
Quickly Detecting Relevant Program Invariants

Michael D. Ernsty, Adam Czeislery, William G. Griswold z, andDavid Notkin y

yDept. of Computer Science & Engineering
University of Washington

Box 352350, Seattle WA 98195-2350 USA
fmernst,czeisler,notking@cs.washington.edu

zDept. of Computer Science & Engineering
University of California San Diego, 0114

La Jolla, CA 92093-0114 USA
wgg@cs.ucsd.edu

ABSTRACT
Explicitly stated program invariants can help programmers
by characterizing certain aspects of program execution and
identifying program properties that must be preserved when
modifying code. Unfortunately, these invariants are usually
absent from code. Previous work showed how to dynami-
cally detect invariants from program traces by looking for
patterns in and relationships among variable values. A pro-
totype implementation, Daikon, accurately recovered invari-
ants from formally-specified programs, and the invariants it
detected in other programs assisted programmers in a soft-
ware evolution task. However, Daikon suffered from report-
ing too many invariants, many of which were not useful, and
also failed to report some desired invariants.

This paper presents, and gives experimental evidence of the
efficacy of, four approaches for increasing the relevance of
invariants reported by a dynamic invariant detector. One of
them — exploiting unused polymorphism— adds desired in-
variants to the output. The other three — suppressing implied
invariants, limiting which variables are compared to one an-
other, and ignoring unchanged values — eliminate undesired
invariants from the output and also improve runtime by re-
ducing the work done by the invariant detector.

1 INTRODUCTION
Previous research explored the use of dynamic methods for
discovering likely program invariants, with a particular inter-
est in supporting software evolution tasks [ECGN]. A pro-
totype implementation, Daikon, demonstrated the feasibility
of dynamically detecting invariants, or properties that hold
at a particular program point. The approach is to run the pro-
gram of interest, examine the values that the program com-
putes, and postulate and check potential invariants over those
values, reporting those that are true for the test suite and that
also satisfy some other conditions.

Daikon’s output was accurate: it rediscovered formal spec-
ifications from which a set of programs had been derived.
Daikon’s output was also useful: programmers who were
modifying an undocumented C program (apparently writ-
ten without thought for formal invariants) found the dynam-
ically detected invariants helpful in their modification task.
This paper describes four techniques that improve the rel-
evance — usefulness to programmers— of the reported in-
variants and the performance of the underlying engine. The
first technique adds desired but previously missing invari-
ants, and the latter three eliminate undesirable invariants
while simultaneously improving runtime.

Polymorphism Elimination. Variables declared polymor-
phically (as with Java’sObject type or any other base class)
often contain only a single type at runtime. Daikon uses de-
clared types to avoid the costs of managing polymorphism at
invariant detection time, but it cannot exploit runtime types
to extract specific fields. We address this issue via a two-pass
technique. A first pass detects invariants over the runtime
class of objects; the resulting information is fed back into
a second pass. Section 5 describes this technique, showing
that it enables reporting of relevant but otherwise undetected
invariants specific to the variable values’ run-time types.

Redundant invariants. Not all invariants are worth report-
ing. For instance, if two invariantsx 6= 0 andx in [7..13]
are determined to be true, there is no sense in reporting both
because the latter implies the former. Furthermore, not all in-
variants are worth computing. As an example, once Daikon
determines thatx = y, then no inference need be done for
y , as invariants overx imply similar ones overy . Pruning
both the computation and the reporting of implied invariants
reduces the size of the output without removing any infor-
mation from it. Section 6 details our approach to implied
invariants and reports its efficacy in practice.

Comparability. Not all variables can be sensibly com-
pared. For instance, numerically comparing a boolean to a
non-null pointer results in the accurate but useless invari-
ant that the boolean is always less than the pointer value.
Restricting comparability can both increase performance by
reducing the number of potential invariants to be checked



Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Figure 1: An overview of dynamic invariant detection as imple-
mented by the Daikon tool.

and reduce the number of irrelevant invariants reported. Sec-
tion 7 compares four approaches to limiting the number of
comparisons. These approaches use declared types and value
flow information computed by the Lackwit tool [OJ97].

Repeated values.Only invariants that are statistically jus-
tified — relationships that do not appear to have occurred by
chance alone — should be reported. These statistical confi-
dence tests depend on the set of values obtained at a partic-
ular program point. When a variable’s value is repeatedly
examined without intervening variable assignments — such
as a variable that is examined at a loop head but remains
unchanged within a loop — then the number of samples is
artificially inflated and properties of the variable may be in-
appropriately reported. Section 8 reports on the relative ef-
fectiveness of several rules for ignoring some instances of
repeated values.

Dynamic invariant detection is described in Section 2, along
with a concrete example of Daikon’s output. Section 3 ex-
plains the relevance metric and Section 4 lays out the ex-
perimental method. The four techniques sketched above for
improving relevance are further explained and experimen-
tally justified in Section 5, which discusses adding invariants
that are missing but desired, and Sections 6–8, which discuss
eliminating undesired invariants. Section 9 briefly surveys
related work. Finally, Section 10 recapitulates the results
and discusses future work.

2 BACKGROUND
Dynamic invariant detection [ECGN] discovers likely invari-
ants from program executions by instrumenting the source
program to trace the variables of interest, running the instru-
mented program over a set of test cases, and then postulating
and checking invariants over both the instrumented variables
and derived variables not manifest in the program (Figure 1).
The essential idea is to test a set of possible invariants against
the values captured from the instrumented variables; those
invariants that are tested to a sufficient degree without falsi-
fication are reported to the programmer or to another tool. As
with other dynamic approaches such as profiling, the accu-
racy of the inferred invariants depends in part on the quality
and completeness of the test cases. The Daikon invariant de-
tector is language independent, and program instrumenters
exist for C, Java, and Lisp.

