile manipulation actions [2]. The pre-
conditions for a manipulation procedure is that the landmarks
involved in the action are present in the robot’s view and
that any pose relative to these landmarks is reachable be the
robot. The post-condition checks whether the manipulation
has succeeded. Failures can happen if the arm get stuck due
to an obstacle or if the objects slip during manipulation. Both
failures are detectable.



P ::= nil | gid { G } P
G ::= nil | nid -> N :: G

N ::= Op(O, nids)
| Call(gid, nid, nid)
| Success | Failure

O ::= Manipulate(params)
| Navigate(params)
| Look-at(params)

(a)

G[n] = Op(o, ns) JoK(σ, ns) = (σ′, n′)

(n, (G,ns, nf ) :: Γ, σ) → (n′, (G,ns, nf ) :: Γ, σ′)

G[n] = Success

(n, (G,ns, nf ) :: Γ, σ) → (ns,Γ, σ)

G[n] = Call(g, n′
s, n

′
f ) P [g] = G′ entry(G′) = n′

(n, (G,ns, nf ) :: Γ, σ) → (n′, (G′, n′
s, n

′
f ) :: (G,ns, nf ) :: Γ, σ)

G[n] = Failure

(n, (G,ns, nf ) :: Γ, σ) → (nf ,Γ, σ)

(b)

Fig. 1: RoboFlow Formal Syntax and Semantics. The Backus-Naur Form grammar in (a) specifies RoboFlow programs
as a list of graphs, each labeled by a graph identifier, gid. Each graph in turn is specified as a list of nodes labeled by a
node identifier, nid. There are four types of nodes: Op, Call, Success, Failure. Each node includes the node identifiers of its
potential successors. The small step operational semantics in (b) provides the meaning of RoboFlow programs as a set of
logical inference rules specifying when one state can step to another. Each state comprises the current nid, call stack, and
configuration which represents the state of the world and is denoted by σ. Note the use of an operation’s denotation JoK in the
Op case which both returns the updated configuration and successor node. This design choice modularizes RoboFlow with
respect to the available procedures which keeps our semantics simple and provides extensibility for adding new procedures.
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Fig. 2: Illustration of VPL tokens and structure of (a) manip-
ulation, (b) navigation, and (c) active perception procedures;
and (d) procedures abstracted from other programs.

2) Navigation procedures: These actuate the robot’s
base to make it move about its environment. They are
parametrized by a target location. They have no pre-
conditions but they have a post-condition that checks whether
the destination was reached. Failures can happen due to
obstacles that block the robot’s path to its destination.

3) Active perception (look-at) procedures: These actuate
the robot’s pan-tilt head to direct its sensors towards different
parts of the environment. They are parametrized by the pan
and tilt angles and they have no pre-conditions. They have
no post-conditions either, as they are guaranteed to succeed.

RoboFlow embeds conditions within a procedure. This is
in contrast with general-purpose flow diagrams where the
user directly manipulates conditions and operations and can
connect them in arbitrary ways. Nonetheless, we chose to
visualize the control flow within a procedure (with diamonds
for conditions and rectangles for operations) to partially
communicate the semantics of a procedure to the user.

C. Program definition and procedural abstraction

In addition to the procedures, a complete program requires
a start terminal (a unit with one output only) and end
terminals (a unit with one input only). We allow two types
of end terminals: success and failure. The flow of a program

is specified by edges between procedures and terminals,
represented with arrows from an output an input. Note that
only one edge can start at an output, but multiple edges can
end at an input.

Parametrization of the procedures improves the scalability
of our VPL [11]; however it necessitates giving users the
ability to instantiate each parameter. The different types
of procedures are instantiated through different interfaces
described in Sec. III-D.

Given our language specifications, a valid program is a
program that has (i) one start terminal, (ii) at least one
success end-terminal, (iii) at least one procedure, (iv) for
every output to have one outgoing edge, and (v) every input
to have at least one incoming edge. This program definition
allows nesting programs in other programs; a concept known
as procedural abstraction. A program can be abstracted as
a procedure simply by considering its start as input and its
two types of terminals as its two outputs. Thus, a program
is equivalent to a procedure with two outputs (Fig. 2(d)).

D. Programming interactions

VPLs naturally support creation and modification of pro-
grams through a graphical interface. However, a purely
graphical interface does not exploit the physicality and situ-
atedness of the robot. Our VPL nicely separates the portion
of the programming process for which graphical interaction
is crucial; that is, the specification of program structure. On
the other hand, for the instantiation of procedures physical
interaction with the robot can be more effective than a
graphical interface. We propose two alternative programming
interaction paradigms that aim to combine graphical and
physical interactions in different ways.

