α-β stands for alphabetical author order. * stands for equal contribution.
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler. (α-β) Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, Kevin Tian COLT 2023
Condition-number-independent Convergence Rate of Riemannian Hamiltonian Monte Carlo with Numerical Integrators. (α-β) Yunbum Kook, Yin Tat Lee, Ruoqi Shen, Santosh S. Vempala COLT 2023
Private Convex Optimization in General Norms. (α-β) Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, Kevin Tian SODA 2023
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space. (α-β) Yunbum Kook, Yin Tat Lee, Ruoqi Shen, Santosh S. Vempala NeurIPS 2022
Randomized Exploration is Near-Optimal for Tabular MDP. Zhihan Xiong*, Ruoqi Shen*, Qiwen Cui*, Maryam Fazel, Simon S. Du NeurIPS 2022
Data Augmentation as Feature Manipulation. Ruoqi Shen, Sébastien Bubeck, Suriya Gunasekar ICML 2022
Analysis of Langevin Monte Carlo from Poincaré to Log-Sobolev. (α-β) Sinho Chewi, Murat A. Erdogdu, Mufan Bill Li, Ruoqi Shen, Matthew Zhang COLT 2022
Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions. (α-β) Yin Tat Lee, Ruoqi Shen, Kevin Tian NeurIPS 2021 (oral presentation)
Structured Logconcave Sampling with a Restricted Gaussian Oracle. (α-β) Yin Tat Lee, Ruoqi Shen, Kevin Tian COLT 2021
When is Particle Filtering Efficient for POMDP Sequential Planning? (α-β) Simon S. Du, Wei Hu, Zhiyuan Li, Ruoqi Shen, Zhao Song, Jiajun Wu UAI 2021
Generalized Leverage Score Sampling for Neural Networks. (α-β) Jason D. Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, Zheng Yu NeurIPS 2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo. (α-β) Yin Tat Lee, Ruoqi Shen, Kevin Tian COLT 2020
The Randomized Midpoint Method for Log-Concave Sampling. Ruoqi Shen, Yin Tat Lee NeurIPS 2019 (spotlight presentation)
How to Fine-Tune Vision Models with SGD. Ananya Kumar, Ruoqi Shen, Sébastien Bubeck, Suriya Gunasekar
On Optimal Early Stopping: Over-informative versus Under-informative Parametrization. Ruoqi Shen, Liyao Gao, Yi-An Ma