Daikon detects invariants at specific program points such as

loop heads and procedure entries and exits; each program
point is treated independently. The invariant detector is pro-
vided with a variable trace that contains, for each execution
of a program point, the values of all variables in scope at that
point. Each of a set of possible invariants is tested against
various combinations of traced variables. The following lists
the classes of invariants Daikon computes, wherex, y, andz
are variables, anda, b, andc are computed constants:

� invariants over any variable, such as being con-
stant (x = a), taking its values from a small set
(x 2 fa; b; cg), etc.

� invariants over a single numeric variable, such as
being in a range (a � x � b), non-zero, modulus
(x � a (mod b)), etc.

� invariants over two numeric variables, such as a lin-
ear relationship (y = ax+ b), an ordering relationship
(x � y), functions (x = fn(y)) for built-in unary func-
tions, combinations of invariants over a single numeric
variable (x+ y � a (mod b)), etc.

� invariants over three numeric variables, such as a linear
relationship (z = ax+ by+ c), functions, etc.

� invariants over a single sequence variable, such as min-
imum and maximum sequence values, lexicographical
ordering, element ordering, invariants holding for all el-
ements in the sequence, etc.

� invariants over two sequence variables, such as an el-
ementwise linear relationship, lexicographic compari-
son, subsequence relationship, etc.

� invariants over a sequence and a numeric variable, in
particular membership (x 2 y).

For each variable or tuple of variables, each potential in-
variant is tested. Each potential unary invariant is checked
for all variables, each potential binary invariant is checked
over all pairs of variables, and so forth. A potential invariant
is checked by examining each sample (i.e., tuple of values
for the variables being tested) in turn. As soon as a sam-
ple not satisfying the invariant is encountered, that invariant
is known not to hold and is not checked for any subsequent
samples. Because false invariants tend to be falsified quickly,
the cost of computing invariants tends to be proportional to
the number of invariants discovered. All the invariants are
inexpensive to test and do not require full-fledged theorem-
proving.

Derived variables. To enable reporting of invariants re-
garding components or properties of aggregates, Daikon rep-
resents such entities as additional variables available for in-
ference. For instance, if arraya and integerlasti are both
in scope, then properties overa[lasti] may be of interest,
even though it is not a variable and may not even appear in
the program text. Derived variables are treated just like other
variables by the invariant detector, permitting the engine to
infer invariants that are not hardcoded into its list. For in-
stance, ifsize(A) is derived from sequenceA, then the sys-



15.1.1:::ENTER 100 samples
N = size(B)
N >= 0

15.1.1:::EXIT 100 samples
B = B_orig
N = I = N_orig = size(B)
S = sum(B)
N >= 0

15.1.1:::LOOP 986 samples
N = size(B)
S = sum(B[0..I-1])
N >= 0
I >= 0

I <= N

Figure 2: Invariants inferred for Gries’s Program 15.1.1 [Gri81],
which sums arrayB into variableS. The program’s author specified
the boxed invariants; they are the (successfully obtained) goal. See
Figure 5 for C source code.

tem can report the invarianti < size(A) without hardcoding
a less-than comparison check for the case of a scalar and the
length of a sequence.

Invariant confidence. An invariant is reported only if
there is adequate evidence of its plausibility. In particular,
if there are an inadequate number of samples of a particular
variable, patterns observed over it may be mere coincidence.
Consequently, for each detected invariant, Daikon computes
the probability that such a property would appear by chance
in a random input. The property is reported only if its prob-
ability is smaller than a user-defined confidence parameter.

Example. As a simple example of invariant detection, con-
sider a program that sums the elements of an array. An au-
tomatic instrumenter added code that writes variable values
into a data trace file; this code was automatically inserted at
the program entry (ENTER), at the loop head (LOOP), and at
the program exit (EXIT ). We ran this program on 100 arrays
generated from an exponential distribution. Figure 2 shows
Daikon’s output. This output contains all the invariants spec-
ified by the programmer, who derived the programs from the
formal specification. It also adds invariants, such as thatN

is the length of arrayB (which is crucial to the correctness
of the routine but was incorrectly omitted from the specifi-
cation) and that the routine does not modify its arguments
(which could aid understanding the program). More details
are available elsewhere [ECGN].

3 RELEVANCE
We call an invariantrelevantif it assists a programmer in a
programming activity. Relevance is inherently contingent on
the particular task, as well as the programmer’s capabilities,
working style, and knowledge of the code base. Because no
automatic system can know this context, Daikon both reports
some invariants that the user does not find helpful and also

Program NBNC LOC Procedures

replace 516 21
tcas 136 9
tot info 274 7

Figure 3:Size of the Siemens programs. The second column is the
number of non-blank, non-comment source lines. The third is the
number of procedures in the program.

omits some invariants that the user might find helpful. This
reduces the benefit to the user and increases Daikon’s run-
time.

To improve invariant relevance, the programmer— whois
privy to much of the context — could control the invariant
inference process. Alternately, heuristics could be added to
Daikon to improve the relevance of the reported invariants
in most cases. This paper focuses on the second approach,
which lessens the initial burden on the programmer.

The subjective definition of relevance complicates assess-
ment of techniques for improving the relevance of reported
invariants. We report a combination of quantitative and qual-
itative measurements for each technique.