1) Top-down programming: The first proposed approach
is to have users start creating a program from scratch
using a graphical interface. This interaction technique is
akin to existing VPL development tools. Users add different
procedures and terminals to a program pad, and create edges
to specify program structure. At any time during this process,



users can instantiate a procedure that is in the program. The
instantiation process is different for each type of procedure.
For manipulation the user will demonstrate the sequence of
poses (possibly relative to landmarks) by physically guiding
the robot’s arms and giving simple commands [2]. For
navigation, the user drives the robot to the desired location
using a joystick. For active perception, users specify the pan-
tilt angle of the head by clicking on the robot’s camera view
to center target objects.

2) Bottom-up programming: The second approach in-
volves the user first demonstrating one full execution of
the program. This is used to automatically create a default
program. The user then switches to the graphical program
development environment, and edits the program structure.
The default program is one that has all demonstrated pro-
cedures in a sequence and fails if any of the conditions are
not met and succeeds when the last procedure completes
successfully. A single demonstration can only create a linear
program. Therefore, the provided demonstration should trace
all parts of the program at least once. Structural edits can
then change the program to repeat or skip certain parts of
the default program. This approach becomes problematic if
a program has two branches that cannot be traced in the
same execution. In that case, users need to exploit procedural
abstraction by creating separate programs for each branch
and then nesting them into the main program.

Although users do not have control on the condition
checking structure, on manipulation procedures, they can
change the similarity threshold for matching objects in the
scene to the object with which the manipulation action was
programmed with. A higher threshold results in more object
to meet the criteria, and hence return true when the condition
is checked. This functionality is explored in Sec. IV-B.2.

E. Implementation

We implement RoboFlow for the PR2 research robot. PR2
(Personal Robot 2) is a mobile manipulator with an omni-
directional base and two 7 degree-of-freedom (DoF) arms
with 1-DoF under-actuated grippers. PR2’s manipulators are
naturally gravity compensated through a passive balance
mechanism. This allows safe and comfortable kinesthetic
interactions with the robot, during demonstrations of ma-
nipulation procedures. The implementation of manipulation
procedures is based on the open-source PR2 Programming
by Demonstration package4. Similarly, navigation procedures
use existing autonomous navigation software5. The front-end
editor of RoboFlow is implemented as a Java applet (Fig. 3).

IV. EVALUATION

Next, we present sample programs and executions of
these programs in different environments to demonstrate
the expressivity of RoboFlow and the generalizability of
programs created with it. Then, in Sec. IV-C we present
findings from a small scale user study investigating the
usability and intuitiveness of RoboFlow.

4http://ros.org/wiki/pr2_pbd
5http://wiki.ros.org/pr2_navigation

Fig. 3: Overview of the RoboFlow editor.

For the systematic evaluation we used the bottom-up
programming approach (Sec. III-D.2). All tasks were pro-
grammed by one of the authors and tested in 3 to 5 different
scenarios chosen to illustrate different traces of the program.
For user studies, we assumed a top-down programming
approach but the participants did not actually instantiate the
procedures on the real robot. Rather, they chose procedures
from a set of pre-specified alternatives that were described
to them.

A. Analysis of expressivity

We first present RoboFlow programs that illustrate its ex-
pressivity over simple sequential programs that are common
in robot PbD systems (e.g. [2]).

1) Looping: To demonstrate looping, we programmed two
tasks. The first consisted of putting toy building blocks in a
box. The demonstration used one block only (Fig. 4(a)), and
the execution was tested with different numbers of blocks
(Fig. 4(b-c)). The RoboFlow program for the task is shown
in Fig. 8(a). The program starts with moving the robot
head down, then looking for objects similar to the object
used in the demonstration. If no such objects were detected,
the program ends successfully. If the objects were detected,
but are unreachable, the program fails. Otherwise, the robot
manipulates the object as in the demonstration (in this case,
puts the block in the box). If manipulation fails, the program
fails too. Otherwise, the program loops back, i.e. the robot
looks for objects again, an so on.

The second task consisted of stacking paper cups. The
demonstration used two cups (Fig. 5(a)), the execution was
again tested with different numbers of cups (Fig. 5(b-c)). The
program is structurally exactly the same as for the previous
one (Fig. 8(a)), the only difference is that now the robot
looks for two objects that are similar to cups, instead of the
small block and the large box.