We manually classified reported invariants as potentially rel-
evant or not relevant based on our own judgment, informed
by careful examination of the program and the test cases. We
judged an invariant to be potentially relevant if it expressed
a property that was necessarily true of the program or ex-
pressed a salient property of its input, and if we believed that
knowledge of that property would help a programmer to un-
derstand the code. We made every effort to be fair and objec-
tive in our assessments. The relevance of a set of invariants
is the percentage of the set’s members that are potentially
relevant.

4 METHOD
This paper reports experiments over two bodies of code. The
first is all the formally-specified programs in chapters 14 and
15 (the first chapters that contain such programs) ofThe Sci-
ence of Programming[Gri81]. These programs were de-
rived from formal specifications, which represent what the
author considered important about those programs. All the
programs are quite small, and we built simple test suites of
our own. The second body of code is three programs used
in testing research, originally from Siemens [HFGO94] and
subsequently modified by Rothermel and Harrold [RH98].
These programs —replace , tcas , andtot info — come
with extensive test suites and represent small but realistic
programs written without thought for formal invariants. Fig-
ure 3 gives the sizes of these programs.

We measured results for each technique while using the best
version of the other techniques. This provides a fair baseline
against which to evaluate the improvement due to a given
technique. In a few cases this was not possible. For example,



C lacks polymorphism, so we could only assess polymor-
phism elimination for Java programs; however, our imple-
mentation of Lackwit-style comparability checking for Java
is still underway.

5 POLYMORPHISM ELIMINATION
Polymorphism permits functions and containers to manipu-
late objects of multiple runtime types. Polymorphism also
enables code sharing and reuse and provides flexibility for
future change, among other benefits. Variables that are de-
clared polymorphically— as with Java’sObject type or any
other base type — often contain objects of only a single run-
time type. (Consider a polymorphic list that a particular pro-
gram uses to hold Integer objects.) In these cases, it is desir-
able to detect properties over the runtime values that would
not be sensible for arbitrary objects of the declared type.

However, to reduce Daikon’s complexity and increase its
performance, the data trace format for a program is statically
determined during instrumentation. Consequently, Daikon
cannot directly find invariants over polymorphic variables,
whose exact type and data fields are unknown until runtime.

A simple two-pass technique permits Daikon to detect
runtime-type-specific invariants over polymorphic variables.
The front end causes data traces to include the runtime types
of polymorphic variables. Such values are treated like any
other variable that was explicitly present in the source code.
If an invariant is discovered over the class (such as it being a
specific type whenever it is non-null ), then that information
is fed back into the system via a source-code comment. The
front end reads these comments and treats the variables as
having the specified types. In particular, fields specific to the
annotated type can be accessed and provided to the invariant
detector. This technique adds invariants over quantities that
would not be accessible otherwise.

We assessed this technique on the first five Java programs
from a data structures text [Wei99]. The data structures in-
clude polymorphic linked lists, stacks and queues (imple-
mented using both linked lists and arrays), and trees. The test
cases provided with the programs manipulate sorted collec-
tions of MyInteger objects. (MyInteger implements the
Comparable interface, whereas Java 1.1’sInteger does
not.) On the first pass, Daikon was unable to detect the sort-
edness of the collections, because it was provided only the
hashcodes and classes of the elements. The second pass,
however, reported additional relations such as the following
object invariant for classLinkedList .

header.closure(next).element.value
is sorted by <=

An object invariant is a data well-formedness condition that
is satisfied on entry to and exit from each public method.
This particular invariant states for everyListNode object,
the collection ofvalue fields of the elements reachable from
theListNode ’s header field is sorted.

The name of the variable requires some explanation. The

relevant declarations are:

class LinkedList { ListNode header; ... }
class ListNode { Object element;

ListNode next; ... }
class MyInteger { int value; ... }

For recursive fields such asnext , the front end out-
puts the reachable nodes as a collection. The notation
header.closure(next) is the collection ofListNode

objects reachable fromheader through next fields. A
field reference applied to a collection indicates the col-
lection made up by taking that field reference for each
element of the original collection. As an example,
myarray.myfield indicates the array formed by taking
the myfield field of every element ofmyarray . Thus,
header.closure(next).element is the collection of el-
ements reachable fromheader . These have declared type
Object , but a previous pass found them to be of runtime
typeMyInteger , which has fieldvalue of type int . The
result is a sortedness invariant over a realistic and useful (al-
beit somewhat complicated to describe) collection.

In other data structures, Daikon found similar invariants
(such as sortedness of a tree or membership in a collection);
details are provided elsewhere [EGKN99].

6 REDUNDANT INVARIANTS
Invariants that are logically implied by other invariants need
not be computed or reported to the user. Eliminating im-
plied invariants greatly reduces the time and space costs of
invariant inference; in practice, without this improvement
Daikon often fails to compute invariants even with a large
physical and virtual memory. This technique also reduces
the user’s burden of picking through reported invariants to
find the ones of interest; implied invariants clutter the output
without adding any new information.

Redundancies can be suppressed at three stages in invariant
detection. First, a derived variable — an expression that is
treated like a variable by invariant detection — should not be
introduced if it will be equal to another variable (the first
element of arraya is the same as the first element of ar-
ray a[0..i] ) or if it will be nonsensical (a[i] when i is
known to be negative). Up to half of derived variables fall
into one of these categories. Invariant detection runtime is
potentially cubic in the number of variables at a program
point because Daikon computes unary, binary, and ternary
invariants, so such savings are significant. Second, invari-
ants whose truth or falsehood is knowna priori need not be
checked. Suppressing false invariants has a relatively small
effect, because false invariants tend to be falsified quickly
and are not considered thereafter. Suppressing true invariants
has a bigger payoff, since such invariants would be checked
for all values computed by the target program over its test
suite. In fact, most true invariants can be identified before-
hand. Third, some redundant invariants may slip through
these other tests and should be suppressed before being out-



Gries replace tcas tot info

Variables 558 969 1438 625
non-canonical 56 125 372 53
missing 58 352 338 274
canonical 444 492 728 298

Derived vars 234 637 1078 420
Suppressed 126 507 1198 40

Invariants 275162 540746 5497210 1010411
falsified 272454 537284 5473523 1008386
unjustified 1983 1749 10694 1091
redundant 207 446 9985 130
reported 518 1247 3008 804

Suppressed 2788 20186 1686543 101660
falsified 448 2648 8925 603
redundant 2340 17538 1677618 101057

Figure 4: Suppression of redundant computation and output.
“Gries” is formally specified textbook programs [Gri81]; the oth-
ers are C programs [HFGO94, RH98].

put; such tests prune away quite a bit more of the potential
output. This last test is a user interface improvement only,
while the first two improve both the output and the runtime.

Daikon checks for redundancies at each appropriate stage of
its computation. The checks do not use a general-purpose
theorem-prover; for efficiency, each specific way in which
a potential invariant can be implied by one or more other
invariants is checked individually. Invariants are indexed so
that looking them up is very fast. The set of checks must be
extended when new invariants or derived variables are added
to the system; the consequence of a missing check is that
some implied invariants appear in the output.

Figure 4 illustrates the effect of using implication to avoid
work (primarily the top portion) and reduce the amount of
output (primarily the bottom portion).

The top portion of the figure shows the total number of
variables, including derived variables, at all program points.
These are subdivided into variables that are non-canonical
(because they are equal to another variable); “missing” vari-
ables that do not always have sensible values (for example,
p.left if p can be null,a[i] if i can be out of the bounds
of a, or variables that are sometimes encountered uninitial-
ized); and the remaining canonical variables. The table sep-
arately lists the number of derived variables (each of which
appears above as non-canonical, missing, or canonical) and
the number of derived variables that were suppressed (i.e.,
not instantiated and not counted above) because an invariant
implied that they would be non-canonical or missing.

The number of variables is the most important factor in
the number of invariants checked. Daikon’s rules for using
previously-computed invariants to suppress certain derived
variables eliminate from 9% (40 out of 460 fortot info )
to 53% (1198 out of 2276 fortcas ) of potential derived
variables. (These numbers are underestimates because other
derived variables could have been created from those in cer-

tain circumstances.) Together with suppressing invariants
for non-canonical variables (variables which have been de-
termined to be equal to another variable) and variables with
possibly nonsensical values, these approaches substantially
reduce the runtime of the system. This is particularly true
because these suppressed variables would be likely to partic-
ipate in invariants that would not be eliminated early. In fact,
the improvement is so large as to be unmeasurable. With
these optimizations disabled, Daikon is slowed down by or-
ders of magnitude and eventually runs out of over 256MB
of memory— despite the fact that it interns all data, so (for
example) there are no two distinct integer arrays anywhere
in the implementation that contain the same contents.

The bottom of Figure 4 first shows the total number of in-
variants that were instantiated and checked. These are sub-
divided into falsified invariants that do not hold for some run-
time variable values, unjustified invariants that are not falsi-
fied but for which the statistical tests do not support reporting
them, redundant invariants that are not falsified but are im-
plied by some other non-falsified invariant, and the remain-
ing invariants that are reported by the system. The “Sup-
pressed” line gives the total number of invariants that were
never instantiated, checked, or reported. The figure breaks
this number down into those that were knowna priori to be
false and those that were known to be true but redundant.

Daikon’s runtime is more dependent on the number of non-
falsified invariants (which are necessarily checked against all
samples at that program point) than the number of potential
invariants. Thus, the number of suppressed invariants should
be compared not to the total number of instantiated invari-
ants, but to the number that are not falsified. Implication
substantially reduces the number of costly, non-falsified in-
variants that must be checked. The smallest benefit came for
the Gries programs, where the suppressed invariants account
for 46% of the total non-falsified invariants that would have
been computed otherwise; forreplace it rises to 83%, and
the remaining programs are over 94%.

These figures, too, are underestimates; for instance, when
iterating over all possible triples of variables, if one vari-
able, or a combination of two variables, caused all invari-
ants involving them to be suppressed, we did not iterate over
the remaining variables to count the exact number of sup-
pressed invariants (which would have depended on other fac-
tors in any event). Exact runtime improvements resulting
from these checks are unavailable because the system sim-
ply does not run in their absence.

In a few cases, staging of inference did not eliminate all im-
plied invariants before they were introduced; often this was
because some invariants are introduced simultaneously so
they can be checked together rather than making multiple
passes over (summaries of) the data. Removing these in-
variants reduced the size of the output by about a quarter on
average. (See the fourth line (“redundant”) in the second half



// Return the sum of the elements of
// array b, which has length n.
long array_sum(int * b, long n) {

long s = 0;
for (int i=0; i<n; i++)

s = s + b[i];
return s;

}

Figure 5:C code for Gries’s Program 15.1.1 [Gri81].

of Figure 4.) This lessens the burden on the user of sifting
through them without decreasing the information content of
the output.