2) Procedural abstraction: We illustrate the procedural
abstraction with two examples. The first one involves stack-
ing cups and putting them in a box. Since the first part was
programmed before, this program could use that program
as a procedure. The demonstration for this task consist of
calling that procedure and then continuing on to demonstrate
the second part of the task by picking up the the stacked
cups and placing them into the box. This program is shown

http://ros.org/wiki/pr2_pbd
http://wiki.ros.org/pr2_navigation


(a)

(b)

(c)

(d)

(e)

Fig. 4: (a) Demonstration of the manipulation procedure for
picking up a small block and placing it in a large box. (b-c)
Execution of the looping program in the original scene it
was demonstrated and a new scene with more objects. (d-
e) Execution of the lopping program with different object
matching condition thresholds.

in Fig. 8(b). For the second example we programmed two
smaller tasks first: opening and closing a drawer. We then
used those tasks as operations in two new tasks: putting a
block in a drawer and taking a block out of a drawer, both
starting and ending with a closed drawer. The execution of
these two programs is shown in Fig. 6. We envision users
creating a library of such reusable tasks, such as opening or
closing drawers, cabinets and doors or pick up and placement
of specific objects. These could later be reused in different
programs that involve those objects.

3) Branching: A type of branching is already seen in
the previous examples: if an object is found, perform ma-
nipulation, otherwise, end the program. We further explore
the branching capabilities by programming a trash clean-up
task. For this task, the robot navigates to a table and looks
for paper cups. If one is found, the robot picks it up and
navigates to the trash can, where it throws the cup away.
After that, the robot proceeds to the next table. If a cup is
not found or if it cannot be reached, the robot proceeds to
the next table immediately, skipping several steps that require
the presence of the cup. An execution of this task is shown
in Fig. 7(a).

Another use case for branching is a supported right grasp,
where the robot picks up a bottle if it is reachable with its
right gripper but, otherwise, pushes it towards the right arm
using its left arm. This program is also an example of a
loop: as long as the left gripper can reach the bottle and the
right gripper cannot, the robot pushes the bottle towards the
right. The corresponding program is shown on Fig. 8(c) and

(a)

(b)

(c)

(d)

Fig. 5: (a) Demonstration of the manipulation procedure
for stacking a cup on another one. (b-c) Execution of the
corresponding looping program in the original scene and a
new scene with three cups. (d) Execution in a dynamically
changing environment (new cup inserted by user during
execution).

(a)

(b)

Fig. 6: Two programs that re-use abstracted procedures
(opening the drawer and closing the drawer) (a) putting an
object into the drawer, and (b) taking an object out of the
drawer.

different executions of the program are shown in (Fig. 7(b-
c)). Yet another example of branching is the task of picking
up a cup with different grasps (Fig. 7(d)). At first the robot
attempts to pick up the cup from the side. If that fails, the
robot tries to pick it up from the top. If the first grasp
succeeds, the second manipulation procedure is not used.

B. Analysis of generalization

The structure of RoboFlow programs allows them to work
robustly across different situations. In this section we re-
iterate the dimensions in which generalizability is supported
by the capabilities demonstrated in Sec. IV-A.

1) Number of objects: Loops allow for generalization
across different number of objects, as illustrated by the block
and cup examples discussed earlier (Sec. IV-A.1).

2) Types of objects: Flexible conditions allow for gener-
alization of actions programmed for one object to different
objects. For instance, after programming the robot to pick
up toy blocks, we edited the threshold for object similarity,
allowing the robot to perform the same action on larger toy



(a)

(b) (c)

(d)

Fig. 7: Programs that further illustrate branching: (a) picking
up recycling from all tables, (b-c) supported right grasp
where the robot uses the left arm to push the object towards
the right arm if it is not directly reachable with the right arm,
(d) adaptive grasp that tries an alternative grasp if the first
tried one fails.

(a) (b)

stacking cups

(c)

push towards
rightpickup with

right

Fig. 8: Sample programs in RoboFlow: (a) picking up objects
and placing them into a box in a loop, (b) a program that uses
another program as a procedure (c) a program that picks up
an object with the right arm, but is the object is not reachable,
pushes it towards the right using the left arm within a loop.

blocks ((Fig. 4(d)), and even less similar objects such as a
whiteboard eraser and a sponge ((Fig. 4(e)). Note that the
robot does not alter its grasp, but the task is still performed
successfully, because the grasp on all roughly rectangular
objects of similar size is essentially the same.