7 COMPARABILITY
Invariant discovery can report unexpected but potentially
useful relationships that programmers otherwise might not
consider. To increase the likelihood of such serendipity,
the initial Daikon prototype compared all singletons, pairs,
and triples of program variables (locals, parameters, and
globals), derived variables, return values, and (for non-entry
points) variables that represent the initial values of variables
in scope.

Daikon did report invariants that were both useful and unex-
pected [ECGN]. It also reported some accurate but uninfor-
mative invariants. For example, forreplace Daikon reports
done < pat[0] wheredone is a boolean andpat is a char-
acter array. That invariant is unlikely to be relevant to any
programming task, because the variables have nothing to do
with one another and are of different types.

Restricting which variables are compared to one another
causes some potential invariants not to be considered. This
reduces completeness, improves runtime, and could improve
or reduce accuracy depending on whether the suppressed in-
variants are relevant or not.

We compared four methods for computing a comparability
relation:

� Unconstrained. Consider all variables to be comparable
to one another.

� Source types. Two variables are comparable if and only
if they are declared to have the same type in the pro-
gram.

� Coerced types. Two variables are comparable if their
program types are coercible to one other. For exam-
ple, C automatically coercesint s to long s, so this ap-
proach considers such variables comparable.

� Lackwit types. Two variables are comparable if they
can contain the same value or values that can interact
via program expressions [OJ97]. For example, ifa=b

or a+b appears in the program, thena andb are given
the same Lackwit type.

Consider the code in Figure 5. The unconstrained approach

considers all the scalars (including array elements, indices,
and addresses) comparable to one another. The source types
approach makesi and elements ofb comparable, ands com-
parable ton; but (for example)i is not comparable ton, since
they have different declared types. In this example, coerced
source types are the same as unconstrained, sinceint and
long can be coerced to each other.

Lackwit captures value flow (or ability to contain the same
runtime value) via polymorphic type inference over a non-
standard type system that unifies variables between which
values can flow [OJ97]. Two variables are comparable if
they participate in an expression. For instance,i is com-
parable ton because of “i<n ” and s is comparable to ele-
ments ofb because of “s+b[i] ”. Comparability relation-
ships are extended transitively, but permitting polymorphism
in the Lackwit types.

This small example also demonstrates the potential down-
side of using type-inference-based comparability to guide
invariant detection. If all elements ofb are positive, then
i � s, but that invariant would not be computed because it
involves variables that are incomparable, according to Lack-
wit. Although it is easy to generate such examples, we have
found few if any in real code and do not believe that they
will be common in practice: Lackwit tends to capture pro-
grammers’ intuitive definition of comparability, particularly
since it operates interprocedurally and thus takes account of
surrounding context. (Furthermore, in this particular exam-
ple, the programmer could also indirectly but easily infer the
unreported invariant because Daikon would report that all el-
ements ofb are positive.)

Using the Siemens programs described earlier, we measured
both the number of variable pairs considered comparable
by each technique and also the differences among invariants
produced using each of the approaches.

7.1 Reduced Comparability
Compared to the unconstrained approach, how does each of
the three other approaches fare in reducing the number of
comparable variables that the Daikon engine must consider?

Figure 6 lists, for each method, the average number (over
the three Siemens programs) of variables comparable to a
given variable. The unconstrained approach makes each
variable comparable to every other variable, so at a program
point withn variables in scope, each variable is comparable
to n � 1 others. For these programs, using program type
constraints reduces the number of comparable variables by
roughly 30%, while Lackwit reduces the number by nearly
90%.

Figure 7 presents the same data, but broken down by the
number of variables in scope at a program point. As the
number of variables in scope grows, the constraints of source
types or coerced source types become less effective (com-
pared to unconstrained).



Comparability Pairs Ratio
Unconstrained 10.3 1.000
Source types 7.1 .685
Coerced types 7.9 .763
Lackwit 1.2 .116

Figure 6:Average number of other variables to which a variable is
comparable. For a randomly chosen variable in the Siemens suite,
this table indicates, for each of the four comparability relations,
how many other variables the given variable is expected to be com-
parable to. The final column shows the ratios between each method
and the unconstrained method.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

3 4 5 6 7 8 9 10 11 12+

Coerced

Source

Lackwit

Figure 7: Reduction in comparability achieved by various static
comparability analyses, graphed against number of variables in
scope at a program point. The graph indicates, for a randomly cho-
sen program point in the Siemens suite at which the specified num-
ber of variables is in scope, how much each comparability method
reduces comparability, compared to the unconstrained case. The
data of Figure 6 aggregate this information for all program points,
regardless of number of variables. The numbers of variables do not
include original values for parameters or other derived variables.
The “12+” datapoint includes all program points with 12 or more
variables in scope.

This is not too surprising, since the number of types does not
increase as a function grows (at least in a language like C),
so there is more sharing of a set of types as programs grow.
In contrast, the Lackwit values tend to decrease as the num-
ber of variables increases. This suggests that the programs
implicitly partition value flows; as the programs grow, the
number of partitions tends to increase.

7.2 Improved Relevance
The key questions are whether the static reduction of variable
comparability leads to a corresponding reduction in the size
of the reported output and, if so, whether the removed invari-
ants are likely to be irrelevant. In addition, more restrictive
comparisons might lead to performance improvements.

To address these questions for the three Siemens programs,
we ran each program using the same trace files but with the
four different comparability relations. Forreplace we used

Comparability Total Binary Time
Source types 78% 61% 91%
Coerced types 78% 74% 96%
Lackwit 55% 27% 75%

Figure 8: Percentage of total and binary invariants reported,
and time to compute all invariants, compared to unconstrained
comparability.

3000 test cases randomly selected from the provided set,
while the others used their full set of provided test cases,
about 1500 cases each. Figure 8 shows the resulting data or-
ganized by the comparability relation and averaged over the
three programs. The total number of invariants, the number
of binary invariants, and computation time are shown, all as
percentages of unconstrained comparability. (Comparability
does not directly affect unary invariants.)

Quantitatively, Lackwit significantly reduces the binary in-
variants reported (which in turn reduces the total invari-
ants reported). The variance of improvement is high: the
most limited (but still significant) reduction is fortot info ,
where Lackwit reports 62% of unconstrained; the most ex-
treme is forreplace , which reports just under 3% for Lack-
wit as compared to unconstrained. Thetot info data are a
bit unusual, since Daikon discovers only a small number of
binary invariants (13 for unconstrained and eight for both
source types and Lackwit). In any case, on these programs,
Lackwit comparability provides a significant reduction in in-
variants reported compared to any of the other comparability
relations. A substantial performance improvement (which
also has a large variance) is also achieved using Lackwit
types.

Our qualitative analyses compared the reported invariants for
a given program and test suite across the four comparability
relations. We focused primarily onreplace because of our
familiarity, which aids in making judgments about the poten-
tial relevance of reported invariants. The invariants removed
as a result of using Lackwit comparability appear to be ir-
relevant for most likely programming tasks. One example
appears in the procedureamatch , which contains twochar

* variables,lin andpat . The other three comparability re-
lations (but not Lackwit) cause Daikon to reportlin < pat.
This invariant compares the pointer addresses: although val-
ues flow betweenelementswithin these arrays, the arrays
themselves do not participate in any expressions. Another
example of the efficacy of Lackwit comparability is in pro-
ceduremakepat , where an invariant between two unrelated
boolean variables (done and junk ) is not computed (or re-
ported).

This preliminary data suggests that computing invariants
over only those variables that are considered comparable by
the Lackwit typing mechanism is profitable in terms of rele-
vance and performance.



15.1.1:::LOOP 986 samples
N = size(B)
S = sum(B[0..I-1])
N in [0..35]
I >= 0

I <= N
B

All elements in [-6005..7680]
sum(B) in [-15006..21144]
B[0..I-1]

All elements in [-6005..7680]

Figure 9:Invariants inferred for the loop head of Gries’s Program
15.1.1 [Gri81], with every sample contributing to invariant confi-
dence. Compared to Figure 2, which used the “assignment” rule for
determining when a sample contributes to confidence, the last three
invariants (which appear in at the loop head but not elsewhere, even
though arrayB does not change during the program’s execution)
are extraneous. The invariants for the procedure entry and exit are
unchanged from Figure 2.

8 REPEATED VALUES
Daikon reports only invariants that pass a statistical con-
fidence test; properties that could easily have occurred by
chance are not reported, as they are likely to be accidents of
the data. In other words, an invariant is reported only if the
null hypothesis, which states that the observed data are not
unusual, can be rejected with a user-specified confidence.

For instance, given0 < x < 10 and0 < y < 10, if there are
only threehx; yi pairs, then the invariantx 6= y should not
be reported, even if it is true for those three pairs: they do not
support such a generalization. If there are 10,000 such pairs,
butx was never equal toy, then the relationship is likely to
be more than a coincidence.

Some unjustified invariants remain, however, because multi-
ple visits to a program point without assignment to a vari-
able can cause the repeated values for the variable to be
overweighted in the statistical tests. For example, additional
samples for a loop-invariant variable could cause Daikon to
report invariants inside the loop that are true but are not con-
sidered statistically justified outside the loop — even though
the variable values are the same in both cases. As a con-
crete example, compare Figure 9, which shows the invari-
ants for the Gries program using this rule, to Figure 2, which
uses the “assignment” rule described below. Figure 9 con-
tains three extra invariants at the loop head because of undue
confidence. Procedure invocations and other sorts of control
flow cause similar anomalies.

This section compares five strategies for determining
whether a particular sample of values should increase con-
fidence in an invariant.

Always. Every sample contributes to confidence. This
strategy is trivial to implement but performs unacceptably,

as noted above.

Changed value. A sample contributes to invariant confi-
dence only when its value is different from the last time it
was examined at the program point. This approach does not
detect when a variable is recomputed and given the same
value, which may be a semantically significant event.

Assignment. A sample contributes to invariant confidence
if the variable was assigned since the last time the program
point was visited. This approach requires significant cooper-
ation from the instrumenter (see below for details).

Random. A sample contributes to invariant confidence
when the value changes and with probability1

2
otherwise.

Random proportionate to assignments.A sample con-
tributes to invariant confidence when the value changes, and
otherwise with a probability chosen so that the total number
of contributing samples is the same as in the “assignment”
strategy. Although not practical in that it requires the same
instrumentation as the assignment strategy, normalizing for
the number of contributing samples permits an assessment of
the assignment strategy’s choice of samples.

We chose the “assignment” rule as the baseline for compar-
ison. Although it requires greater programming effort and
implementation overhead, it most closely captures our intu-
itive notion of when a sample is significant. If the dynamic
execution path between two executions of a program point
does not affect a variable’s value, then the value of the vari-
able is unrelated to behavior to be captured at the program
point and should not increase invariant confidence. Conse-
quently, Daikon should not treat each occurrence of the value
at the instrumentation point as a separate, fresh instance of
the value that contributes equal weight to an invariant’s con-
fidence level.