3) Configurations of objects: RobotFlow has generaliz-
ability in different object configuration due to its object-
centered representation of manipulation actions, based on
[2]. RoboFlow further improves this generalizability by
allowing alternative grasps (Fig. 7(d)) and by making an
object graspable when it is not (Fig. 7(b)). Our system also
accommodates the objects being present or absent at different
locations. For example, we can have a program that searches
for an object until it is found, or a program that goes through
all locations and operates on the same objects in any location
they occur (e.g. pick up and throw in trash).

4) Dynamic changes in the environment: The branching
and looping allow to handle dynamic changes in the envi-
ronment. For instance, in the stacking cups example, cups
can be added to the scene in the middle of the task, and the

robot will stack the new cups as well (Fig. 4(d)). Another
example would be setting the table in collaboration with a
human: human places the placemats, then robot places the
plates and cups, then human places silverware, then robot
pours water into the cups, and so on.

5) Error handling: The described capabilities of
RoboFlow allow for error detection and recovery. Since
each operation has a success/fail execution status, the
following operations can use that in conjunction with
branching to recover from errors. For example, if navigation
fails because the planner could not find the route to the
destination, the robot can be programmed to move a small
distance to localize, reset the planner and try again. In
manipulation, if a grasp fails, another grasp can be tried
(Fig. 7(d)).

C. Analysis of intuitiveness

Lastly we verify the usability of RoboFlow as a program-
ing language for robot tasks.

1) Procedure: We evaluate the front-end of RoboFlow
with a common protocol for VPL evaluation [10], sepa-
rately testing program comprehension, debugging, and cre-
ation. Participants are first introduced to the RoboFlow
GUI through an example. The experimenter demonstrates
adding procedures to the program and one by one introduces
the three types of procedures explaining their operation.
Participants do not actually instantiate procedures in the
study but instead they choose one from the existing procedure
instantiations (e.g. “pick up small object with left arm” or
“look at the table”). The experimenter then demonstrates
creating and editing links, and continues to create a complete
sample program for the task shown in Fig. 7(d).

After answering question by participants, we move on to
the comprehension task. In this part participants are shown
a program (Fig. 8(a)) and are asked to describe how the
program would behave.

The next task is debugging, where we give participants a
program that is automatically created from a single demon-
stration in the bottom up programming approach. The desired
program behavior is described and participants are told
to modify the program so it would behave as intended.
The desired program is the one shown in Fig. 8(c). The
default program created by demonstration does not have
the backwards edge that results in repeating the pushing
procedure until the object is reachable by the right arm. So
the participant needs to correct that edge so it loops back.

Finally, participants create a program from scratch for
a described behavior. For this the task is to search for a
particular object around the lab and pick is up when it
is found. We record an audio and screen capture of the
whole session for later analysis. At the end, we conduct a
semi-structured interview with the participants to get their
feedback on RobotFlow.

2) Findings: We conducted our user study with 9 par-
ticipants (5 male and 4 female, ages 24-28). Three were
roboticists who are proficient programmers, three were pro-
gramming languages experts, and the last three were non-



TABLE I: Task metrics in the user study. The left entry in
each column includes completion time (seconds), while the
right entry includes the number of errors made in the task.

Participant Comprehension Debugging Creation
time #err time #err time #err

P1 (Robo) 110 0 130 0 235 1
P2 (Robo) 255 0 245 0 245 1
P3 (Robo) 115 0 170 0 505 0
P4 (PL) 95 0 135 0 240 0
P5 (PL) 160 0 235 0 190 0
P6 (PL) 130 1 205 0 205 0
P7 (EU) 315 0 675 0 888 2
P8 (EU) 120 0 252 1 364 0
P9 (EU) 116 0 126 0 468 0

Average 157 241 371
St.dev. 76 170 225

programmers. Although RoboFlow is intended mainly for
non-programmers with diverse backgrounds, this initial eval-
uation included the other two extreme users types, as their
insights can be valuable in improving the language before
a larger scale usability analysis. Table I summarizes the
measurements from the user study in all three tasks. We make
the following observations.

a) Overall performance: After only a three to four
minute tutorial on RoboFlow, all participants were able to
complete each of the tasks in a few minutes, while making
very few mistakes. The mistakes that occurred were as
follows. One of the programming languages (PL) experts
misunderstood the relationship between looking (changing
head pan and tilt) and object detection for manipulation
during the comprehension test. Two of the robotics experts
(Robo) made small mistakes during the creation test where
their program instructed the PR2 to continue searching for an
object even after the specified task required failure. One of
the non-expert programmers neglected the look-at procedures
in parts of the program, while the other included a redundant
pushing action in their program in the case where the object
was already reachable at the start.