For the “assignment” rule, the instrumenter inserts code into
the program under test to track variable assignments with a
boolean bit vector indexed by program point. When a vari-
able is assigned, all of its bits are set to true (“assigned since
last visit to program point”). The instrumentation at a pro-
gram point clears all of its bits for all the variables in scope.
The instrumentation maintains the modification bits via a sta-
tus object for every traced variable. To appropriately mirror
the semantics of parameter passing on variables, the status
object is passed by the same mode as its associated variable.
Thus, if a parameter is pass-by-value, then it gets a new sta-
tus object that is a copy of the incoming status; if the pa-
rameter is pass-by-reference, the status object is passed in
by reference as well.

This approach readily solves the problem with loops, as a
variable assigned outside the loop is counted the same for
program points inside the loop as at the loop’s entry and exit.
However, it does not work as well for repeated function calls
because each call counts as a unique assignment to its call-
by-value parameters, even if the arguments are identical, be-



All Value Random Random/

Added 33 23 36 26
relevant 0 4 0 0
irrelevant 33 19 36 26

Removed 10 9 14 14
relevant 6 1 6 6
irrelevant 4 8 8 8

Figure 10: Number of differing invariants reported over the
Siemens programs when using various rules for determining
whether a sample increases confidence. The baseline for these mea-
surements is the “assignment” rule; the four rules listed along the
top of the table are compared to that baseline. See Section 8 for
details.

cause the parameters are assigned outside the function’s pro-
gram points. Indeed, a number of undesirable invariants re-
sulted from this limitation, which is corrected in Daikon’s
Java instrumenter. That instrumenter rewrites the program
to allocate extra space within objects, so that the timestamps
are contained within the objects themselves. It maintains a
timestamp per lvalue, plus a timestamp perhlvalue, program
pointi pair.

As a performance optimization, Daikon can use modification
information not only to produce more accurate confidence
measures, but also to skip samples during invariant checking.
An unmodified sample can be ignored since its values are the
same as on the previous visit to the program point and hence
the invariant being tested must (still) hold.

We compared the rules listed above to assess their relative
benefits. We omitted the Gries programs because they did
not come with test suites, and the tests we constructed might
be better or worse than those constructed in practice by a
tester. For each of the Siemens programs, we repeated in-
variant detection using each of the five rules listed above to
determine which samples should contribute to invariant con-
fidence. We then classified, by hand, each of the differences
in the output (a total of 165 differing invariants) as either
relevant or irrelevant, according to the criteria of Section 3.

Figure 10 presents the results of this analysis. Each rule for
whether a sample adds confidence was compared to the base-
line “assignment” rule. The differences were approximately
3% as large as the full invariants (5059 invariants over more
than 200 program points; this is the sum of the last three
columns of the “reported” line of Figure 4).

Among the techniques, only the “value” rule causes report-
ing of relevant invariants that are not justified according to
the “assignment” rule. All the other rules miss some invari-
ants reported by the “assignment” rule and add more irrele-
vant invariants than they prune. Because of its simplicity and
lack of need for special runtime support, the “value” rule
may be competitive with the “assignment” rule in practice,
even if the latter tends to result in a slightly more relevant set

of invariants.

This experiment used 1000 test cases to create the data
traces. When using 300 test cases, there are 553 differing
invariants, or over 10%, between the “assignment” rule and
the other rules. Additionally, there are larger difference be-
tween the performance of the various rules. Larger test suites
do not proportionately reduce the number of differences be-
yond those for 1000 test cases. In our experience, there are
three reasons for this behavior [ECGN]. (1) Beyond a cer-
tain size, expanding test suites has little impact on the accu-
racy of invariant detection or the specific invariants detected.
(2) For test suites smaller than that cutoff, increasing test
suite size greatly improves the accuracy of invariant detec-
tion, by providing counterexamples to undesirable invariants
and providing increased confidence in desirable ones. (3) For
test suites larger than the cutoff, which specific tests are cho-
sen from a large pool of potential test cases has little effect
on the detected invariants.

9 RELATED WORK
Information Retrieval. One can reasonably consider
Daikon’s invariant discovery process as a form of informa-
tion retrieval [Sal68]. Information retrieval applies a query
to a corpus, returning likely matches to that query from the
corpus. The conventional approach for assessing the effec-
tiveness of an information retrieval technique is to measure
recall and precision. Recall captures what portion of the
true matches in the corpus are in the set of actual matches
found by the given technique— essentially, how complete
the retrieval is. Precision captures what portion of the ac-
tual matches are in the set of true matches — essentially, how
pure the retrieval is. Like our approach for assessing rele-
vance, recall and precision are based in qualitative analysis,
since determining the true matches is generally subjective.
Because the true set of relevant invariants is unknowable and
potentially infinite, we cannot measure recall.

Lackwit. Daikon uses Lackwit’s analysis to reduce the
cost and improve the quality of a dynamic analysis.
O’Callahan and Jackson developed Lackwit as a static tech-
nique to support reverse or re-engineering [OJ97]. The anal-
ysis was designed to be scalable (in particular, computation-
ally inexpensive even on large programs) and to handle com-
plex language constructs such as aliasing and higher-order
functions (so that languages such as C could be analyzed).
The use of the analysis is either query- or graphically-
based, allowing programmers to answer questions about a
program’s structure and to find various anomalies such as
abstraction violations, unused data structures, and memory
leaks.

Daikon does not use Lackwit in the same way that a pro-
grammer would directly. Exploring how a variety of tools
like these collectively aid programmers in managing evolv-
ing systems is a challenging task that is far beyond the scope
of this paper.



Statistical Significance. We use statistical confidence tests
to decide whether a specific invariant should be reported. An
invariant is reported if the null hypothesis which states the
observed distribution occurred by chance can be rejected at
a certain level of confidence. These confidence levels do not
indicate whether the invariant is (or is likely to be) actually
true in practice, because there is no guarantee that the test
suite fully characterizes the program’s actual execution en-
vironment [Goe85]. Additionally, since the actual distribu-
tion of variable values is not known, the exact value of this
confidence is less important than its order of magnitude and
comparisons among confidences. Finally, reporting an in-
variant doesnot imply that the invariant is relevant (useful to
a programmer for a specific task).

10 CONCLUSION
Dynamically inferring program invariants expands a pro-
grammer’s ability to gather information pertinent to software
evolution tasks. By combining this approach with existing
static analysis techniques, a programmer may be able to gain
the best of both the static and the dynamic worlds. Static
analyses tend to be sound, but the state of the art does not ac-
curately handle very large programs or all programming lan-
guages and features. In contrast, dynamic techniques tend to
be more practical in terms of applicability to arbitrary pro-
grams and often seem to provide useful information despite
their inherent unsoundness.

This paper describes four techniques for improving the per-
formance of invariant detection and the relevance (useful-
ness to programmers) of the reported invariants. First, a sim-
ple two-pass technique finds invariants over variables with
polymorphic types but which in practice contain values of
more limited run-time types. Second, eliminating implied
invariants makes the performance of the engine tractable and
removes accurate invariants that clutter the output without
adding any additional information. Third, type-based tech-
niques can reduce the set of variables examined and thus the
number of potential invariants checked; the eliminated in-
variants are highly likely to be irrelevant. More invariants are
checked, with the concomitant performance costs, but rele-
vant invariants are added to the output. Fourth, mechanisms
for preventing a single variable value from being counted
multiple times when testing statistical confidence prevent
chance properties from being reported as justified invariants.

Elsewhere we report on how to discover invariants over re-
cursive pointer-based structures and conditional invariants
that are not universally true [EGKN99]; an example is
p = NULL or p:left 2 mytree. We are also exploring a richer
user interface for Daikon, which would support some graph-
ical displays (when appropriate) and give the programmer
more control over both instrumentation and display of in-
variants. We also intend to perform more and larger studies
of how programmers use dynamically detected invariants in
practice: it doesn’t matter how fast or accurately they can
be computed if they do not assist real programmers in real

tasks. Initially, we plan to pursue a case study approach to
answering this question.

The Daikon tool is available for download from
http://www.cs.washington.edu/homes/
mernst/daikon/ .

ACKNOWLEDGMENTS
Rob O’Callahan provided the Lackwit tool, enhancements, bug
fixes, and fruitful discussions. Jake Cockrell implemented the
Daikon front end for C and an alternative implementation of
the Lackwit type system, which provided us with significant in-
sights. Yoshio Kataoka, visiting the University of Washington from
Toshiba Corporation Research and Development, was an early user
of Daikon and provided valuable suggestions and ideas. The anony-
mous referees provided helpful suggestions on the presentation.
Support for the research comes from NSF grant CCR-9970985, an
IBM Graduate Fellowship, and gifts from Edison Design Group,
Microsoft Corporation, and Toshiba Corporation. Griswold is cur-
rently on sabbatical from UCSD at Xerox PARC.

REFERENCES
[ECGN] Michael D. Ernst, Jake Cockrell, William G. Griswold,

and David Notkin. Dynamically discovering likely program in-
variants to support program evolution.IEEE Transactions on
Software Engineering. To appear. A previous version appeared
in Proceedings of the 21st International Conference on Software
Engineering, pages 213–224, May 19–21, 1999.

[EGKN99] Michael D. Ernst, William G. Griswold, Yoshio
Kataoka, and David Notkin. Dynamically discovering pointer-
based program invariants. Technical Report UW-CSE-99-11-02,
University of Washington, Seattle, WA, November 16, 1999.

[Goe85] Amrit L. Goel. Software reliability models: Assumptions,
limitations, and applicability.IEEE Transactions on Software En-
gineering, SE-11(12):1411–23, December 1985.

[Gri81] David Gries. The Science of Programming. Springer-
Verlag, New York, 1981.

[HFGO94] Monica Hutchins, Herb Foster, Tarak Goradia, and
Thomas Ostrand. Experiments on the effectiveness of dataflow-
and controlflow-based test adequacy criteria. InProceedings
of the 16th International Conference on Software Engineering,
pages 191–200, May 1994.

[OJ97] Robert O’Callahan and Daniel Jackson. Lackwit: A pro-
gram understanding tool based on type inference. InProceedings
of the 19th International Conference on Software Engineering,
pages 338–348, May 1997.

[RH98] Gregg Rothermel and Mary Jean Harrold. Empirical stud-
ies of a safe regression test selection technique.IEEE Transac-
tions on Software Engineering, 24(6):401–419, June 1998.

[Sal68] Gerard Salton.Automatic Information Organization and
Retrieval. McGraw-Hill, 1968.

[Wei99] Mark Allen Weiss.Data Structures and Algorithm Anal-
ysis in Java. Addison Wesley Longman, 1999.