b) Difference between tasks: As expected, the Com-
prehension, Debugging, and Creation tasks were ordered by
amount of time required to complete the task. The fact that
the debugging task took less time than the creation task could
be taken as evidence in favor of the bottom up programming
approach (Sec. III-D.2). However, this comparison does not
take into account the difference between the two programs
in each task. Therefore it is not conclusive. It should also
be noted that the creation task involves more mechanical
steps (dragging procedures and terminals into the program
and connecting them) whereas debugging involves just a
few edits on an existing program. Most of the debugging
task is actually comprehension. Hence, improvements on the
editor that streamline mechanical tasks could reduce the gap
between the two tasks.

c) Differences among user types: While the task met-
rics show fairly similar quantitative performance for the
three groups, their approach to solving the various tasks
was distinct. The robotics experts tended to describe their
reasoning in real world terms as they worked the tasks, using
phrases like “When the robot moves between tables, if it
encounters an obstacle, then the whole task should fail”. In
contrast, the programming language experts often focused on
invariants arising from the path constraints required to reach
a certain procedure in the program graph, e.g. “At this point
I know the object cannot be present since all paths to this
node establish and maintain that invariant.”

Even though the robotics and programming languages
experts were good at programming with RoboFlow and
found it intuitive, they were not in favor of using a visual
programming language. During the interview, all six of them
stated that they would prefer to write the same programs in
a general-purpose programming language such as Python.
In contrast, one of our non-expert participants (P8) who
had taken a 10-week Python class, stated that she “very
much prefers [RoboFlow] to Python.” Her reasoning cited
the usefulness of having a “visual analogue for code” in
allowing her to assess whether the program was complete,
i.e. all the conditions were handled.

V. DISCUSSION

One of the key limitations of RobotFlow is the absence of
manipulable program state. Because the programmer cannot
record state transitions, certain abstractions are difficult to
implement. In particular, once control flow merges at a
node, no later transitions will be able to distinguish between
the various possible execution paths that could have led
to that node. To overcome this limitation, users sometimes
must copy entire parts of the graph and tweak only a
few small parameters in leaf nodes. Such code duplication
makes scaling programs up and maintaining changes more
challenging. Furthermore, the lack of state means that each
time a Call operation is executed, the caller must rely on
the callees to maintain all crucial invariants, since the caller
is unable to save necessary state that may be useful once the
callee has returned.

An extension of RoboFlow with simple condition con-
structs would allow such state checks. However, instantiation
of such conditions is an open challenge. In the case of
precondition for manipulation, the conditional statements are
based on the objects that are involved in the manipulation.
In other words, manipulation demonstrations are one way to
refer to objects detected by the robot. Allowing arbitrary
conditionals that check whether an object exists or not
would require another way for the user to indicate which
of the objects currently visible by the robot is actually the
one the robot needs to check in the future. A clickable
visualization of the robot’s view would be an intuitive option.
Another extension for conditionals would be the ability to
compare individual object properties rather than compare
objects based on an overall similarity metric. This would
allow the application of manipulation procedures to object



that are similar in relevant dimensions (e.g. object of similar
height) rather than object that are globally similar.

Our user study yielded promising results; however, it is
crucial that we evaluate RoboFlow with a larger population
that has no programming experience. In addition, our user
study did not involve the full system; it focused on the
high-level program structure and left out the instantiation of
procedures in the program. While our previous user studies
[2], [14] have demonstrated the usability of PbD-based
procedure instantiation, an end-user evaluation of the com-
plete system would be valuable. Finally, we are interested
in comparing the bottom-up and top-down programming
approaches proposed in Sec. III-D as part of such a study
involving interactions with the full system.

VI. CONCLUSION

This paper contributes RoboFlow: a flow-based visual
programming language for mobile manipulation tasks. We
describe the design of this language, in all aspects ranging
from the choice of procedures to interaction modes, and we
present an implementation on the PR2 robot. We demonstrate
that generalizable RoboFlow programs can be created for a
diverse set of mobile manipulation tasks, simply be demon-
strating a trace of the program and modifying its structure
in the RoboFlow editor. A preliminary evaluation with three
different user groups demonstrates that RoboFlow can be
quickly learned by people with diverse backgrounds, allow-
ing them to quickly complete common robotics programming
tasks with a low error rate.
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